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Abstract: Let xt be an arbitrary one-dimensional diffusion pro-
cess and yt be a one-dimensional controlled diffusion process starting
from y0 = y ∈ (a, b). The process is controlled until yt crosses either
y = a or y = b for the first time. Our aim is to find the control u∗t
that minimizes an expected cost functional with both quadratic con-
trol and boundary crossing costs. An explicit form for the optimal
control is obtained under certain conditions.
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1. Introduction

We consider a two-dimensional controlled process (xt, yt) defined by the stochas-
tic differential equations

dxt = µ(xt)dt+ σ(xt)dB
1
t ,

dyt = m(yt)dt+ β(xt, yt)utdt+ {v(yt)}1/2dB2
t , (1)

where µ(·), σ(·) > 0, m(·), β(·, ·) and v(·) > 0 are Borel measurable functions,
B1
t and B2

t are independent Brownian motions defined on a probability space
(Ω,F ,P), and ut = u(xt, yt) for all t is a measurable u : R2 → R control
variable.

Assume that the process (xt, yt) starts from (x, y) in the domain D defined
by

D = {(x, y) ∈ R2 : a < y < b}, (2)
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where a, b are some fixed constants, and define

τu = inf{t > 0 : yt = a or yt = b | (x, y) ∈ D}. (3)

That is, τu denotes the first time the controlled process yt crosses the barrier a
or b.

Our aim is to find the control u∗t that minimizes the expected cost functional

J(x, y) := Ex,y

[

∫ τu

0

(

1

2
q(xt, yt)u

2
t + λ

)

dt+H(xτu , yτu)

]

(4)

where q(·, ·) is a positive function, λ > 0 is a positive constant, and H(·, ·) is a
general terminal cost function.

The problem treated in this note is a particular LQG homing problem, as
defined by Whittle (1982) and considered, in particular, by Lefebvre (1987, 1991,
1994), and by Makasu (2009).

An LQG homing problem is a problem in which the optimizer tries to bring
a controlled diffusion process into a given stopping set as quickly as possible,
while taking the control costs into account. However, if the parameter λ in (4) is
negative, the aim is actually to maximize the survival time in the continuation
region. Moreover, even if Whittle used the term “LQG homing”, the problems
considered need not be linear (respectively, quadratic) in ut in the plant equation
(1) (respectively, the cost functional (4)).

An application of such problems is the following: imagine that the controlled
process describes the path of an aircraft and that the objective is to land this
aircraft in minimum time. In the case of the model considered here, y = a could
be the height at which a military aircraft is likely to be detected by a radar.
Therefore, the controller wants to increase the aircraft’s height to y = b rapidly,
and without ever hitting y = a.

In the next section, we will obtain the solution to our problem, although,
as will be seen, we cannot appeal to the theorem proved in Whittle (1982).
Important particular cases will be solved explicitly in Section 3.

2. Optimal solution for the LQG homing problem

Let

ψ(x, y) := inf
ut,0≤t≤τu

J(x, y).

Assuming that the function ψ(x, y) exists and is twice differentiable, it turns out
that it satisfies the Hamilton-Jacobi-Bellman equation (see Fleming and Rishel,
1975, and Whittle, 1982)

inf
u

{

1

2
σ2(x)ψxx(x, y) +

1

2
v(y)ψyy(x, y) + µ(x)ψx(x, y) +m(y)ψy(x, y)

+β(x, y)uψy(x, y) +
1

2
q(x, y)u2 + λ

}

= 0 (5)
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for (x, y) ∈ D, where u := u0. Furthermore, we assume that the boundary
conditions are

ψ(x, y) =







h(x) if y = b,

+∞ if y = a,
(6)

where h(·) is a twice continuously differentiable function on (0,∞). Hence, we
force the process yt to exit (a, b) through the right end of the interval.

The control u∗ that minimizes the expression in (5) is

u∗ = −β(x, y)ψy(x, y)
q(x, y)

.

Substituting u∗ into (5), it follows that

1

2
σ2(x)ψxx(x, y) +

1

2
v(y)ψyy(x, y) + µ(x)ψx(x, y) +m(y)ψy(x, y)

−β
2(x, y)

2q(x, y)
ψ2
y(x, y) + λ = 0. (7)

Let yt be the process given in (1), and let

τ0 := inf{t > 0 : y0t = b and y0s > a for s ∈ [0, t]}, (8)

where y0t is the uncontrolled process that corresponds to yt, starting from y ∈
(a, b).

We shall prove the following proposition.

proposition 2.1 Assume that
A0: there exists a positive constant α such that

α =
v(y)q(x, y)

β2(x, y)
∀ (x, y) ∈ D; (9)

A1: the function h(x) satisfies the second order ordinary differential equation

1

2
σ2(x)h′′(x) + µ(x)h′(x) = k,

where k is a constant and
A2: P[τ0 <∞] = 1 a.s., where the first passage time τ0 is given by (8).

Then the optimal control u∗ that minimizes the expected cost functional (4) is
given by

u∗(x, y) =
v(y)

β(x, y)

φ′(y)

φ(y)
∀ (x, y) ∈ D, (10)

where

φ(y) := Ey
[

exp

{

−
(

k + λ

α

)

τ0
}]

, (11)

in which the expectation is taken over the first passage time τ0.
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Proof. Whittle (1982) has shown that if the relation (in our case)

(

σ2(x) 0
0 v(y)

)

= α

(

0 0
0 β(x, y)

)(

0 0
0 1/q(x, y)

)(

0 0
0 β(x, y)

)

holds for a positive constant α, then the transformation

Φ(x, y) := e−ψ(x,y)/α

linearizes the partial differential equation (7). Notice, however, that here the
relation in question is not satisfied. Nevertheless, using this transformation and
Assumption A0, we obtain the new non-linear partial differential equation

1

2
σ2(x)Φxx(x, y) +

1

2
v(y)Φyy(x, y) + µ(x)Φx(x, y) +m(y)Φy(x, y)

−1

2
σ2(x)

Φ2
x(x, y)

Φ(x, y)
− λ

α
Φ(x, y) = 0 (12)

for all (x, y) ∈ D. The boundary conditions are now of the form

Φ(x, y) =







e−h(x)/α if y = b,

0 if y = a.
(13)

Next, assume that the solution Φ(x, y) is of the form

Φ(x, y) = η(x)φ(y), (14)

where η(x) := e−h(x)/α and φ(y) : R → (0, 1) is a twice continuously differen-
tiable function.

Then, using the transformation (14), Eq. (12) reduces to

1

2
v(y)φ′′(y)+m(y)φ′(y)− 1

α

(

1

2
σ2(x)h′′(x) + µ(x)h′(x) + λ

)

φ(y) = 0. (15)

Finally, with the help of Assumption A1, it turns out that φ(y) is a solution
to

1

2
v(y)φ′′(y) +m(y)φ′(y) = γφ(y), (16)

where γ := (k + λ)/α, subject to φ(a) = 0 and φ(b) = 1, from which we deduce
the probabilistic representation (11).

Remarks.

1. The constant γ should be such that the mathematical expectation in (11)
exists.
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2. Notice that Assumption A0 is always satisfied when the functions v, q and
β are all constants.

3. The random variable τ0 denotes the time taken by the uncontrolled process
y0t to hit y = b, without ever hitting the barrier at a.

4. The condition P[τ0 < ∞] = 1, which is needed to ensure uniqueness of
the solution to our problem, is not restrictive when the interval (a, b) is
finite.

corollary 2.1 Let

φ(y) = c1p1(y) + c2p2(y)

be the general solution of (16), where p1 and p2 are the fundamental solutions
and c1 and c2 are arbitrary constants. Then, the optimal control u∗ is given
explicitly by

u∗(x, y) =
v(y)

β(x, y)

{

p1(a)p
′
2(y)− p′1(y)p2(a)

p1(a)p2(y)− p1(y)p2(a)

}

∀ (x, y) ∈ D. (17)

In the next section, some important particular cases will be solved explicitly.

3. Particular cases

(a) In the first particular case, we consider the process (xt, yt) in (1) with
µ(xt) ≡ 0, σ2(xt) ≡ 1, m(yt) ≡ 0, β(xt, yt) ≡ 1 and v(yt) ≡ 1. Then, xt
is a standard Brownian motion, and yt is a controlled standard Brownian
motion.
Moreover, we take q(xt, yt) ≡ q0 > 0. It follows that the constant α in (9)
is given by

α ≡ q0.

Next, the function h(x) must satisfy the second order ordinary differential
equation

1

2
h′′(x) = k.

We find at once that h(x) must be of the form

h(x) = kx2 + k1x+ k0,

where k1 and k0 are arbitrary constants. In particular, we can take h(x) =
kx2.
Finally, the function φ(y) is such that

1

2
φ′′(y) = γφ(y).
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That is, if γ is positive, we have that

φ(y) = c1e
√
2γy + c2e

−
√
2γy.

Making use of the boundary conditions φ(a) = 0 and φ(b) = 1, we find
that

φ(y) =
e
√
2γ(y−a) − e−

√
2γ(y−a)

e
√
2γ(b−a) − e−

√
2γ(b−a) =

sinh[
√
2γ(y − a)]

sinh[
√
2γ(b− a)]

.

We then deduce from (10) that the optimal control is

u∗ =
√

2γ coth[
√

2γ(y − a)] for y ∈ (a, b).

Notice that u∗ tends to ∞ as y decreases to a, which is logical, because
the optimizer wants to avoid receiving the infinite penalty incurred when
yτu = a.

(b) Let µ(xt) = xt, σ2(xt) = x2t , m(yt) = yt, β(xt, yt) = yt and v(yt) = y2t , so
that xt is a geometric Brownian motion, and yt is a controlled geometric
Brownian motion.
As above, we take q(xt, yt) ≡ q0 > 0. Then, the constant α in (9) is again
equal to q0.
This time, the function h(x) must satisfy

1

2
x2h′′(x) + xh′(x) = k. (18)

It is a simple matter to show that

h(x) = 2k ln(x) + k1
1

x
+ k0 (19)

does satisfy (18).
Thus, setting for instance k1 = k0 = 0, it follows that h(x) = 2k ln(x). No-
tice that here x is always positive, because a geometric Brownian motion
has a natural boundary at the origin.
Next, the function φ(y) is such that

1

2
y2φ′′(y) + yφ′(y) = γφ(y). (20)

If γ > −1/8, then the solution that satisfies φ(a) = 0 and φ(b) = 1 (with
a > 0) is

φ(y) =

√
b√
y

a−δyδ − aδy−δ

a−δbδ − aδb−δ
, (21)

where

δ :=
1

2

√

1 + 8γ.

Finally, (10) implies that the optimal control is given by

u∗ = −1

2
+ δ

y2δ + a2δ

y2δ − a2δ
for y ∈ (a, b).
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As in the previous case, u∗ tends to ∞ when y decreases to a, as it should.
Furthermore, if γ = 0, we have

u∗ =
a

y − a
for y ∈ (a, b).

Notice that it is not essential that the processes xt and y0t , as in the above
cases, should have the same infinitesimal parameters. We shall illustrate
this point in the two examples that follow.

(c) In the third particular case that we treat, we take µ(xt) = xt and σ2(xt) =
x2t , as in the previous case, so that xt is a geometric Brownian motion,
which is always positive. Moreover, we let m(yt) ≡ 0, β(xt, yt) = (xtyt)

1/2

and v(yt) = yt, and we assume that the interval (a, b) is (0, 1). Finally,
we set q(xt, yt) = xt > 0. In this particular case, the constant α in (9) is
equal to 1.
As in (b), we find that we can also take h(x) = 2k ln(x). However, the
function φ(y) is now a solution of the second order linear differential equa-
tion

1

2
yφ′′(y) = γφ(y).

We assume that the constant γ is strictly positive. Then, we find that the
unique solution satisfying the conditions φ(0) = 0 and φ(1) = 1 is

φ(y) =
√
y
I1(2

√
2γy)

I1(2
√
2γ)

,

where I1(·) is a modified Bessel function of the first kind. Hence, from
(10), we deduce that the optimal control is given by

u∗ =

√
2γ√
x

I0(2
√
2γy)

I1(2
√
2γy)

for y ∈ (0, 1).

We know that we should have limy↓0 u
∗ = ∞. Because I0(0) = 1 and

I1(0) = 0, the optimal control does indeed tend to ∞ as y decreases to 0.
(d) Consider, finally, the two-dimensional controlled process (xt, yt) in (1),

where µ(xt) = 1, σ2(xt) = 1, m(yt) = yt, v(yt) = y2t and β(xt, yt) =

yt
√

x2t + y2t . Assume that q(xt, yt) = x2t + y2t , then α = 1 in this case.
Let h(x) = e−2x such that k ≡ 0. Now observe that, in the present case,
φ(y) is still a solution of Eq. (20). Using Proposition 2.1, it follows that
the optimal control u∗ is of the form

u∗ =
y

√

x2 + y2
φ′(y)

φ(y)
for y ∈ (a, b),

where φ(y) is given explicitly by (21) and a > 0.
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4. Conclusion

We have solved explicitly a two-dimensional LQG homing problem under cer-
tain conditions. It is shown that the optimal control can be expressed as a
mathematical expectation for the corresponding uncontrolled process, even if
the relation that would enable us to appeal to a theorem proved by Whittle
(1982) is not satisfied.

The present work can be generalized in various ways. We could consider the
same type of problem, but in more than two dimensions. We could also assume
that the first passage time τu is replaced by

τu,t0 = min{τu, t0},

where t0 > 0 is a fixed constant, so that we would control the process at most
until time t0. The case with a risk-sensitive cost criterion is yet another possible
generalization.

Finally, we could, of course, solve other important special cases. For instance,
the case when xt and y0t are Ornstein-Uhlenbeck processes, or Bessel processes.
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