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Abstract: The paper presents a method of stabilisation of an
LC ladder network with a delayed output feedback. A discussion of
certain properties of tridiagonal matrices and formulation of the con-
sidered system in state space equations is included. Formal stability
of the arising infinite dimensional system is described and stability
conditions are formulated based on properties of characteristic quasi-
polynomial. The method of D-partitions is used to determine the
stability regions in the controller parameter space. Paper includes
examples for ladders of dimensions 1, 2 and 3 and a comparison with
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1. Introduction

In this paper, we consider stabilisation of LC ladder networks such as given in
Fig. 1. This problem is practically important, and was considered in earlier
works. The system is an undamped oscillatory system, for which stabilisation
by an output feedback is difficult. Systems of this kind along with different
types of feedback were considered in the earlier works - distributed feedback
(active systems) Mitkowski (1973), linear feedback, Mitkowski, (1978b), bound-
ary feedback Mitkowski, (1987a), and dynamical feedback, Mitkowski (2003).
For a survey of different methods of stabilisation, see Mitkowski (2004b). Non-
linear dynamical feedback was considered in Skruch (2005, p. 30). It was shown
that such system can be stabilised by dynamical linear and nonlinear otput feed-
backs, but a static output feedback is unable to stabilise this system. Here we
present an approach to stabilisation of the system with an application of linear
delayed output feedback. It is a continuation of authors’ earlier works (see, for
example, Baranowski, Mitkowski and Skruch, 2009).

∗Submitted: December 2010; Accepted: February 2012
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2. Preliminaries

At first we will present certain information regarding properties of tridiagonal
matrices (also called Jacobi matrices). This is a very important matrix class
with many interesting applications. Some results, regarding them, are collected
in Ilin and Kuznyetsow (1985), and in earlier author’s works (see for example
Mitkowski, 1991a, 1996). It should be noted that applications can be found in
biology, circuit theory, signal processing and other areas. It should be also noted
that research in this area is still active (see, for example, Cheng and Berger,
2009).

We will present a lemma on the characteristic polynomial of a particular
tridiagonal matrix.

Lemma 1 (see, for example, Mitkowski, 1996). Characteristic polynomial Jn(s)
of matrix E, defined as

Jn(s) = det[sI−E] (1)

where

E =



















b c 0 . . . 0 0
a b c . . . 0 0
0 a b . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . b c
0 0 0 . . . a b



















n×n

(2)

is given by the following recurrence formula

Jk(s) = (s− b)Jk−1(s)− acJk−2(s)

J0(s) = 1

J1(s) = s− b

k = 2, 3, 4, . . . , n.

To complement this lemma, we will prove the following corollary, regarding the
constant value of this polynomial at 0.

x1(t) x2(t) xn(t)=y(t)u(t)

L L L L

CCC

Figure 1. LC ladder network
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Corollary 2 Jn(0) is given by:

Jn(0) =



















































































If b2 6= 4 ac :

(−1)n
(

r2 − b

r2 − r1
rn1 +

b− r1
r2 − r1

rn2

)

where

r1 =
1

2

(

b+
√

b2 − 4 ac
)

r2 =
1

2

(

b−
√

b2 − 4 ac
)

If b2 = 4 ac :

(−1)n(1 + n)

(

b

2

)n

.

(3)

Proof. Jn(0) is equal to the constant term of Jn(s). It is known (see Turowicz,
2005, p. 117), that characteristic polynomial of any square, n × n matrix F is
given by

det[sI− F] = sn − S1s
n−1 + S2s

n−2 + . . .+ (−1)nSn (4)

where Sk is the sum of all principal minors of degree k of matrix F. In particular,
S1 = trF and Sn = detF. That is why in order to find the constant value of
Jn(s) we only need to compute the determinant of matrix E. The formula for
this determinant for b2 6= 4 ac is given in Turowicz (2005, p. 55). For b2 = 4 ac
we have to consider a difference equation

ζk − bζk−1 + acζk−2 = 0 (5)

ζ0 = 1 (6)

ζ1 = b. (7)

It should be noted that detE = ζn. Characteristic equation of (5) has one
double root ζ = b/2. General solution is then

ζn = K1

(

b

2

)n

+ nK2

(

b

2

)n

. (8)

For initial conditions (6) and (7) we get K1 = K2 = 1, so

detE = (1 + n)

(

b

2

)n

. (9)
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3. Problem formulation

Mathematical model of a LC ladder network with y(t) = xn(t), depicted in
Fig. 1 is given by the following second order equation of dimension n

ẍ(t) +Ax(t) = Bu(t) (10)

y(t) = Cx(t) (11)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R and

A =
1

LC





























2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 2 −1

0 0 0 . . . −1 2





























n×n

B =
1

LC















1
0
0
...
0















n×1

C =
[

0 . . . 0 0 1
]

1×n
.

(12)

System (10) is oscillatory and undamped – its eigenvalues are imaginary and
equal to ±jωi, j =

√
−1, i = 1, 2, . . . , n where

ωi =
√

λi(A) (13)

λi(A) =
2

LC
(1− cosϕi) (14)

ϕi =
iπ

n+ 1
, i = 1, 2, . . . , n (15)

(see, for example, Mitkowski, 2003, 2004b). General results on stabilisation
of such second order systems are provided by Skruch (2005) and Mitkowski
(2004a). Main conclusion of these and other works is that oscillatory system
such as (10), (11) with matrices given by (12) can be stabilised by an appropriate
static state feedback or dynamical output feedback.

In this paper we will consider a feedback in the form of proportional, time
delayed controller

u(t) = Ky(t− h) (16)

where K ∈ R is the gain and h > 0 is the time delay. Usually, in control applica-
tion focus is on elimination of the influence of delay (which is usually negative),
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what leads to difficult control problems. On the other hand, introducing or
increasing a delay to the system is very simple - it can be implemented with
appropriate buffers. That is why such controller can be easily applied. This
type of control structure is presented in Fig. 2.

Equation of the closed loop system is given by

ẍ(t) +Ax(t) −BKCx(t− h) = 0 (17)

or equivalently

d

dt

[

x(t)
ẋ(t)

]

=

[

0n×n In×n

−A 0n×n

] [

x(t)
ẋ(t)

]

+

[

0n×1

B

]

K
[

C 01×n

]

[

x(t− h)
ẋ(t− h).

]

(18)

In order to analyse the behaviour of the closed loop system, we need to
discuss the stability of time delay systems.

x1(t) x2(t) xn(t)=y(t)u(t)

L L L L

CCC

Ky(t-h)

y(t)u(t)

Figure 2. The control structure considered

4. Stability of time delay systems

Let us consider a class of dynamical systems generated by the following differ-
ential equation (see, for example, Klamka, 1990, p. 166):

ẋ(t) = A0x(t) +A1x(t− h) +Bu(t) (19)

with t ≥ 0, h > 0, and initial condition

x0 ∈M2([−h, 0];Rn) = Rn × L2([−h, 0];Rn) (20)

with A0, A1 ∈ Rn×n, u ∈ L2
loc([0,∞),Rm), B ∈ Rn×m.

Let us denote the solution of (19) at t ≥ 0 with initial condition x0 and
control u by x(t;x0, u). This solution exists and is unique. It can be obtained,
for example, with a step method. This solution can also be also interpreted as
a function of time, for which values are elements of M2([−h, 0];Rn). M2 is a
Hilbert space with a scalar product

(φ, ψ)M2 = φ(0)Tψ(0) +

∫ 0

−h

φ(s)Tψ(s)ds. (21)
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Also

x̃(t) =

[

x(t;x0, u)
xt(•;x0, u)

]

∈M2([−h, 0];Rn)

xt(•;x0, u) = x(t+ τ ;x0, u)

τ ∈ [−h, 0].

(22)

The state of the dynamical system generated by equation (19) is a solution of an
abstract state equation in Hilbert space M2([−h, 0];Rn) given by (see Klamka,
1990)

˙̃x(t) = Ãx̃(t) + B̃u(t), t ≥ 0 (23)

where

Ã

[

w
v

]

=

[

A0v(0) +A1v(−h)
v̇(•)

]

(24)

B̃ =

[

Bu
0

]

(25)

B̃ ∈ L(Rm;M2([−h, 0];Rn)) (26)
[

w
v

]

∈ D(Ã) (27)

D(Ã) =

{[

w
v

]

∈M2([−h, 0];Rn) : v, v̇ ∈ L2([−h, 0];Rn), v(0) = w

}

(28)

D(Ã) =M2([−h, 0];Rn). (29)

The operator Ã given by (24) is an infinitesimal generator of C0 semigroup S̃
in the M2([−h, 0];Rn)) space (see Delfour, 1980, and also Mitkowski, 1991b,
pp. 178, 182, 243 and 247). The solution of (23) takes the form

x̃(t) = S̃(t)x̃(0) +

∫ t

0

S̃(t− τ)B̃u(τ)dτ. (30)

Generator Ã has only a discrete, numerable (sometimes finite) spectrum (see
Delfour and Manitius, 1980a,b; Manitius, 1980), consisting of the roots si of the
equation

W (s) = 0

W (s) = det[sI−A0 −A1e
−sh].

(31)

Equation (31) is called characteristic equation, and function det[sI − A0 −
A1e

−sh] is called characteristic quasi-polynomial. If roots si of characteristic
equation fulfil

Resi < 0, ∀i (32)
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then system (23) is exponentially stable. If so, the solutions of the equation
(19) are also exponentially stable (see Elsgolts and Norkin, 1973, pp. 119 and
123, and also Pandolfi, 1975; Triggiani, 1975). For other important properties
see Górecki (1971), Górecki, Fuksa, Grabowski and Korytowski (1989).

This analysis is also valid for the system (10) with feedback (16), because it
is equivalent to the system (19) with matrices

A0 =

[

0n×n In×n

−A 0n×n

]

A1 =

[

0n×n 0n×n

BKC 0n×n

]

(33)

with A, B, C given by (12).

5. Application to the considered system

For the remainder of this paper we will assume that a = c = 1 and b = −2 (see
(2)). This will cause E = −LCA. With the help of Lemma 1 we will prove the
following

Theorem 3 Characteristic quasi-polynomial W (s) of the closed loop system

ẍ(t) +Ax(t) = Bu(t) (34)

y(t) = Cx(t) (35)

u(t) = Ky(t− h) (36)

with matrices A, B and C given by (12) takes the form

W (s) = Jn(LCs
2)−Ke−sh. (37)

Proof. We will prove this theorem through the analysis of the transfer function
of system (10). This system is a single output single input system, and so its
transfer function has the form

G(s) =
l(s)

m(s)
. (38)

Let us assume that initial conditions for system (10) are equal to zero, then
application of Laplace transform to its equations results in

s2X(s) +AX(s) = BU(s) (39)

Y (s) = CX(s). (40)

In consequence

X(s) = [s2I+A]−1BU(s) (41)

Y (s) = C[s2I+A]−1BU(s) = G(s)U(s). (42)
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Let us denote ei as the i-th unit vector (a column vector, of which all elements
are equal to zero except for the i-th one). One can easily see that

C = eTn, B =
1

LC
e1. (43)

We can now see that

G(s) =
1

det[s2I+A]
· 1

LC
· eTnAdj[s2I+A]e1. (44)

Let us analyse the expression det[s2I+A]. If we introduce an auxiliary variable
z = LCs2, we get

det[s2I+A] = det

[

z2

LC
I+A

]

= det

[

1

LC
(zI+ LCA)

]

=

= det

[

1

LC
(zI−E)

]

=

(

1

LC

)n

det[zI−E] =

=

(

1

LC

)n

Jn(z) =

(

1

LC

)n

Jn(LCs
2).

It should be noted that for matrix F = [fij ]n×n we have

eTnFe1 = f1n. (45)

In that case and because A is symmetric

eTnAdj[s
2I+A]e1 = A(1, n) (46)

where A(1, n) denotes the (1, n) cofactor of matrix [s2I+A]. From the definition
of cofactor we get

A(1, n) = (−1)1+n det





































− 1

LC

s2 + 2

LC
− 1

LC
. . . 0

0 − 1

LC

s2 + 2

LC
. . . 0

...
...

. . .
...

...

0 . . . 0 − 1

LC

s2 + 2

LC

0 . . . 0 0 − 1

LC





































=

= (−1)1+n

(

−
1

LC

)n−1

=

(

1

LC

)n−1

. (47)
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The transfer function (44), with the above results, takes the form

G(s) =

1

LC

(

1

LC

)n−1

(

1

LC

)n

Jn(LCs2)

=
1

Jn(LCs2)
. (48)

It is well known from rules of block schematic transformations, that for control
systems, such as shown in Fig. 2, closed loop transfer function takes the form

Gz(s) =
G(s)

1−G(s)R(s)
(49)

where R(s) is the transfer function of the controller. In the considered case

R(s) = Ke−sh. (50)

Closed loop transfer function becomes

Gz(s) =

1

Jn(LCs2)

1− Ke−sh

Jn(LCs2)

=
1

Jn(LCs2)−Ke−sh
(51)

and denominator of (51) is the desired characteristic quasi-polynomial.

6. The method of D-partitions

In order to verify the stability of system (10) with feedback (16) we have ap-
plied the method of D-partitions (see Esgolts and Norkin, 1973, p. 132), which
showed to be very useful in the considered problem. D-partitions is a method of
determining regions, in one or two parameter space, for which a certain number
of roots of polynomial (or in our case quasi-polynomial) have positive real part.
In stability analysis the goal is to find the areas, where quasi-polynomial has
zeros whose real parts are negative (we will call them regions of stability).

The main idea of the method is that on the boundary of regions of stability
quasi-polynomial roots have to “go through” the imaginary axis. In that case,
finding all the curves in parameter space, for which quasi-polynomial has at
least one zero on imaginary axis gives us boundaries of all stability regions
(and also many other regions). To find the region of stability one has to check
stability for any point inside the given area determined by the curves. If this
point corresponds to a stable closed loop system, then this area is a region of
stability.

We will now apply the method of D-partitions to characteristic quasi-po-
lynomial of the closed loop system (10), (11), (16) obtained from Theorem 3.
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Analysis takes two steps, first we check for which parameters (K,h) the system
has the root s = 0

W (s)
∣

∣

∣

s=0
= 0, W (s) = Jn(LCs

2)−Ke−sh. (52)

Using formula (3), from Corollary 2 we get the equation of the first curve

K = 1 + n. (53)

To verify other zeros on the imaginary axis we have to analyse the following
equation

W (s)
∣

∣

∣

s=jβ
= 0, j =

√
−1, β > 0. (54)

We limit ourselves to only positive β because complex roots of quasi-polynomial
with real coefficients are present only as conjugate pairs. After substitution we
get

0 = Jn(LC(jβ)
2)−Ke−jβh (55)

0 = Jn(−LCβ2)−K(cosβh− j sinβh). (56)

Equation (56) corresponds to the following system of equations

0 = K sinβh (57)

0 = Jn(−LCβ2)−K cosβh. (58)

From (57) another curve can be easily determined

K = 0. (59)

It is especially interesting, because it corresponds to a situation, when delay
vanishes from the system, and roots of quasi-polynomial become the roots of
polynomial of the open loop system (10). From (57) we can also obtain the
dependence of β on h, precisely

β =
pπ

h
, p = 1, 2, 3, 4, . . . (60)

Substitution into (58) results in a numerable set of curves given by

K = (−1)pJn

(

−LCp
2π2

h2

)

(61)

The set of curves given by (53), (59) and (61) gives us complete informa-
tion regarding division of the parameter space K × h into the potential re-
gions of stability. What is interesting and at the same time practically impor-
tant, is that in order to analyse the bounded subset of parameter space (i.e.
{K ∈ [Kmin,Kmax], h ∈ [hmin, hmax]}) only a finite number of curves is re-
quired. Also, it is clearly visible that analysis of gain K as a function of h in
determination of stability regions is fully justified, as it comes naturally from
curve equations (53), (59) and (61).
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7. Examples

In this section we will analyse the stability regions of the closed loop system
(10), (11), (16) for n = 1, 2, 3. It corresponds to the ladder network of Fig. 1
with one, two or three loops. First, in Figs. 3, 4, 5 we present a set of curves for
h ∈ (0, 15]. We have plotted curves (53), (59) and curves (61) for p = 1, 2, . . . , 9.
There is no loss of information caused by this limitation, because curves for p > 9
do not cross this area. This restriction was made because this area contains a
“manageable” number of curve intersections, for manual determination of can-
didate regions. For greater delays the number of intersections rises, which is
already visible for n = 3 and h > 10.

Curves on the plots were not marked, but they are easily distinguishable
using appropriate formulas. It can be easily seen that curves (53) and (59)
are actually parallel lines and curves (61) start from the left side of the axis,
alternating signs - for even n the initial curve is negative for h close to zero and
it is reversed for odd n.

0 5 10 15
−3

−2

−1

0

1

2

3

h

K

Figure 3. Curves of D-partitions for n = 1

In Figs. 6, 7 and 9 we have marked the stability regions on the parameter
surface divided with D-partitions curves. As it can be seen, these areas are
irregular, and especially for n = 1 the sign of feedback alternates. Stability
regions for n = 2 are more irregular (and this trend continues with rising n, see
Baranowski et al., 2009) and interesting structural properties can be observed.
In Fig. 8 we can see a close-up of a stability region for n = 2 for h ∈ [12.5, 14.5].

As it can be seen, one of the D-partitions curves goes through the stability
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0 5 10 15
−4

−3

−2

−1

0

1

2

3

4

h

K

Figure 4. Curves of D-partitions for n = 2

0 5 10 15
−5

−4

−3

−2

−1

0

1

2

3

4

5

h

K

Figure 5. Curves of D-partitions for n = 3
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0 5 10 15
−3

−2

−1

0

1

2

3

h

K

Figure 6. Stability regions for n = 1

0 5 10 15
−4

−3

−2

−1

0

1

2

3

4

h

K

Figure 7. Stability regions for n = 2



26 J. BARANOWSKI, W. MITKOWSKI

12 12.5 13 13.5 14 14.5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

h

K

Figure 8. Close up of a stability region for n = 2 – the D-partitions curve splits
the stability region into two

region. It means that in this region roots of quasi-polynomial have negative
parts, except for points located on the splitting curve. Those points correspond
to at least one conjugate pair of imaginary roots.

What is especially interesting, is that these imaginary roots are strongly
structurally unstable, even numerical precision up to 6 digits does not allow
observing undamped oscillations.

This increases for n = 3 as regions are more irregular and “split” regions also
occur. This can be observed in Fig. 10. It should be also noted that for n = 3
we have limited h to the interval [0, 10]. It was caused by the desire to keep
the figures legible as no particularly interesting phenomena occurred for larger
h. Moreover, as it can be observed, the minimal delay required for stabilisation
increases.

Probably interesting irregularities and “splitting” of regions are more com-
mon for larger n and h, but this is only a speculation.

8. Additional remarks

In previous works regarding applications of (16) to oscillatory systems two ap-
proaches were dominant. The first one, based on matrix pencils was considered
in Abdallah, Dorato, Benitez-Read and Byrne (1993), Niculescu and Abdal-
lah (2000), where some general results were derived. The other approach used
Nyquist stability criterion and its results were shown in Mitkowski and Skruch
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0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1
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3

4

5

h

K

Figure 9. Stability regions for n = 3

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9
−0.1

0

0.1

0.2

0.3

0.4

h

K

5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

−1

−0.95

−0.9

h

K

Figure 10. Close up of stability region for n = 3 – left - D-partitions curve splits
stability region into two, right - strong irregularity of stability region
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(2009). As it was shown in cited works, for simple cases an analytical solution
could be obtained. Both of these directions were characterized by two aspects:

• only positive feedbacks were considered (K > 0),
• the focus was on finding such h for which given K will cause the closed

loop system to be asymptotically stable.
Authors’ previous works (Baranowski and Mitkowski, 2009; Baranowski et

al., 2009) used a different approach when addressing these two weaknesses. A
finite dimensional Padé approximation of controller (16) was used. The transfer
function

R(s) = Ke−sh (62)

was approximated with

R(s) ≈ K
Qq(−sh)
Qq(sh)

(63)

where Qq is a polynomial of arbitrarily chosen q-th order given by

Qq(sh) =

∫

∞

0

tq(t+ sh)qe−tdt =

q
∑

j=0

(2q − j)!q!

j!(q − j)!
(sh)j =

q
∑

j=0

(q + j)!q!

j!(q − j)!
(sh)j .

also recurrence formulas for these polynomials are possible. Stability of the
finite dimensional closed loop system was verified with the application of opti-
misation algorithm based on constraints automatically generated from Hurwitz
criterion (for details see Baranowski et al., 2009).

Padé approximation has many beneficial properties, most notable of which
are:

• Qq(λ) has roots in left open complex half plane for any q,
• frequency characteristics of system in the form (62) can be approximated

with arbitrary precision in the sense of L∞(R) norm.
Extensive analysis of the approach has, however, shown two substantial flaws of
Padé approximation:

• Polynomials Qq become ill-conditioned for all q > 10, and become nu-
merically unusable for q > 40 (these bounds do not come from a precise
analysis, but are presented in order to give the reader a general concept)

• Spectrum of time delayed system (roots of quasi-polynomial) for large
h (for LC = 1 it was h > 10) greatly differs from the roots of Padé
approximation, which makes stability analysis unreliable.

This motivated us to find a method of determining the stability regions free
of all the shortcomings of previous methods. It was also desirable to find a
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Pade approximation of stability region
Curves of D−partitions

Figure 11. Padé approximation vs. D-partitions curves - n = 1
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Pade approximation of stability region
Curves of D−partitions

Figure 12. Padé approximation vs. D-partitions curves - n = 2
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method based on analytical computations in order to remove the possibilities of
numerical errors. The method of D-partitions described above is such a method.

In Figs. 11 and 12 we compare results from D-partitions with those obtained
in earlier works via Padé approximation. Our comparison was limited only to
the part of stability regions for large h. As mentioned before, Padé approxi-
mation gives poor results for large delays and this can be observed here. The
approximate regions of stability obtained for lower h are not presented, because
they were very close to the exact ones, so we focused on the part where problems
were present.

For n = 1, where the structure of stability regions is relatively simple, we
observe only a slight shift in the ending of the region (see Fig. 11). This shift
extends for higher h. This error is a minor one because the character of the
regions was preserved.

For n = 2 (Fig. 12) the differences between approximated and exact regions
are more substantial. The beginning of stability region for h ∈ [10.8, 12.6] was
detected incorrectly, and information regarding possibly bigger, stable gains
was lost. Much more significant failure is visible for h ∈ [12.6, 14.5]. This is the
location of “split” stability region illustrated in Fig. 8. As it can be seen, the
first part of the region was completely ignored, and from the second part only a
little part for h ∈ [14.4, 14.5] was found stable, but also not correctly. Moreover,
an additional false stability region was generated, for parameters of which the
system is unstable.

For n = 3 the approximation based approach fails completely and was not
presented in the paper.

9. Conclusions and future work

In this paper we have presented a method for stability analysis of time delay
feedback control of LC ladder network. An analytical formula for characteristic
quasi-polynomial of closed loop control system was determined for any given
n. The method of D-partitions was used to determine the stability regions
in parameter space. Curves separating the region candidates were determined
analytically also for any n. Obtained results were compared with those known
from literature and those of authors’ earlier works. Main benefits of the method
are direct analytical results, allowing for avoiding numerical problems and no
restrictions caused by higher order LC ladder.

It should be also noted that analysis of similar LC ladder systems is impor-
tant, because of possible applications in approximation of infinite-dimensional
systems (see, for example, Mitkowski, 1976). This class is especially interest-
ing when using spatial discretisations of hyperbolic partial differential equations.
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For example a lossless transmission cable is described by the following equations

LC
∂2x(t, z)

∂t2
=
∂2x(t, z)

∂z2

x(t, 0) = u(t)

x(t, l) = 0

t ≥ 0, 0 ≤ z ≤ l.

After applying appropriate difference approximation

∂2x(t, z)

∂z2
≈ 1

∆

(

x(t, z +∆)− 2x(t, z) + x(t, z −∆)

∆

)

(64)

where ∆ = l/n and z = (2k − 1)∆/2 for k = 1, 2, . . . , n) we get system (10)
with the following matrices

A =
n2

LC
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n×n

B =
n2

LC

[

1 0 0 . . . 0
]T

1×n
.

(65)

It should be noted, though, that approximations of this kind should be per-
formed carefully, because in hyperbolic systems every mode carries the same
amount of energy, so if system is undamped, approximation might be inade-
quate.

There are also areas of further work regarding the stability analysis. An
open problem is automatising the algorithm for determining the stability re-
gions. Currently region candidates are chosen manually and verified by the
user. A promising approach is the application of graph theory. Intersections
of D-partitions curves can be interpreted as vertexes, and appropriate sections
of curves as edges. Intersections cannot be determined analytically, however
computing them is equivalent to finding roots of certain polynomials. Those
roots can be obtained by many numerically reliable procedures, available in
such packages as MapleTMand MATLAB TM. The problem of finding stability
region candidates could be then solved as a problem of finding cycles in a graph.
Having the stability region candidates allows for checking stability of a region
through stability of one point in the region. It can be performed in many ways,
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for example via Nyquist criterion (see, for example, Mitkowski, 1991b, p. 99) or
even through direct simulation.

Another interesting aspect of the problem are the asymptotic properties of
stability regions with n → ∞. When analysing spatial discretisation of hyper-
bolic system it is very interesting, whether the results can be used for stabilisa-
tion of an actual infinite-dimensional system.

Acknowledgment

This work has been partially financed by state science funds as a research
project, contracts no. N N 514 414034 and partially N N 514 417734. Work was
continued and partially financed partially from NCN-National Science Centre
funds no. N N 514 644440.

References

Abdallah, C.T., Dorato, P., Benitez-Read, J. and Byrne, R. (1993)
Delayed Positive Feedback Can Stabilize Oscillatory Systems. In: Pro-
ceedings of the American Control Conference, San Francisco, CA. IEEE
Conference Publications, 3106–3107.

Baranowski, J. and Mitkowski, W. (2009) Stabilisation of the second or-
der system with a time delay controller. In: Papers. 24th IFIP TC7
Conference on System Modelling and Optimization, 48–49.

Baranowski, J., Mitkowski, W. and Skruch, P. (2009) Stability regions
of time delay controller for LC ladder network. In: Materiały XXXII
Międzynarodowej konferencji z podstaw elektrotechniki i teorii obwodów
IC-SPETO, Ustroń. Extended version on CD, 103–104.

Cheng, J. and Berger, T. (2009) On minimal eigenvalues of a class of tridi-
agonal matrices. IEEE Transactions on Information Theory, 55(11),
5024–5031.

Delfour, M.C. (1980) The largest class of hereditary systems defining C0

semigroup on the product space. Can. J. Math. 32(4), 969–978.
Delfour, M.C. and Manitius, A. (1980a) The structural operator F and

its role in theory of retarded systems. Part I. J. Math. Anal. Appl.
73(2), 466–490.

Delfour, M.C. and Manitius, A. (1980b) The structural operator F and
its role in theory of retarded systems. Part II. J. Math. Anal. Appl.
74(2), 359–381.

Elsgolts, L.E. and Norkin, S.B. (1973) Introduction to the Theory and
Application of Differential Equations with Deviating Arguments. Math-
ematics in Science and Engineering, 105. Academic Press, New York.
Translated from Russian by John L. Casti.

Górecki, H. (1971) Analysis and Synthesis of Control Systems with Delay.
Wydawnictwa Naukowo-Techniczne, Warszawa (in Polish).



Stabilisation of LC ladder network with delayed output feedback 33

Górecki, H., Fuksa, S., Grabowski, P. and Korytowski, A. (1989)
Analysis and Synthesis of Time-delay Systems. J. Wiley & PWN, Chich-
ester & Warsaw.

Ilin, W.P. and Kuznyetsow, Y.I. (1985) Tridiagonal matrices and their
applications. Nauka, Moskva (in Russian).

Kaczorek, T. (2007) Polynomial and Rational Matrices. Applications in Dy-
namical Systems Theory. Springer-Verlag, London.

Klamka, J. (1990) Controllability of Dynamical Systems. PWN, Warszawa
(in Polish, English language edition: Kluwer Academic Publishers, 1991).

Manitius, A. (1980) Completness and f-completness of eigenfunctions associ-
ated with retarded functional differential equations. J. Diff. Eq. 35(1),
1–29.

Mitkowski, W. (1973) Układy drabinkowe jednorodne R,L i G,C pasywne
oraz aktywne (Passive and active uniform ladder networks of the R,L and
G,C type). Arch. Elektrotechniki, 22(2), 387–395.

Mitkowski, W. (1976) Aproksymacja linii długiej układem drabinkowym
(Approximation of an infinite line by a ladder network). Arch. Elek-
trotechniki 25(4), 943–953.

Miktowski, W. (1987a) Analysis of ladder networks with boundary feedback.
Bulletin of the Polish Academy of Sciences - Technical Sciences, 32(11-
12), 695–699.

Miktowski, W. (1987b) Uniform ladder networks with linear feedback. Arch.
Elektrotechniki, 36(1-4), 7–18.

Miktowski, W. (1991a) Remarks on the eigenvalues of a Jacobi matrix with
special perturbation. Kwartalnik AGH, Elektrotechnika, 10(2), 169–175.

Mitkowski, W. (1991b) Stabilizacja systemów dynamicznych (Stabilisation
of dynamical systems ; in Polish). WNT, Warszawa.

Mitkowski, W. (1996) Tridiagonal matrices and their applications in circuits
theory. In: Proc. of Seminar on Electrical Engineering "Beskidy 96", 2,
Conference Archives PTETiS, 19–31.

Mitkowski, W. (2003) Dynamic Feedback in LC Ladder Network. Bulletin
of the Polish Academy of Sciences – Technical Sciences 51(2), 173–180.

Mitkowski, W. (2004a) Analysis of undamped second order systems with
dynamic feedback. Control and Cybernetics 33(4), 563–572.

Mitkowski, W. (2004b) Stabilisation of LC ladder network. Bulletin of the
Polish Academy of Sciences – Technical Sciences 52(2), 109–114.

Mitkowski, W. and Skruch, P. (2009) Stabilization results of second-order
systems with delayed positive feedback. In: W. Mitkowski and J. Kacp-
rzyk, eds., Modelling Dynamics in Processes and Systems. Studies in Com-
putational Intelligence, 180, Springer, Berlin - Heidelberg, 99–108.

Niculescu, S. and Abdallah, C. (2000) Delay effects on static output feed-
back stabilization. In: Proceedings of the 39th IEEE Conference on Deci-
sion and Control, 2000. IEEE, 3, 2811–2816.

Pandolfi, L. (1975) On feedback stabilisation of functional differential equa-



34 J. BARANOWSKI, W. MITKOWSKI

tions. Boll. Un. Mat. Ital. 11(4), 626–635.
Skruch,P. (2005) Stabilisation of linear infinitely dimensional oscillatory sys-

tems. Ph.D. thesis, Faculty of Electrical Engineering, Automatics, Com-
puter Science and Electronics, AGH University of Science and Technology.
Supervisor: W. Mitkowski (in Polish).

Triggiani, R. (1975) Controlability and observability in Banach space with
bounded operators. SIAM J. Control 13 (2), 462–491.

Turowicz, A. (2005) Teoria Macierzy (Matrix Theory; in Polish). Uczelniane
Wydawnictwa Naukowo Dydaktyczne AGH, Kraków, 6th edition.


