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Abstract: We discuss numerical methods to solve the Cauchy
problem for hyperbolic equations, paying attention to equations
which describe physical phenomena in fluid dynamics. We con-
centrate on Godunov-type methods which adopt Riemann solvers.
These methods constitute a formidable task due to complexity of
hyperbolic equations. Despite this complexity we show that the
Godunov-type methods can be successfully applied to simulate com-
plex systems such as described by equations of magnetohydrodynam-
ics. In particular, we simulate thermal mode in a two-dimensional
x-point magnetic field topology that is embedded in a gravitationally
stratified solar atmosphere.
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1. Introduction

As a result of their intrinsic complexity, a lot of physical phenomena are de-
scribed by mathematical equations, which cannot be solved analytically. So,
they require a numerical treatment. The basic idea of computer experiments is
to simulate the physical evolution by solving an appropriate set of mathemati-
cal equations built on the basis of a physical model. It is typical to develop a
mathematical model, like a set of differential equations and then to transform
them to a discrete form that can be numerically treated. In this way, numer-
ical simulations rely on initialization of a system and attempt to calculate its
subsequent events.

Numerical simulations can be used to study the dynamics of complex sys-
tems. The class of Godunov-type methods for solving numerically hyperbolic
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conservation laws is often regarded as one of the most successful. Godunov
(1959) developed the first-order-accurate upwind scheme among a family of
simple discretizations. The original first-order scheme of Godunov (1959) uses
the self-similar solution of the Riemann problem with piecewise constant initial
data to compute the upwind numerical flux. The Riemann problem for a system
of conservation laws is defined as the Cauchy problem with initial conditions
consisting of two constant states separated by a discontinuity at the origin.
The extension to second order of accuracy in time and space can be carried
out, e.g., by using a non-oscillatory piecewise linear reconstruction of data from
cell averages. It seems that it was Kolgan (1972) who first proposed to reduce
spurious oscillations by applying the so-called principle of minimal values of
derivatives, producing in this manner a non-oscillatory Godunov-type scheme
of second order spatial accuracy. Later on van Leer (1979) developed Mono-
tone Upstream Scheme for Conservation Laws (MUSCL) in which he included
higher-order reconstruction.

Construction of numerical schemes of high-order accuracy for solving non-
linear hyperbolic conservation law is usually cumbersome. In designing such
schemes one faces at least three major difficulties. One of them concerns the
preservation of high accuracy in both space and time for multidimensional prob-
lems containing source terms. Another one concerns conservation; this is manda-
tory in the presence of shock waves. The other very important issue relates to
generation of spurious oscillations in the vicinity of large gradients; according
to Godunov theorem (Godunov, 1959) these are unavoidable by linear schemes
of accuracy greater than one. These oscillations pollute the numerical solu-
tion and are thus highly undesirable. To avoid generating spurious oscillations,
non-linear solution-adaptive schemes must be constructed.

Recently, Murawski and Lee (2011) reviewed numerical methods. That re-
view was limited to the hydrodynamic case only while numerical methods for
magnetohydrodynamic (MHD) equations are the subject of the present paper.
Murawski and Lee (2011) presented results of advanced numerical simulations
for a complex system with a use of a publicly available code, FLASH. However,
their studies were limited to acoustic-gravity waves in the solar atmosphere,
which are described by Euler equations. The goal here is to employ the FLASH
code to solve numerically non-ideal MHD equations for the complex structure of
the solar atmospheric plasma. Some effort went also into understanding numer-
ical methods for solving initial-value problem for hyperbolic equations. Thus,
we review theory of linear and nonlinear hyperbolic equations in Section 2. We
present a few simple finite-difference schemes for scalar hyperbolic equations
in Section 3 and devote the following two sections to present MUSCL-Hancock
method. We finalize this draft by a presentation of numerical results for a solar
plasma and conclusions.
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2. Theory of hyperbolic equations

Here, we consider the simplest conceivable hyperbolic equation which is the
advection equation. Later on we discuss the Cauchy and Riemann problems for
linear and nonlinear sets of hyperbolic equations. As an example we adopt this
theory to MHD equations.

2.1. The advection equation

The advection equation is

q,t + λq,x = 0 , |x| < +∞ , 0 ≤ t < +∞ , (1)

where λ is the advection speed, q(x, t) is generalized density, and the comma
with a following subscript denotes the partial differentiation,

q,t =
∂q

∂t
, q,x =

∂q

∂x
. (2)

The symbols t and x are, respectively, time and spatial coordinates.
We define characteristics as curves x = x(t) in x− t plane, such as

dx

dt
= λ , x(0) = x0 . (3)

Hence

x = x0 + λt , (4)

where x0 is the initial point (Fig. 1).

Figure 1. Characteristic curves for the advection equation with λ > 0.

We evaluate a change of q(x(t), t) along a characteristic curve x = x(t)

dq

dt
= q,t + q,x

dx

dt
= q,t + λq,x = 0 . (5)
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Hence we infer that along x(t) the advection equation becomes the ordinary
differential equation and q(x, t) is constant along the characteristic curve.

We consider now the (Cauchy) initial-value problem (IVP) for the advection
equation,

q,t + λq,x = 0 , |x| < ∞ , t > 0 , (6)

q(x, t = 0) = q0(x) . (7)

To find the solution of the IVP at any point (x, t) we choose the characteristic
curve passing through this point and look for the initial point at which the curve
crosses the x-axis. As q is constant along x = x0 + λt we find

q(x, t) = q0(x0) = q0(x− λt) . (8)

The Riemann problem (RP) is the special IVP in which q(x) exhibits a jump
at x = 0 (Fig. 2), that is

q(x, 0) =

{

ql , x < 0 ,
qr , x ≥ 0 .

(9)

We find its solution as

q(x, 0) = q0(x− λt) =

{

ql , x− λt < 0 ,
qr , x− λt ≥ 0 .

(10)

Figure 2. The Riemann problem for the advection equation with λ > 0.

2.2. System of linear equations

We write a system of linear equations as

q,t +Aq,x = 0 . (11)
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Figure 3. Characteristics of a linear hyperbolic system.

This system is hyperbolic if eigenvalues of matrix A are real and A has a
corresponding complete set of m linearly independent eigenvectors. The system
is called strictly hyperbolic if the eigenvalues are all distinct. The eigenvalues
of A are the roots of the characteristic polynomial

|A− λ(k)I| = 0 , k = 1, . . . ,m , (12)

where I the unit matrix. A right eigenvector r(k) of A is

Ar(k) = λ(k)r(k) , k = 1, . . . ,m . (13)

2.3. The Cauchy problem for a linear system

We specify the IVP for a linear hyperbolic system as

q,t +Aq,x = 0 , q(x, t = 0) = q0(x) . (14)

Here q0(x) is the initial condition which we expand as

q0(x) =
m
∑

i=1

w0
i (x)r

(i) . (15)

We write the solution as (LeVeque, 2002)

q(x, t) =

m
∑

i=1

wi(x, t)r
(i) =

m
∑

i=1

w0
i (x− λ(i)t)r(i) . (16)

Hence we infer that at any point (x, t) the solution depends on the initial data

at the foots, xi
0, of m characteristics which cross this point (Fig. 3), x

(i)
0 =

x − λ(i)t , i = 1, 2, . . . ,m . We specify the RP as the IVP for discontinuous
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initial data such as

q,t +Aq,x = 0 , (17)

q(x, 0) =

{

ql , x < 0 ,
qr , x ≥ 0 .

(18)

With the use of the expansion,

ql =

m
∑

i=1

αir
(i) , qr =

m
∑

i=1

βir
(i) , (19)

we find the solution of this RP in the following form:

q(x, t) =

im
∑

i=1

βi(x, t)r
(i) +

m
∑

i=im+1

αi(x, t)r
(i) , (20)

where for any given point (x, t) we find a maximum im of i such that
x

t
> λ(i) , i ≤ im . (21)

2.4. Nonlinear hyperbolic equations

We start with one-dimensional nonlinear hyperbolic equations,

q,t + f(q),x = 0 . (22)

Clearly, the above differential form of the conservation law breaks down in the
presence of discontinuities such as shocks and contact waves. There are no such
drawbacks for the integral form of the conservation law, which is

d

dt

∫ xr

xl

q(x, t) dx = f(q(xl, t))− f(q(xr , t)) . (23)

Here xl and xr are chosen arbitrarily. The integral form works for both contin-
uous and discontinuous solutions. For a smooth q(x, t)

∫ xr

xl

q(x, t2) dx =

∫ xr

xl

q(x, t1) dx+

∫ t2

t1

[f(q(xl, t))− f(q(xr , t))] dt . (24)

The above form is used for construction of finite-volume numerical methods.
Nonlinear hyperbolic equations possess, in particular, shock solutions. A

shock moves with speed λs, given by the Rankine-Hugoniot condition (Toro,
2009)

∆f = λs∆q , (25)

where

∆f = f(qr)− f(ql), ∆q = qr − ql . (26)

We infer that for ∆q corresponding to a shock we get the flux difference, ∆f ∼
∆q. Otherwise, a discontinuity ∆q splits into waves. For a linear system f = Aq

and a shock is admitted for a jump ∆q being an eigenvector of A and λs its
eigenvalue.
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2.4.1. The one-dimensional MHD equations

The MHD equations can be written in the conservative form

q,t +∇ · f = 0, ∇ ·B = 0, (27)

where:

q = (̺, ̺v,B, E)T , (28)

f = ( ̺v, ̺vv + I(p+
B2

2
)−BB,vB−Bv,

(E + p+
B2

2
)v −B(v ·B) )T . (29)

Here I is the 3 × 3 identity matrix, vv stands for the 3 × 3 tensor vivj , B has
been normalized by

√
µ, and T corresponds to a transposed vector.

We rewrite the momentum equation from equation (27) as follows:

(̺v),t +∇ · (̺vv) +∇(p+
B2

2
)− (B · ∇)B−B(∇ ·B) = 0. (30)

The last term of this equation should be equal to zero. If nevertheless ∇ · B
differs from zero, it becomes an additional unphysical force, parallel to B. It
has a destabilizing effect on numerical algorithms. Brackbill and Barnes (1980)
noted that this instability can be removed by adding −B(∇ · B) to the right
hand side of Eq. (30). This procedure leads to a non-conservative form of the
MHD equations.

One of the most popular approaches to write the MHD equations in the
non-conservative form is due to Powell (1994)

q,t +∇ · f = −∇ ·B(0,B,v,v ·B)T , ∇ ·B = 0. (31)

It is interesting to check how this change affects the induction equation which
can be now written as

B,t + v(∇ ·B) +B(∇ · v) − (B · ∇)v = 0. (32)

Taking the divergence of both sides and using the mass continuity equation, we
obtain an advection equation for the quantity ∇ ·B/̺, i. e.

(∇ ·B
̺

)

,t

+ v · ∇
(∇ ·B

̺

)

= 0. (33)

Thus, we have introduced a new divergence wave propagating with the speed v.
So, a partially conservative form of the multi-dimensional equations, obtained
by adding terms proportional to ∇ ·B, retains the one-dimensional eigenvalue
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problem, with the addition of an eighth wave convecting ∇ · B as a passive
scalar.

Alternatively, the MHD equations can be written in the conservative form
that also preserves the solenoidal constraint numerically. We consider a method
called “constrained transport (CT)” approach which maintains the constraint by
solving the induction equation on a staggered grid (Evans and Hawley, 1988; Bal-
sara and Spicer, 1999). A CT based, solution accurate and efficient multidime-
nional MHD scheme (Lee and Deane, 2009) has been extended from the corner
transport upwind algorithm (Colella, 1990). The method keeps the divergence-
free constraint by using a CT staggered-grid which places the magnetic field
components at the centroids of appropriate cell faces and volumetric variables
such as mass, momentum and energy are stored at the centroids of computa-
tional cells. On such grid the MHD equations can be approximated in a way
that preserves selenoidality of discrete magnetic field. We use this method for
the results presented in this paper.

The original MHD equations can be written in the quasilinear form

q̄,t +Aq̄,x = 0, (34)

where the state vector, q, is

q̄ = ( ̺(x), ̺(x)v(x),B(x), p(x) )
T

(35)

and (Powell, 1994)

A =



























vx ̺ 0 0 0 0 0 0

0 vx 0 0 −Bx

̺
By

̺
Bz

̺
1
̺

0 0 vx 0 −By

̺ −Bx

̺ 0 0

0 0 0 vx −Bz

̺ 0 −Bx

̺ 0

0 0 0 0 0 0 0 0
0 By −Bx 0 −vy vx 0 0
0 Bz 0 −Bx −vz 0 vx 0
0 γp 0 0 (γ − 1)v ·B 0 0 vx



























. (36)

It is noteworthy that the 5-th row of matrix A consists of zeros. This is a
consequence of the fact that (∇ ·B),t = 0. As a result, the 8-th eigenvalue of A
is zero, which is unphysical. A remedy is to rewrite Eq. (31) in the quasilinear
form

q̄,t + Āq̄,x = 0, (37)
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where:

Ā =



























vx ̺ 0 0 0 0 0 0

0 vx 0 0 0
By

̺
Bz

̺
1
̺

0 0 vx 0 0 −Bx

̺ 0 0

0 0 0 vx 0 0 −Bx

̺ 0

0 0 0 0 vx 0 0 0
0 By −Bx 0 0 vx 0 0
0 Bz 0 −Bx 0 0 vx 0
0 γp 0 0 0 0 0 vx



























. (38)

So, we see that the zero row has disappeared and the eight wave now satisfies
the advection equation

w8
,t + vxw

8
,x = 0. (39)

As this wave carries non-zero magnetic field divergence it is nicknamed the
divergence wave.

The Jacobian matrix Ā has the eigenvalues (λ) and left (l) and right (r)
eigenvectors which correspond to four magnetoacoustic waves, two Alfvén waves,
one entropy wave, and one divergence wave (Powell, 1994). The Alfvén and mag-
netoacoustic eigenvectors become singular under certain conditions but these
singularities are well treated (Powell, 1994).

We conclude by saying that the RP is solved by the jumps (simple waves)
which separate constant states. These jumps are proportional to rigth eigenvec-
tors, r(i), of the matrix A and they travel with characteristic speeds λ(i). Here
Ar(i) = λ(i)r(i), i = 1, 2, . . . ,m.

3. Finite-difference schemes for scalar hyperbolic equa-

tions

We present and discuss here finite-difference and finite-volume schemes for scalar
hyperbolic equations. We evaluate numerical errors, derive stability conditions,
and present the approximate Roe solver.

3.1. Godunov scheme for the advection equation

We approximate partial derivatives with finite-differences; for the temporal
and spatial derivatives we adopt, respectively, the forward and backward Euler
schemes:

q,t =
qn+1
i − qni

∆t
, q,x =

qni − qni−1

∆x
, (40)

where

qni = q(xi, t
n) (41)
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and a grid size ∆x and a time-step ∆t are

xi = i∆x , i = 0, 1, . . . , imax , ∆x = xi+1 − xi , (42)

tn = n∆t , n = 0, 1, . . . , nmax , ∆t = tn+1 − tn . (43)

Substituting these schemes into the advection equation of Eq. (1), we get the
upwind (Godunov) scheme (Godunov, 1959)

qn+1
i = qni + c(qni−1 − qni ) . (44)

As a result, updating the solution in each numerical cell requires two states.

qn+1
i = qni + c(qni−1 − qni ) , (45)

where c is the Courant-Friedrichs-Lewy (CFL or Courant) number,

c =
λ∆t

∆x
=

λ

∆x/∆t
=

advection speed

grid speed
. (46)

Hence, we compute explicitly the evolution of q in time at every i-point, except
for i = 0. At this point we need to specify boundary conditions. As an example
we present transmissive boundary condition as

qn0 = qn1 . (47)

3.2. Local truncation error and a modified equation

We replace in the upwind scheme qni by the exact solution, q(x, t), of the advec-
tion equation, evaluated at (xi, t

n). Thus, we arrive at

L(q(xi, t
n)) =

q(xi, t
n+1)− q(xi, t

n)

∆t
+ λ

q(xi, t
n)− q(xi−1, t

n)

∆x
. (48)

For a smooth q(x, t) we adopt Taylor’s expansion and get local truncation error

LTE =

[

λ∆x

2
(c− 1)q,xx +O((∆t)2) +O((∆x)2)

]n

i

. (49)

We infer that the upwind scheme is first-order accurate in space, see also LeVeque
(2002). Note that q(x, t) does not satisfy the advection equation (1) but, instead,
the modified equation in which q,xx corresponds to diffusion.

3.3. The von Neumann stability analysis

A numerical scheme is unstable if numerical errors grow in time. On the other
hand, stability relies on controlling spurious oscillations. Stability of a numer-
ical scheme can be analyzed by the von Neumann method (von Neumann and
Richtmeyer, 1950). In this method we consider a plane wave

qni = AneIiθ . (50)
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Here θ is a phase and I =
√
−1 is the imaginary unit. Substituting Eq. (50)

into the upwind scheme, we get the amplification factor

|A| =
√

(1− c)2 + c2 + 2c(1− c) cos θ . (51)

The stability condition |A| ≤ 1 implies 0 ≤ c ≤ 1 . Hence the time step is
constrained as ∆t ≤ ∆x

λ . In practice we introduce the Courant number ccfl =
λ∆t/∆x. Then

∆t = ccfl
∆x

λ
, 0 < ccfl ≤ 1 . (52)

For safety reasons it is recommended to use 0 < ccfl < 1, e.g. ccfl = 0.8.

3.4. Finite-volume methods for a system of equations

We discretize the system of one-dimensional hyperbolic equations with the use
of finite-volume method which stands as

qn+1
i = qn

i +
∆t

∆x
(fi−1/2 − fi+1/2) . (53)

Here we implemented cell averaged qn
i and time-averaged fni±1/2 as

qn
i =

1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx , fni+1/2 =
1

∆t

∫ t+∆t

t

f(q(xi+1/2, t)) dt . (54)

A key issue is to compute a numerical flux fni+1/2. One way of evaluating fni+1/2

is to adopt the averaging

fni±1/2 =
1

2
(fni + fni±1) , (55)

which is ineffective and may lead to instabilities. An adequate way is given
below.

3.5. The Roe solver

For small jumps in the RP, it suffices to use an approximate Riemann solver,
based on a local replacement of the nonlinear equations by a linear hyperbolic
system like

q,t +A(q̄)q,x = q,t + Ā(ql,qr)q,x = 0. (56)

This idea was coined by Roe (1981) who introduced an average Jacobian matrix
Ā(ql,qr), approximating the Jacobian matrix, A(q̄) = f,q(q̄). Here ql and qr

are respectively the left and right states in the Riemann problem. The average
Jacobian (called also the Roe matrix) is such that for any given left and right
pair of states (ql,qr) the so-called Property U is satisfied:
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(i) Ā(ql,qr) is a linear mapping from the vector space containing a vector q
to the vector space containing a flux f ;

(ii) Ā(ql,qr) → f,q as ql and qr → q;
(iii) Ā(ql,qr) has real eigenvalues and a complete set of linearly independent

eigenvectors;
(iv) Ā(qr − ql) = fr − fl for any ql and qr.

The average state q̄ is taken so that property (iv) is satisfied. In the case of
the MHD equations, the average mass density is given by ¯̺ =

√
̺l̺r, and the

remnant variables such as V, B, E, denoted here by φ, are averaged as

φ̄ =

√
̺lφl +

√
̺rφr√

̺l +
√
̺r

. (57)

Once all the averaged variables are obtained, the linearized RP for (56) is
considered at each interface. The exact solution of this approximate problem
can be expressed in terms of right eigenvector r(i) of Ā as

∆q ≡ qr − ql =

m
∑

i=1

α(i)r(i). (58)

According to property (iv), using(58), we get the vector flux increment expressed
as a product of ∆q and the corresponding eigenvalue λ(j), viz.

∆f = fr − fl =

m
∑

j=1

α(j)λ(j)r(j) . (59)

The intercell flux can be expressed as

fi+1/2 =
1

2

[

fl + fr −
m
∑

i=1

α(j)|λ(j)|r(j)
]

. (60)

We conclude this part by saying that high-resolution schemes should be at
least second-order accurate in smooth regions of the solution, free from spurious
oscillations, and give high-resolution of discontinuities. Therefore, we have to
circumvent Godunov (1959) theorem by constructing nonlinear schemes which
are discussed next.

4. Higher-order numerical schemes for hyperbolic equa-

tions

The low accuracy and the complexity of the Godunov method meant that other
methods needed to be developed. Such development effort was undertaken by
Kolgan (1972) who proposed to suppress spurious oscillations and produced
a non-oscillatory Godunov-type scheme of second-order spatial accuracy. Fur-
ther, more well-known, developments were due to van Leer (1979) who extended
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Godunov approach to second-order spatial accuracy by the MUSCL approach.
His approach consists of two key steps: (a) an interpolation (projection or re-
construction) step where, within each cell, the data is approximated by linear
functions and (b) an upwind step where the average fluxes at each interface are
evaluated by taking into account the wind direction. At step (a) the accuracy
was increased by constructing a piecewise linear approximation of q(x, t) at the
beginning of each time-step, viz.

q̄(x, t) = qi + si(x − xi), xi−1/2 < x < xi+1/2 . (61)

Here, si is a slope and xi is the center of the grid cell. So, q(xi, t) = qi. The
slope si can be constructed as respectively upwind, downwind, and centered:

si =
qi − qi−1

∆x
, si =

qi+1 − qi

∆x
, si =

qi+1 − qi−1

2∆x
. (62)

These upwind, downwind and centered slopes lead, respectively, to Beam-War-
ming, Lax-Wendroff, and Fromm schemes (LeVeque, 2002). Other possibilities
include

si = minmod(
qi − qi−1

∆x
,
qi+1 − qi

∆x
) . (63)

Here the minmod function,

minmod(a, b) =







a, for |a| < |b| and ab > 0 ,
b, for |a| > |b| and ab > 0 ,
0, for ab ≤ 0 ,

(64)

returns the smallest argument in magnitude if the arguments are of the same
sign, and zero if they are not.

Note that choosing si = 0 in the above expressions leads to Godunov (1959)
method.

4.1. MUSCL-Hancock scheme

As the original MUSCL method (van Leer, 1979) was modified in 1980 by
UC Berkeley graduate student of fluid mechanics, Steve Hancock, the mod-
ified scheme bears a common name MUSCL-Hancock method. The method
consists of the following steps:

1. Data reconstruction and boundary extrapolated values. At this stage
we reconstruct linear subcell distributions of conservative (qi) or non-
conservative (wi) vector states and compute intercell values from

qil = qi −
1

2
∆x si , qir = qi +

1

2
∆x si . (65)

Here qil (qir) denotes q at the left (right) intercell of the i-th grid, si is a
limited slope which is introduced in Eq. (61);
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2. Evolution of the boundary values. The boundary extrapolated values are
evolved by a time 1

2∆t according to

q̄il = qil +
∆t

2∆x
[f(qil)− f(qir)] , (66)

q̄ir = qir +
∆t

2∆x
[f(qil)− f(qir)] . (67)

3. Solution of the RP for the data
ql∗
i = q̄ir , qr∗

i = q̄(i+1)l . (68)

Hence we compute the intercell flux fi+1/2(q
l∗
i ,qr∗

i ) with a use of the
similarity solution qi+1/2(x/t)

fi+1/2 = f(wi+1/2(0)) . (69)

Having specified fluxes we can evaluate qn+1
i from the finite-volume scheme

of Eq. (53).

5. Application of a Godunov-type method for numerical

simulations of thermal mode at the magnetic x-point

in the solar atmosphere

Observational findings made by solar missions (e.g., TRACE/EUV, STEREO,
SDO) revealed that in the coronal plasma sudden energy release processes take
place. These processes can be well described in the framework of solar flares
(Aschwanden and Alexander, 2001). We aim to study influence of thermal
conduction on attenuation of thermal mode in a gravitationally stratified solar
coronal x-point magnetic field topology. Our goal also is to extend the models
of De Moortel and Hood (2003), in which damping of slow waves by thermal
conduction was studied in the frame of a one-dimensional homogeneous case,
and of McLaughlin et al. (2011) who discussed magnetohydrodynamic (MHD)
waves in the x-point magnetic field topology. We pay attention to the thermal
mode which can be efficiently excited by a gas pressure pulse. As such a pressure
pulse can model a sudden energy release, which takes place in a solar flare, we
adopt the x-point magnetic field topology which can be present in such flares.

5.1. The numerical model

We perform numerical simulations in a magnetically structured atmosphere.
Henceforth, we neglect radiation and plasma heating, viscosity and resistivity
but take into account thermal conduction. As a consequence of that we use the
following two-dimensional magnetohydrodynamic equations to describe solar
plasma:

∂̺

∂t
+∇ · (̺V) = 0 , (70)

̺
∂V

∂t
+ ̺ (V · ∇)V = −∇p+ ̺g+

1

µ
(∇×B)×B , (71)
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∂p

∂t
+ ~V · ∇p = −γp∇ · ~V + (γ − 1)∇ · (κ∇T ) , (72)

∂B

∂t
= ∇× (V ×B) , (73)

∇ ·B = 0 , (74)

p =
kB
m

̺T . (75)

Here the unknown plasma quantities are: ̺ which is the mass density, V =
[Vx, Vy , 0] the flow velocity, p the gas pressure, and B = [Bx, By, 0] the magnetic
field. The symbol T denotes plasma temperature, g = [0,−g, 0] is a constant
gravity, κ = κ0T

5/2 W m−1 oC−1 a coefficient of thermal conductivity (assumed
isotropic here), γ = 5/3 is the adiabatic index, µ the magnetic permeability, kB
Boltzmann‘s constant and m is mean mass.

5.1.1. Thermal mode

Before presenting numerical results, we review briefly some properties of the
thermal mode. We follow Field (1965) and consider a uniform, gravity-free,
one-dimensional medium. A plane wave, given by exp[I(kx − ωt)], with its
cyclic frequency ω and wavenumber k is described by a dispersion relation

ω3 + Iǫk2ω2 − γk2ω − Iǫk4 = 0 , (76)

where I =
√
−1, ǫ = (γ− 1)κ̄ and the normalized coefficient of thermal conduc-

tion,

κ̄ ≡ t0T0

p0r0
. (77)

Here the subscript 0 denotes a normalized quantity. We set t0 = 1 s, T0 = 1.5
MK is a coronal temperature, p0 = 10−2 Pa is a coronal gas pressure and r0 = 1
Mm is a unit length. This relation is quartic in k and cubic in ω. See also
De Moortel and Hood (2003) and Macnamara and Roberts (2010). There are
three solutions of this dispersion relation. Two of them correspond to damped
counter-propagating acoustic waves and one is a purely imaginary ω which is
associated with the thermal mode. As a result, this mode does not propagate
but its amplitude decays in time. For the ideal plasma of κ = 0 this imaginary
ω disappears, giving a solution of ω = 0.

5.1.2. Initial setup

We detail here the initial (at t = 0 s) setup used in our numerical simulations. In
this setup the solar corona is modeled as a low mass density, highly magnetized
plasma overlaying a dense photosphere/chromosphere.
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The structure of the solar corona

We assume that the solar atmosphere is settled in a two-dimensional and still
(Ve = 0) environment in which the pressure gradient force is balanced by the
gravity, that is

−∇pe + ̺eg = 0 . (78)

Here the subscript e corresponds to a background quantity which depends on y
only. The x-component of this equation is identically zero. As gravity is pointing
into the negative side of the y-axis, that is g = [0,−g, 0], the y-component of
Eq. (78) leads to

−∂pe
∂y

− ̺eg = 0 . (79)

With the use of the ideal gas law, given by new (75), and the assumption of
the isothermal atmosphere, T = const, from (79) we express background gas
pressure and mass density as

pe(y) = p0 exp

(

−y − yr
Λ

)

, ̺e(y) =
pe(y)

gΛ
. (80)

Here Λ = kBT/(mg) = const is the pressure scale-height, and p0 denotes the
gas pressure at the reference level that is chosen at yr = 10 Mm. >From (80)
we infer that ̺e(y) falls off exponentially with height. Background mass density
̺e(y) profile that results from (80) is displayed in Fig. 4.

As a result of (78) it follows from momentum Eq. (71) that magnetic field is
force-free

1

µ
(∇×Be)×Be = 0 . (81)

We assume a current-free magnetic field ∇×Be = 0 such that

Be = ∇× (Aẑ) . (82)

Here ẑ is a unit vector along the z-direction and A is the magnetic flux function
chosen as (McLaughlin et al., 2011)

A(x, y) = B0

[

y − yd
(x+ xd)2 + (y − yd)2

+
y − yd

(x− xd)2 + (y − yd)2

]

, (83)

with B0 denoting the magnetic field at the reference level y = yr = 10 Mm
and (±xd, yd) corresponding to coordinates of two dipoles. We choose and hold
fixed xd = 10 Mm, yd = 5 Mm, and B0 is set such that at the point x = 0 Mm,
y = yr the Alfvén speed, cA(yr) = |Be|/

√

µ̺e(yr), is ten times larger than the

sound speed, cs(yr) =
√

γpe(yr)/̺e(yr).
Magnetic field vectors are illustrated by arrows in Fig. 4. Note that the

x-point is located within the simulation region at x = 0 Mm and y = 15 Mm.
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Figure 4. A background mass density (color map) and magnetic field vectors.

Initial pressure pulse

We aim to study impulsively excited thermal mode within the x-point configu-
ration. This mode is triggered by initial pulse in gas pressure, that is

p(x, y, t = 0) = pe

[

1 +Ap exp

(

−x2 + (y − y0)
2

w2

)]

. (84)

Here Ap denotes amplitude of the initial pulse, w is its width and y0 its vertical
location. We choose and hold fixed y0 = 15 Mm and so we launch the initial
pulse at the x-point.

It is noteworthy here that the thermal mode was already observed in a num-
ber of circumstances. For instance, Mȩdrek et al. (2000) simulated sunquakes by
pressure pulses. They observed that the thermal mode leads to remnants of the
initial pulse, well seen in the mass density profiles at the launching place. The
thermal model cannot be excited by velocity pulses and a presence of gravity is
not essential for excitation of this mode as it can be launched in any uniform,
gravity- and magnetic-free fluid medium (not shown).
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5.2. Numerical results

Figure 5. Mass density profiles (color maps) and magnetic field vectors at t = 10 s (left
panel), and t = 30 s (right panel) for the normalized thermal conduction coefficient,
κ̄ = 10

−4.

Equations (70)-(74) are solved numerically using the code FLASH (Fryxell
et al., 2000; Lee and Deane, 2009). This code implements a second-order un-
split Godunov solver with various slope limiters and Riemann solvers as well
as Adaptive Mesh Refinement (AMR) which is adopted in Paramesh package
(MacNeice et al., 2000). We use the MUSCL-Hancock method, supplemented by
the minmod slope limiter, and the Roe Riemann solver. We set the simulation
box as (−5Mm, 5Mm) × (10Mm, 20Mm) and time 0 ≤ t ≤ 2000 s. All tem-
poral derivatives are treated within the frame of the MUSCL-Hancock method,
introduced in Section 4.1. We impose fixed in time boundary conditions for all
plasma quantities in the x- and y-directions, while all plasma quantities remain
invariant along the z-direction. In our studies we use AMR staggered grid (Lee
and Dean, 2009) with a minimum (maximum) level of refinement set to 4 (7).
The refinement strategy is based on controlling numerical errors in mass den-
sity. This results in an excellent resolution of steep spatial profiles and greatly
reduces numerical diffusion at these locations. The test runs we performed for
different spatial resolutions revealed a high efficiency and the convergence of the
implied algorithms of the FLASH code.

As a pulse in a gas pressure warms locally plasma at the x-point this pulse
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may model post-flare event (Aschwanden and Alexander, 2001). Flare models
usually assume that energy is stored in the solar corona over hours or days.
After this energy storage phase the onset of the flare takes place, which is
associated with a sudden (over the period of 30 minutes or so), energy release.
Such a strong pulse pushes out plasma, leading to rarefied region at the x-
point. In the case of the ideal plasma this rarefication persists in time and the
plasma remains warm at the x-point (not shown). The scenario becomes similar
when the thermal conduction is switched on. However, now thermal conduction
transfers energy from a hotter region to a cooler region. As a result of that, the
plasma rarefication smoothes out in time. We will discuss this process below.

The pulse of Eq. (84) triggers fast and slow magnetoacoustic waves. Fast
waves propagate quasi-isotropically out of the x-point, while slow waves are
guided along magnetic field lines. Fast waves are well illustrated in Fig. 5 in the
left panel, while slow waves are displayed in the right panel. The thermal mode
is represented by mass density depression at the x-point.

Figure 6. A typical time-signature of relative mass density, collected at the x-point,
for κ̄ = 10

−4.

Fig. 6 displays the time-signature which is drawn by collecting wave signals
in ∆̺ ≡ (̺e − ̺)/̺e at the detection point (x = 0 Mm, y = 15 Mm) which
is located just at the x-point. This time-signature reveals the initial phase at
which the mass density becomes rarefied due to the action of the initial pressure
pulse. This phase lasts till t ≃ 15 s. Later on mass density grows in time as
a result of thermal conduction. According to our expectations, the growth is
higher for a larger value of κ̄. Indeed, Fig. 7, which illustrates a dependence of
effective damping time τ upon the normalized thermal conduction coefficient κ̄,
confirms our expectations. The effective damping time is obtained by assuming
that −∆̺ decays exponentially in time as exp [−(t− t∗)/τ ]. Here t∗ is time
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Figure 7. Plot of effective damping time τ vs. normalized thermal conduction
coefficient κ̄.

at which damping starts to be significant. We set t∗ = 500 s, which is much
larger than the approximate end of the initial expansion phase, 15 s. A larger
(smaller) value of τ corresponds to a weaker (stronger) damping due to thermal
conduction. According to our expectation τ falls off with κ̄.

5.3. Summary of the numerical results

We developed a two-dimensional model of a coronal plasma to explore excitation
and attenuation of the thermal mode at the x-point. We took into account
constant gravity and thermal conduction. Our findings can be summarized as
follows. The thermal mode can be excited impulsively by a localized pulse in
gas pressure. This mode is attenuated by thermal conduction on a time-scale
which depends on thermal conduction coefficient κ. For a larger value of κ this
time-scale is shorter than for a smaller value. For a typical coronal value of κ
this scale is 2000 s. Thus we have shown that a simple conceivable model of
the solar plasma gives acceptable results, with damping times that are in good
agreement with the observational data which corresponds to life-times of solar
flares (Aschwanden and Alexander, 2001).
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