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Abstract: This paper investigates an Economic Order Quantity
(EOQ) model with backorder by taking imprecise demand rate with
dependence upon the frequency of advertisement. The formulated
model also incorporates learning effects on percentage of defective
items present in each lot. Due to imprecision in demand, the ob-
tained profit function is fuzzy. To determine the optimal values, we
determine the equivalent crisp profit function by applying the signed
distance method. Optimal order quantity and backorder level are
obtained by using algebraic method in place of differential calculus.
A numerical example is used to study the behavior of the model
with respect to different inventory parameters. All calculations are
performed with MATLAB 7.4.

Keywords: learning curve, advertisement, signed distance, tri-
angular fuzzy number, backorder, inventory model.

1. Introduction

In the classical economic production/order quantity models, the items pro-
duced/received are implicitly assumed to be of perfect quality. However, it may
not always be the case. Due to imperfect production process, natural disasters,
damage or breakage in transit, or for many other reasons, the lots considered
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may contain some defective items. To increase the applicability of the inventory
models, several researchers studied the respective scenarios in formulating the
production/inventory models and the effect of imperfect quality on lot sizing
policy. Specifically, we note that in Rosenblatt and Lee’s (1986) study, it was
assumed that the defective items could be reworked instantaneously at a cost
and found that the presence of defective products motivates smaller lot sizes.
Salameh and Jaber (2000) assumed that the defective items could be sold as
a single batch at a discounted price prior to receiving the next shipment, and
found that the economic lot size tends to increase as the average percentage of
imperfect quality items decreases. Goyal and Cádenas-Barrón (2002) reconsid-
ered the task of Salameh and Jaber (2000) and presented a simple approach
for determining the optimal lot size. Besides, a broader survey related to the
studies of imperfect quality can be found in Salameh and Jaber (2000). Chang
(2004) determined the optimal order lot size to maximize the total profit when
the lot contains imperfect quality items. Papachristos and Konstantaras (2006)
extended the work of Salameh and Jaber (2000), focusing on the timing of
withdrawing the imperfect quality units from stock. Wee and Chung (2007)
developed an optimal inventory model for items with imperfect quality and
shortage backordering. Eroglu and Ozdemir (2007) studied the effect of share
of defective items on optimal solution. Maddah and Jaber (2008) enhanced the
results of Salameh and Jaber (2000) by applying the renewal theory to obtain
the expected profit per unit time. The work of Salameh and Jaber (2000) was
explored by Hsu and Yu (2009) in relation to quality issues.

The above literature survey reveals that most of the researchers assumed
that the defective rate in lot sizes produced/received is a fixed constant, while
others assumed it as a random variable with known probability distribution to
predict the uncertainty of imperfect quantity. Everyone considers that charac-
teristics of defective items remain the same in each production run/lot. This
assumption does not fit the real life situations, and, in particular, the case of
a new product, where the historical data are not available for establishing the
probability density function. To make the study more realistic, we assume that
the percentage of defective items per lot decreases with cumulative number of
shipments conforming to a learning curve. This is not surprising; knowing that
some studies reported that quality improves per lot because of learning, this is
due to the acquaintance with the set-up, the tooling, instructions, blueprints,
the workplace arrangement, and the condition of the process.

A look at the available literature on inventory reveals that several models
have been formulated in a static environment, where the demand for the item
under consideration was assumed to be constant, for the sake of simplicity.
However, it is observed that in practical situations, constant demand can be
justified only for the maturity phase of the product. There are many products,
like clothes, fashion accessories, mobile phones etc., for which demand cannot be
predicted accurately. In these types of inventory models, a major difficulty faced
by a decision maker is to forecast the demand. It is not possible for decision
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maker to decide the exact demand in such complex and uncertain environment
as highlighted by Guiffrida (1998). So, demand is imprecise by its very nature.
To overcome this, we consider the demand rate as represented by the triangular
fuzzy number.

Further, Salameh and Jaber (2000), Chang (2004), Huang (2004), Papachris-
tos and Konstantaras (2006), Jaber et al. (2008) all discussed imperfect items
present in a lot, but no one considered shortages. Shortages of an item may
occur in stock. Over-production/holding is not a solution due to high inventory
holding cost. As demand is known imprecisely, shortages cannot be ignored in
inventory model. So, we consider backorder level as decision variable.

In the present competitive market situations, a product is promoted in the
society through glamorous advertisements in the electronic media. Observing
this phenomenon, many marketing researchers and practitioners are motivated
to investigate its modeling aspects. Time-to-time advertisement (in such media
as TV, radio, newspapers, magazines, etc., and through the sales representa-
tives) of an item also changes the demand for that item. Therefore, we can
conclude that there is a functional relationship between the demand for an item
and the frequency/cost of the advertisement of that item. This type of demand
was reported in the inventory models developed by Pal et al. (2006), Mondal et
al. (2007). Few researchers studied the effects of the frequency of advertisement
on the demand for an item. Among them, one may refer to the work of Urban
(1992), Abad (2000), Bhunia and Maiti (1997), Goyal and Gunasekarn (1995),
Luo (1998), Pal et al. (2004, 2006), Mondal et al. (2007) etc. By taking the
motivation from the above work, we assume demand for an item to depend on
the frequency of advertisement, meant to capture the untouched part of the
demand.

The classical optimization technique, based on differential calculus undoubt-
edly is a powerful and useful method for solving inventory decision models. The
methodology mentioned is used to find the optimal solutions or derive the condi-
tions for optimality, but it is replaceable. Grubbström and Erdem (1999) derived
the classical EOQ formula algebraically. Their result received considerable at-
tention and encouraged many researchers to propose various algebraic methods
to solve inventory related models with or without shortages (see, e.g., Cádenas-
Barrón, 2000, 2001, 2008; Chung and Wee, 2007; Wee and Chung, 2007). Teng
(2009) suggested the arithmetic-geometric mean (AM-GM) inequality theorem.
Hsieh et al. (2008) provide Cauchy-Schwarz inequality and Wee et al. (2009)
modified the cost-difference comparison method. In the recent studies Pentico
et al. (2009) and Zhang (2009) also proposed new and/or alternative approaches
to solve the EOQ model with partial backordering.

Based on the above arguments, this article incorporates the following points:
(1). Imprecision of demand is handled by triangular fuzzy numbers, with

assumption that that it is proportional to the frequency of advertisement.
(2). The number of defective items in each lot follows the learning curve

and the lots are continuously screened at the rate x and after the completion of
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the screening process, defective items are withdrawn from the lot prior to next
shipment.

(3). Backorder level is considered as one of the decision variables.
Profit expression in fuzzy sense is defuzzified by using the signed distance

method. We derive the optimal lot size and backorder level without using dif-
ferential calculus.

This paper is organized as follows. In Section 2, some definitions and prop-
erties of fuzzy sets related to this study are introduced. We also introduce the
learning curve and the arithmetic-geometric inequality in this section. In Sec-
tion 3 notations and assumptions are given, used to develop the proposed model.
Section 4 presents fuzzy model. Section 5 contains analysis conducted directly
through the obtained expression. Section 6 provides the numerical illustration
of the proposed model. Section 7 summarizes the work done in this paper and
formulates future extension of this work.

2. Preliminaries

2.1. Some basic definitions and properties of fuzzy sets

Definition 1 For 0 6 α 6 1, a fuzzy set ãα defined on R = (−∞,∞) is
called an α-level fuzzy point if the membership function of ãα is given by

µãα
(x) =

{

α, x = a
0 x 6= a

. (1)

Definition 2 The fuzzy set Ã = (a, b, c), where a<b<c, defined on R, is called
the triangular fuzzy number, if the membership function of Ã is given by

µãα
(x) =







(x− a)/(b− a), a 6 x 6 b,
(c− x)/(c− b) b 6 x 6 c,
0, otherwise.

(2)

Definition 3 For 0 6 α 6 1, the fuzzy set [aα, bα], defined on R is called an
α-level fuzzy interval if the membership function of [aα, bα] is given by

µ[aα,bα](x) =

{

α, a 6 x 6 b
0 otherwise.

(3)

Definition 4 Let Ãbe a fuzzy set on R, and 0 6 α 6 1. The α-cut A(α) of
Ãconsists of points x such thatµÃ(x) > α, that is,

A(α) = {x : µÃ(x) > α} . (4)

Decomposition Principle: Let Ã be a fuzzy set on R and 0 6 α 6 1.
Suppose theα-cut of Ã to be a closed interval [AL(α), AU (α)], that is, A(α) =
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[AL(α), AU (α)]. Then, we have (see, e.g., Kaufman and Gupta, 1991)

Ã =
⋃

06α60

αA(α) (5)

or µÃ=
⋃

06α60

αCA(α)(x)

where
(1) αA(α) isafuzzy set with membership function µαA(α)(x)

=

{

α, x ∈ A(α)
0 otherwise.

(2) CA(α)(x) is a characteristic function of A(α), that is, CA(α)(x)

=

{

1, x ∈ A(α)
0 otherwise.

Remark 1 From the decomposition principle and the relation µ[aα,bα](x) =
{

α, a 6 x 6 b
0 otherwise.

, we obtain

Ã =
⋃

06α60

αA(α) =
⋃

06α60

[AL(α), AU (α)] (6)

or µÃ(x) =
⋃

06α60

αCA(α)(x) =
⋃

06α61

µ[AL(α)α,AU (α)α](x).

For any a, b, c, d, k ∈ R, a<b, and c<d, the interval operations are as
follows:

(1). [a, b]⊕ [c, d] = [a+ c, b+ d]

(2). [a, b] Θ [c, d] = [a− d, b− c]

(3).k. [a, b] =

{

[ka, kb] k > 0
[kb, ka] k < 0.

(4). For a > 0 and c > 0, [a, b]⊗ [c, d] = [ac, bd] .

(5). For a > 0 and c > 0, [a, b] ∅ [c, d] =

[

a

d
,
b

c

]

. (7)

Next, as in Yao and Wu (2000), we introduce the concept of signed distance
of fuzzy set. We first consider the signed distance in R.

Definition 5 For any a and 0 ∈ R, define the signed distance from a to 0 as
d0(a,0)= a. If a>0, the distance from a to 0 is a = d0(a,0); if a<0, the distance
from a to 0 is –a = -d0(a,0). Hence, d0(a,0)= a is called the signed distance
from a to 0.

Let Ω be the family of all fuzzy sets Ã defined on R, for which the α-cut
A(α) =[AL(α),AU (α)] exists for every α ∈[0,1] and both AL(α) and AU (α)
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are continuous functions on α ∈[0,1]. Then, for any Ã∈ Ω from equation (6)
we have

Ã =
⋃

06α61

[AL(α), AU (α)]. (8)

From Definition 5, the signed distance of two end points AL(α) and AU (α), of
the α-cut A(α) =[AL(α),AU (α)] of Ã to the origin 0 is d0(AL(α),0)= AL(α)
and d0(AU (α),0)= AU (α), respectively. Their average, [AL(α)+ AU (α)] /2, is
taken as the signed distance of α-cut [AL(α),AU (α)] to 0. That is, the signed
distance of the interval [AL(α),AU (α)] to 0 is defined as d0([AL(α),AU (α)],0)
= [d0(AL(α),0)+ d0(AU (α),0)] /2 = [AL(α)+ AU (α)] /2.

In addition, for every α ∈[0,1], there is a one-to one mapping between the
α-level fuzzy interval [AL(α)α,AU (α)α] and the real interval [AL(α), AU (α)],
that is, the following correspondence is one-to-one mapping:

[AL(α)α, AU (α)α] ↔ [AL(α), AU (α)]. (9)

Also, the 1-level fuzzy point 0̃1is mapping to the real number 0. Hence, the
signed distance of [AL(α)α,AU (α)α] to 0̃1can be defined as d([AL(α)α,AU (α)α],
0̃1) = d0([AL(α), AU (α)],0) = (AL(α)+AU (α))/2. Moreover, for Ã∈ Ω, since
the above function is continuous on0 6 α 6 1, we can use the integration to
obtain the mean value of the signed distance as follows:

1
∫

0

d([AL(α)α,AU (α)α],0̃1)dα =
1

2

1
∫

0

[AL(α) +AU (α)]dα. (10)

Then, from equations (5) and (6), we have the following definition:

Definition 6 For Ã∈ Ω, define the signed distance of Ã to 0̃1(i.e., y-axis) as

d(Ã, 0̃0) =

0
∫

0

d([AL(α)α,AU (α)α], 0̃0)dα =
0

2

0
∫

0

[AL(α) +AU (α)]dα. (11)

According to Definition 6, we obtain the following property.

Property 1 For the triangular fuzzy number Ã= (a,b,c), the α-cut of Ã is
A(α) = [AL(α), AU (α)], α ∈[0,1], where AL(α) = a + (b-a)α and AU (α) =
c-(c-b)α. The signed distance of Ã to 0̃1 is

d(Ã, 0̃1) = (a+ 2b+ c)/4. (12)

Furthermore, for two fuzzy sets Ã, G̃ ∈ Ω, where Ã
=

⋃

06α61

[AL(α)α, AU (α)α] and G̃ =
⋃

06α61

[GL(α)α, GU (α)α] and k ∈ R, using

equations (7) and (9), we have
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(1).Ã⊕ G̃=
⋃

06α61

[(AL(α) +GL(α))α, (AU (α) +GU (α))α].

(2).ÃΘG̃=Ã
⋃

06α61

[(AL(α)−GU (α))α, (AU (α)−GL(α))α].

(3).k̃ ⊙ Ã =















⋃

06α61

[(kAU (α))α , (kAL(α))ǫ] k < 0
⋃

06α61

[(kAL(α))α , (kAU (α))ǫ]. k > 0

0̃1k = 0

(13)

From the above and Definition 6, we obtain the following property:

Property 2 For two fuzzy sets Ã, G̃ ∈ Ω and k∈R,

(1). d(Ã ⊕ G̃ , 0̃1) = d(Ã, 0̃1) + d(G̃, 0̃1).

(2). d(ÃΘG̃ , 0̃1) = d(Ã, 0̃1)− d(G̃, 0̃1).

(3). d(k̃ ⊙ Ã, 0̃1) = kd(Ã, 0̃1). (14)

2.2. Learning curve

The earliest learning curve representation is a geometric progression that ex-
presses the decreasing cost required to accomplish any repetitive operation.
This theory in its most popular form states that as the total quantity of units
produced doubles, the cost per unit declines by some constant percentage (e.g.,
Yelle, 1979; Jaber, 2006).

The learning curve (e.g., power versus exponential) has been debated by
several authors; see Jaber (2006) for a discussion. There is almost unanimous
agreement among practitioners and academicians that the learning curve is best
described by a power as suggested by Wright (1936). It is worth noting that the
learning curve in practice is an ‘S’-shaped curve (Jordan, 1958; Carlson, 1973),
as shown in Fig.1. The first phase (incipient) is the phase during which the
worker is getting acquainted with the set-up, the tooling, instruction, blueprints,
the workplace arrangement, and the conditions of the process. In this phase
improvement is slow. The second phase (learning) is where most of the im-
provement, e.g., reduction in errors, changes in the distance moved takes place.
The third and last phase (maturity) represents the learning of the curve. The
S-shaped logistic learning curve is of the form

p(n) =
a

f + egn
, (15)

where a, g, and f>0 are the model parameters, n is the cumulative number of
shipments, and p(n) is the percentage defective item per shipment.
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                                                       Hours per unit output 

                                                       Incipient 

                                                                          Learning 

                                                                                      Maturity 

                                                       Phase-1    Phase-2  Phase-3 

                                                                                                                               Units 

Figure 1. Three phases of the learning curve

2.3. Arithmetic-geometric inequality

Let a1, a2, . . . . . . ..,an be n positive real numbers, then
n∑

k=1

ak

n
> n

√

n
∏

k=1

ak with equality iff a1 = a2 = . . . . . . = an.

3. Notations and assumptions

The following notations and assumptions are used to develop the model.

3.1. Notations

Notations as given in the subsequent table are used in the formulation of the
model.

3.2. Assumptions

To develop the mathematical model presented in this study, the following as-
sumptions are made:

1. The replenishment is instantaneous.
2. The screening process and demand proceed simultaneously, but the screen-

ing rate is greater than demand rate, i.e., x>D.
3. The defective items exit and percentage of defective items present in each

lot follows a learning curve.
4. 100% screening of items is done in each shipment.
5. Defective items are sold at a discounted price at the end.
6. Shortages are completely backordered.
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D̃ Nγ d where N is frequency of advertisement (γ>0)
and d is scale parameter which is triangular fuzzy number

yn Order quantity of units for the nth shipment, where n>1
c Unit purchasing cost
K Fixed ordering cost per order
h Holding cost per unit per unit of time
s Unit selling price per good quality unit
v Unit discounted price per defective unit, v < c

Tn Cycle time for shipment per order
x Screening rate measured in units per unit of time, where x > D

Sc Unit screening cost
tn Time to screen yn unit, where tn =yn/x < Tn

B The maximum backordering quantity in units
b Backordering cost per unit
G Cost of advertisement
N Frequency of advertisement
t1n Time where inventory level reaches to zero
t2n Duration of backorder

7. Items of poor quality are kept in stock and sold prior to receiving the next
shipment as a single batch.

8. A single product is considered.
9. The backordered products will be delivered without any defect.

4. Mathematical model

The behavior of the inventory level is illustrated in Fig. 2. It is assumed that a
lot of size yn is replenished instantaneously at the beginning of each cycle, and
contains good as well as poor quality of items. From the beginning of the cycle,
inspection process starts and it is assumed that inspection rate is higher than
the demand rate; tn is time when screening process is completed and at that
moment, items of poor quality are sorted, kept in stock and sold at a salvage
value prior to receiving the next shipment. At t1n , inventory level reaches
zero and after that shortages occur up to t2n . Tn is total replenishment cycle
duration. The optimum operating inventory strategy is obtained by trading off
the total revenues per unit of time so as to derive an optimal solution.

Now, TR(yn, B) is the total revenue, which is the sum of total sale volume
of good quality and imperfect quality items and is given by

TR(yn, B) = (1− p(n))yns+ p(n)ynv. (16)

TC(yn, B) is the sum of ordering cost, purchasing cost, screening cost, hold-
ing cost, backordering cost and advertisement cost:

TC(yn, B) = K + cyn + Scyn + h{(yn − p(n)yn −B)2/2dNγ

+p(n)y2n/x}+ bB2/2dNγ +NG. (17)
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                                                                                  p(n)yn 

                                                       yn         tn 

                                                                                                                     t2n 

                                                                                                                                   Time

                                                                               t1n                                                          B 

                                                                                   Tn 

Figure 2. Inventory system with backordering

The net profit per unit time, TP (yn, B), is determined by the revenue per
unit time, TR(yn, B)/Tn, less the average cost per unit time TC(yn, B)/Tn.
The equation can be formulated as

Net Profit =
TR(yn, B)− TC(yn, B)

Tn

. (18)

Since the replenishment cycle length Tn=(1− p(n))yn/dNγ , so

TP (yn, B) =
dNγ

(1− p(n))yn

[

(1− p(n))yns+ p(n)ynv −K − cyn − Scyn

−h

{

(yn − p(n)yn −B)2

2dNγ
+

p(n)y2n
x

}

−
bB2

2dNγ −NG

]

.

By rearranging the terms, we get

TP (yn, B) = dNγ

[

s+
p(n)v

1− p(n)
−

K

(1− p(n))yn
−

c

1− p(n)
−

Sc

1− p(n)

−
hp(n)yn

(1− p(n))x
−

NG

(1− p(n))yn

]

−
h

2

(yn − p(n)yn −B)2

(1 − p(n))yn
−

bB2

2(1− p(n))yn
. (19)

As mentioned earlier, although the statistical method can be used to deal with
the uncertainty, however, in some cases, it may lack historical data to estimate
the probability distribution function. Since the demand rate may change due to
high complexities of the market from one lot to another, it can be described in
fuzzy terms as “D̃ =demand rate is about D”. In this study it is assumed that
demand rate is a fuzzy variable.
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4.1. Mathematical model with fuzzy annual demand

In this subsection, we modify the crisp demand rate model shown in equation
(9) by incorporating fuzziness. The crisp annual demand D in equation (9) is
fuzzified as the triangular fuzzy number, D̃ = Nγ(d−∆1, d, d−∆2), where ∆1

and ∆2 are determined by the decision-makers and should satisfy the conditions
0<∆1<d, 0<∆2. For this, we express fuzzy total profit per unit time as

T P̃ (yn, B) = D̃

[

s+
p(n)v

1− p(n)
−

K

(1 − p(n))y
n −

c

1− p(n)
−

Sc

1− p(n)

−
hp(n)y

n
(1− p(n))x −

NG

(1− p(n))y n

]

−
h

2

(yn − p(n)yn −B)2

(1 − p(n))y n

−

bB2

2(1− p(n))yn
. (20)

Now, we defuzzify T P̃ (yn, B) by using the signed distance method. From Prop-
erty 2, the signed distance of T P̃ (yn, B) to 0̃1 is given by

d
(

T P̃ (yn, B), 0̃1

)

= d
(

D̃, 0̃1

)

[

s+
p(n)v

1− p(n)
−

K

(1− p(n))yn

−
c

1− p(n)
−

Sc

1− p(n)
−

hp(n)yn
(1− p(n))x

−
NG

(1− p(n))yn

]

−
h

2

(yn − p(n)yn −B)2

(1 − p(n))yn
−

bB2

2(1− p(n))yn
(21)

where d
(

D̃, 0̃1

)

are measured as follows. From Property 1, the signed dis-

tance of fuzzy number D̃ to 0̃1 is

d
(

D̃, 0̃1

)

=
Nγ

4
[(d−∆1) + 2d+ (d−∆2)] = dNγ +

Nγ

4
(∆2 −∆1). (22)

On substituting result of equation (22) in equation (21), we have

TP ∗(yn, B) =

(

dNγ +
Nγ

4
(∆2 −∆1)

)[

s+
p(n)v

1− p(n)
−

K

(1− p(n))yn

−
c

1− p(n)
−

Sc

1− p(n)
−

hp(n)yn
(1− p(n))x

−
NG

(1− p(n))yn

]

−
h

2

(yn − p(n)yn −B)2

(1− p(n))yn
−

bB2

2(1− p(n))yn
.

TP ∗(yn, B)is regarded as the estimate of total profit per unit time in the crisp
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sense. Rearranging the terms of above equation yields

TP ∗(yn, B) = dN
γ
s+

p(n)vdNγ

1− p(n)

+
(∆2 −∆1)sN

γ

4
+

(∆2 −∆1)p(n)vN
γ

4(1− p(n))

−
cdNγ

1− p(n)
−

ScdN
γ

1− p(n)
−

c(∆2 −∆1)N
γ

4(1− p(n))
−

Sc(∆2 −∆1)dN
γ

4(1− p(n))

−

{

KdNγ

(1− p(n))yn
+

hp(n)yndN
γ

(1− p(n))x
+

Nγ+1Gd

(1− p(n))yn

+
KNγ(∆2 −∆1)

4(1− p(n))yn
+

(∆2 −∆1)hp(n)ynN
γ

4x(1 − p(n))
+

(∆2 −∆1)GNγ+1

4(1− p(n))yn
+

h

2

(yn − p(n)yn −B)2

(1− p(n))yn
+

bB2

2(1− p(n))yn

}

. (23)

Since the first eight terms in equation (23) are free of the decision variable
(yn, B), they can be dropped in determining (y∗n, B

∗). Consequently, maximiz-
ing TP ∗(yn, B) is equivalent to minimizing the cost terms in brace (we denote
it using f(yn, B)). Thus

f(yn, B) = yn

[

hp(n)dNγ

(1− p(n))x
+

hp(n)(∆2 −∆1)N
γ

4x(1− p(n))
+

h

2
(1− p(n))

]

+
1

yn

[

KdNγ

(1− p(n))
+

GdNγ+1

(1− p(n))
+

K(∆2 −∆1)N
γ

4(1− p(n))
+

G(∆2 −∆1)N
γ+1

4(1− p(n))

+
h

2

B2

(1− p(n))
+

bB2

2(1− p(n))

]

− hB.

Now, we apply the method given by Chang et al. (1998) to obtain the exact
closed form solution for optimal (y∗n, B

∗) and minimum cost f(y∗n, B
∗) without

derivatives. The above expression can be rearranged as follows

f(yn, B) =
(h+ b)

2(1− p(n))yn

[

B −
h(1− p(n))yn

(h+ b)

]2

+ yn

[

hp(n)dNγ

(1− p(n))x

+
hp(n)(∆2 −∆1)N

γ

4x(1− p(n))
+

h

2
(1− p(n))−

h2

2

(1 − p(n))

(h+ b)

]

+
1

yn

[

KdNγ

(1− p(n))
+

GdNγ+1

(1 − p(n))
+

K(∆2 −∆1)N
γ

4(1− p(n))
+

Nγ+1G(∆2 −∆1)

4(1− p(n))

]

. (24)

Thus, for given yn, setting the square term in equation (24) to zero results in

B∗ =
h(1− p(n))yn

(h+ b)
(25)
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and equation (24) reduces to

f(yn) =
h

2

[

2p(n)dNγ

(1− p(n))x
+

p(n)(∆2 −∆1)N
γ

2x(1− p(n))
+ (1− p(n))

−
h(1− p(n))

(h+ b)

]

yn +
1

yn

[

KdNγ

(1− p(n))
+

dGNγ+1

(1− p(n))
+

K(∆2 −∆1)N
γ

4(1− p(n))

+
Nγ+1G(∆2 −∆1)

4(1− p(n))
] . (26)

Next, from Teng (2009), using the arithmetic-geometric mean inequality (AM-
GM) theorem,

f(yn) >

√

2h
[

KdNγ

(1−p(n)) + GdNγ+1

(1−p(n)) +
K(∆2−∆1)Nγ

4(1−p(n)) + Nγ+1G(∆2−∆1)
4(1−p(n))

]

[

2p(n)dNγ

(1−p(n))x + p(n)(∆2−∆1)N
γ

2x(1−p(n)) + (1− p(n))− h(1−p(n))
(h+b)

]

. (27)

When two terms related to yn in equation (27) are equal, then

y∗n =

√

√

√

√

√

2
[

KdNγ

(1−p(n)) +
GdNγ+1

(1−p(n)) + k(∆2−∆1)Nγ

4(1−p(n)) + Nγ+1G(∆2−∆1)
4(1−p(n))

]

h
[

2p(n)dNγ

(1−p(n))x + p(n)(∆2−∆1)Nγ

2x(1−p(n)) + (1 − p(n))− h(1−p(n))
(h+b)

] . (28)

Once y∗n is obtained, B∗ follows from equation (25), and equation (26) reduces
to equality, i.e., the minimum cost is

f(yn) =

√

2h
[

KdNγ

(1−p(n)) + GdNγ+1

(1−p(n)) + K(∆2−∆1)Nγ

4(1−p(n)) + Nγ+1G(∆2−∆1)
4(1−p(n))

]

[

2p(n)dNγ

(1−p(n))x + p(n)(∆2−∆1)N
γ

2x(1−p(n)) + (1 − p(n))− h(1−p(n))
(h+b)

]

. (29)

Using equations (25) and (28), we can obtain the net estimate of total profit,
NETP∗:

NETP ∗ = Nγ

(

d+
(∆2 −∆1)

4

)(

s+
p(n)

1− p(n)
v −

c

1− p(n)

−
Sc

1− p(n)

)

−

√

2h

(

(KNγ +GNγ+1)(4d+∆2 −∆1)

4(1− p(n))

)

[

p(n)Nγ(4d+∆2 −∆1)

2x(1− p(n))
+

b(1− p(n))

(h+ b)

]

. (30)

5. Analysis

Once we obtained the exact closed-form solutions, the effects of problem pa-
rameters on the optimal solutions can be easily analyzed.
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1. From equation (30), if there is no salvage value for defective items,
i.e., v=0, to make sure that the policy will generate a positive net profit i.e.,
NETP ∗ > 0, the selling price per unit should be set higher than the threshold

s >

[

(c+ Sc)

1− p(n)
−

1

Nγ
(

d+ ∆2−∆1

4

) .

√

2h

(

(KNγ +GNγ+1)(4d+∆2 −∆1)

4(1− p(n))

)(

p(n)Nγ(4d+∆2 −∆1)

2x(1− p(n))
+

b(1− p(n))

(h+ b)

)

.

(31)

2. As screening rate x increases, y∗ increases (so does B∗), f∗ decreases and
hence NETP ∗ increases.

6. Numerical example

To illustrate the results of the proposed models, we consider an inventory system
with the following data: screening cost Sc=$0.5/unit, purchase cost c=$25/unit,
selling price of good-quality items s=$50/unit, selling price of imperfect-quality
items v=$20/unit, G=10,000. We assume p is deterministic and follows the
learning curve of the form described in equation (15). The values of the pa-
rameters in equation (15) are: a=40, f=999, d=50,000 units/year, ordering
cost K=$100/cycle, holding cost h=$5/unit/year, screening rate x= 175200
units/year.

Example 1 For the model proposed in Section 4, with D fuzzified as the trian-
gular fuzzy number D̃ = Nγ(d−∆1, d, d−∆2), we solve to obtain the optimal
order lot size, backorder level and the maximum total profit per year in the
fuzzy sense for various given sets of g and (∆1,∆2) that satisfy the conditions
0<∆1<D and 0<∆2. We compare the solutions of fuzzy case with those of crisp
case by calculating the relative variation between them. The results are summa-
rized in Table 3. We also compare profits when demand is crisp and fuzzy.

Observations

From Table1, which shows the impact of the boosting factor and the number
of advertisement on optimal solution, we observe that

(1) as the boosting factor i.e., γ increases, the saturation level of frequency of
advertisement is reached faster; if γ =0.02 then profit increases up to the 3rd fre-
quency of advertisement and after that it decreases; similarly for γ =0.04, profit
increases up to the 6th frequency of advertisement and after that it decreases;

(2) as the boosting factor increases, the respective change in profit is very
high.

So, we can say that if the manager properly selects the frequency and mode
of advertisement then company shall grow fast. It all depends on the efficiency
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Table 1. Profit w.r.t different values of γ
 

N                                             NETP*

 =0.02  =0.03  =0.04 

1 1184000 1184000 1184000 

2 1188500 1196910 1205370 

3 1188910 1202320 1215880 

4 1187930 1204920 1222150 

5 1186330 1206100 1226200 

6 1184390 1206450 1228910 

7 1182280 1206260 1230730 

8 1180060 1205720 1231920 

9 1177780 1204910 1232660 

10 1175470 1203930 1233050 

11 1173150 1202800 1233180 

12 1170830 1201560 1233080

13 1168520 1200250 1232820 

14 1166220 1198870 1232410 

15 1163940 1197440 1231890 

 

* * *

Table 2. Optimal values of order and backorder quantities w.r.t different
 

b  y* B* NETP*

0 13243.7 12714.5 1225630 

2 3743.14 2566.85 1223630 

4 3044.94 1624.04 1222990 

6 2762.13 1205.35 1222630 

8 2606.91 962.59 1222410 

10 2511.39 803.684 1235100 

12 2443.08 689.842 1234990 

14 2392.91 604.554 1234900 

16 2354.49 538.195 1234830 

18 2324.11 485.054 1234770 

20 2299.48 441.521 1234720 

"  2060.44 000.000 1221340 

of manager’s selection of mode of advertisement and on the analysis as to which
method is more effective in capturing the untouched demand of the market.

Table 2 shows the effect of backorder cost. We observe that as the back-
ordering cost increases, the optimal order size, backorder level and net total
profit gradually decrease when we move across the table from top to bottom.

Rel NETP ’=[NETP ∗-NETPc]NETPc × 100%.
In Table 3 we analyze the effects of the learning factor and fuzzy demand on

optimal solution. We get the following observations from that table:
(1) for fixed value of learning rate i.e., g, as the tolerance level of annual

demand increases, the optimal lot size, backorder level as well as profit increase;
(2) Table 3 shows the variation in lot size, backorder level and profit with

the variation in demand; there is very negligible change in lot size, backordering
level and profit due to high change in ∆1 and ∆2; this shows that our model
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Table 3. Effect of learning and imprecision in demand of optimal values y and
B

                                   Rel NETP`= [NETP
*
-NETPc]/NETPc ×100%  

g
1∆ 2∆

y
*

B
*
 TP

*
Rel(NETP`) 

g =0.0 

500 

350 2504.52 801.44 1205530 -0.318 

500 2505.43 801.73 1209380 0.000

650 2506.33 802.02 1213240 0.319

1000 

750 2503.92 801.25 1202960 -0.530 

1000 2505.43 801.73 1209380 0.000

1250 2506.93 802.21 1215810 0.531 

1500 

1000 2502.40 800.76 1196530 -1.062

1500 2505.43 801.73 1209380 0.000 

2000 2508.44 802.70 1222240 1.063 

g =0.25 

500 

350 2504.38 801.48 1205560 -0.318

500 2505.29 801.77 1209410 0.000 

650 2506.19 802.06 1213270 0.319

1000 

750 2503.78 801.29 1202990 -0.530 

1000 2505.29 801.77 1209410 0.000 

1250 2506.80 802.25 1215840 0.531

1500 

1000 2502.27 800.80 1196560 -1.062 

1500 2505.29 801.77 1209410 0.000

2000 2508.30 802.74 1222270 1.063 

g =0.50 

500 

350 2503.90 801.61 1205660 -0.319

500 2504.81 801.90 1209520 0.000

650 2505.71 802.19 1213370 0.318 

1000 

750 2503.30 801.42 1203090 -0.531

1000 2504.81 801.90 1209520 0.000 

1250 2506.32 802.39 1215940 0.530

1500 

1000 2501.79 800.94 1196670 -1.062

1500 2504.81 801.90 1209520 0.000 

2000 2507.83 802.87 1222370 1.062

g =0.75 

500 

350 2502.30 802.06 1206010 -0.318 

500 2503.20 802.35 1209860 0.000

650 2504.11 802.64 1213710 0.318 

1000 

750 2501.69 801.87 1203440 -0.530 

1000 2503.20 802.35 1209860 0.000

1250 2504.71 802.83 1216280 0.530 

1500 

1000 2500.18 801.38 1197020 -1.061

1500 2503.20 802.35 1209860 0.000 

2000 2506.22 803.32 1222700 1.061 
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Figure 3. Effect of learning on number of defective item

Figure 4. Effect of advertisement on profit
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Figure 5. Backordering cost

is stable, the optimal solution not being significantly affected by the change of
demand.

Table 4. Optimal values of the order and backorder quantities w.r.t. the value
of nTable 4: Optimal values of the order and backorder quantities w.r.t. the value of ‘n’ 

g =0.2 g =0.50 g =0.75

n y* B* NETP* y* B* NETP* y* B* NETP*

1 2505.41 801.740 1209390 2505.36 801.746 1209390 2505.36 801.360 1209400 

2 2505.40 801.744 1209390 2505.33 801.763 1209400 2505.23 801.790 1209430 

3 2505.38 801.749 1209390 2505.23 801.790 1209430 2504.96 801.960 1209490 

4 2505.36 801.755 1209400 2505.07 801.835 1209460 2504.38 802.027 1209610 

5 2505.33 801.763 1209400 2504.81 801.908 1209520 2503.20 802.355 1209860 

6 2505.30 801.772 1209410 2504.38 802.027 1209610 2500.87 803.003 1210360 

7 2505.26 801.784 1209420 2503.69 802.220 1209760 2496.53 84.195 1211290 

8 2505.21 801.797 1209430 2502.59 802.526 1209990 2489.40 806.134 1212790 

9 2505.15 801.814 1209440 2500.87 803.003 1210360 2479.71 808.727 1214810 

10 2505.07 801.865 1209460 2498.26 803.722 1210920 2469.45 811.419 1216920 

From Table 4 it can be observed that as ‘g’ increases, the profit of the
organization increases; saturation level of profit is reached faster as ‘g’ increases;
so, it clear that if a manager learns effectively from the past, company will grow
faster; if ‘g’ is considered as a proxy for attitude and managerial capacity of a
manager, then we observe that a higher level of ‘g’ helps in a faster growth of
the company.

From Fig. 3 it can be observed that the number of defective item present in
each lot gradually decreases as learning effect increases.
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7. Conclusions

This article addressed fuzzy model for an inventory problem for single item with
shortages backordered. Each lot contains imperfect-quality items. We investi-
gated the effect of the learning factor and a boosting factor, such as advertise-
ment, meant to promote demand, on the lot size per shipment, backordering
level and net profit. Annual demand is considered as triangular fuzzy number.
For the fuzzy model, a method of defuzzification, namely signed distance, is
employed to find the estimate of net profit per unit time. Without using the
method of differential calculus, we obtained globally optimal lot size and back-
order levels by applying arithmetic-geometric mean inequality theorem, which
is easy to apply and simple to understand.

We examined the effects of problem parameters on the optimal policies an-
alytically and numerically. The result shows that the number of defective units
and the shipment size decrease, whereas backordering level and net profit in-
crease as learning increases following the form of the logistic curve. As learning
becomes faster it is recommended to order in smaller lots less frequently. As
we increase frequency of advertisement, before saturation level net total profit
increases, after that it decreases gradually. By increasing the backordering cost,
the shipment size and backorder level decrease whereas profit increases.

Finally, we would like to point out that most of researchers studying the
fuzzy production/ inventory problems (e.g. Chang et al., 1998; Lee and Yao,
1998, 2000; Yao et al., 2000) often employed the centroid method to obtain
the estimate of total cost in the fuzzy sense. To achieve this, the membership
function of fuzzy total cost has to be found first using the Extension Principle,
while this derivation is very complex. To avoid this problem we use signed
distance method for defuzzification in this study.

A possible future research issue is to study the impact of stochastic learning
curve. Another interesting factor would be to consider a multi-item EOQ model.
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