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The optimum control of a development planning model is presented. The modef 
includes m exogeneous and n endogeneous factors with intensities related by a system 
of linear differential equations. The macro-model represents an aggregation of micro­
models. The optimum development strategy can be realized in the decentralized 
form with the exchange of information between the global (macro) and local (micro) 
controllers. The decentralized development planning of the integrated power system 
is studied as a typical example. The optimum development strategy consists in 
allocation of investments which minimize the global maintenance cost. 

1. Introduction 

The classical system theory deals with the models of systems which consist of 
fixed number of physical objects united by some kind of interaction and fixed spatial 
structure. 

There are known, however, examples of systems, called here the development 
systems, such as e.g. ecological, social, demographic or economic systems, urban 
development or transports systems etc., which change their structure in time as 
a result of growth, evolution, development, investments etc. 

The models of development systems can be devided into two general classes: 
the micro- and macro-models. The macro-models deal usually with the aggregated 
quantitative aspects of the development systems such as the increase of population, 
national product investments etc., whereas the micro-models emphasize the local 
and structural properties of the system, such as the technological parameters, inter­
connection links, organizational structure, environment influences etc. 

The main interest represents the controlled class of development systems, such 
as the planned economic growth, planned investment program etc., and will be 
studied here from the point of view of the optimum control theory. The model 
which is being used in the present paper can be treated as an extension of a model 
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of multi-sector economic growth. It has, however, an important property. The 
macro-model represents an aggregated system of the collection of micro-models. 
As a result, the decentralization of control actions at the macro-level (e.g. govern­
ment-level) and micro-level (e.g. the production plant-level) follows. The overall 
optimum planning strategy can be achieved by exchange of information between 
macro- and micro-levels. 

2. The macro-model of development system 

Consider the system of n endgeneous and m exogeneous interrelated factors 
or processes. A typical example of that system is an ecological system which consists 
of n different species (endogeneous factors) struggling for existance by eating weaker 
specimen and competing for m kinds of food (exogeneous factors) . Another 
example is the multi-sector economy which exchanges m final products, produced 
by the sectors (endogeneous factors) and utilizes m primary resources (exogeneous 
factors) . 

One of the most important characteristic, which determines the change of factors 
intensity: x 1 (t), i= 1, ... , n; y 1 (t), i= 1, ... ,m, is the relative growth coefficient 

dx1 • 
r1(t) = dt :x1 , z= 1, ... ,n, (1) 

dy; 
Pu(t) = d(: Yti• i = 1, ... ,m, (2) 

where x 1, r 1 - endogeneous factors intensity and growth coefficients ; y 1, p 1 - exo­
geneous factors intensity and growth coefficients. 

In the present paper we shall deal with the class of development systems charac­
terized by linear interrelations, i.e. 

n n 

J; ct.11 r1(t) - J; j311 p1 (t)-ct.1 (t) = 0, j = 1, ... , n, (3) 
i=l i=l 

where ct. 11, f3u - given real numbers; ct. 1 (t), p 1 (t) - given continuous functions . 
We shall call the system described by (3) withD = Det lct.ui#Othe linear regular 

development system (LRD system). An example of LRD system is the ecological 
system which consists of two species N 1 , N 2 with intensities xi> x 2 • The first (N1) 

feeds upon the environment and would grow with the rate coefficient ct.1 + P1 (t) 
if N2 was not growing, i.e. r2= 0. N2 feeds mostly on N 1 and would diminish with 
the rate p 2 (t)- ct.2 if N 1 was not growing, i.e. r 1 = 0. The equations of the system 
become: 

r1=ct.1 - ct.21r2+ P1(t), J 1, ct.211 
#0, 

r2= - ct.2 + ct.12r1 + P2(t), J-ct.12, 1 

where ct. 1 , ct.2, ct.21o ct.12 - given, positive constants; p 1 (t), P2 (t) - given functions. 
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T heorem 1. The LRD system, which at t=O is in the given state X; (O)=A;, 
i = I, ... , n, develops in time according to the formula 

i= I, ... , n, 

where the numbers y;, Yu are defined by the relations 

m 

}; YuPi(t)+Y;(t)dr D;(t)/D, i=I, ... ,n, 
j=l 

D; (t)- the determinant obtained by setting 

LJ; PjlPj (t) + r/.1 (t), ... , j.J; PjnPj (t) + r/.n (t)r 

in the place of i-th column of D. 

Proof. Solving (3) with respect to r; one gets 

(4) 

Keeping in mind that the solution of the differential equation x=f(t) X (which 
for t = 0 is x (0) =A) becomes 

one gets 

X· It[ ~ Y·· dy.] It ~ 
ln A:= Y; (r) + .L.J ;; d; dr= Y; (r) dr+ .L.J Yu ln [yi(t)/yi(O)]. 

0 j=l 0 j = l 

Then 

X; (t)=A; [ exp j Y; (r) dr] !1 [Yi (t) /yi0))1'1, i= 1, ... , n, Q.E.D. 

As stated by Theorem 1 the growth intensities of the endogeneous factors in 
a LRD system are completely specified by the exogeneous factors intensities which 
can in turn be controlled by an inteligent controller according to his goals. 

Several optimum control problems can be formulated for the LRD models. 
Begin with the optimum allocation of resources. Assume the global amounts of 
resources of each endogeneous factor to be limited, i.e. 

n 

}; Yu(t)~ Yj(t), j= I, .. . , m, (5) 
i = l 

where Yi (t)- given functions. 
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Find the nonnegative functions Yu (t) = y~i (t) which maximi ze the value of 
integrated system production 

oo n t • 

P(yu) = J}; w1 (r) x 1 (<) d-r, X; (t) =A; exp J Yt ( <) dr n [yij (t)Jyij (O)Fil, 
0 i = l 0 j = l 

where w1 (<) - given positive monotically decreasing weighting functions, subject 
to the constraints (5). The present problem is a nonlinear programming problem. 
In the particular case when Yu = c5i, i= 1, ... , n, the solution of the problem can be 
stated in the form of the following: 

Theorem 2. There exists a unique optimum allocation of resources strategy 
for the LRD system (with Yvi = c5i, v= 1, ... , n): 

k; (t) 
Y~i(t) = k(t) Yi(t), j=l, ... ,m, (6) 

where 

k;(t)= {A; exp [j Yt (<) d-r] W; (t)rq' 

11 m 

k(t) = }; ki(t), q= ~ c5 -- 1<0 .L.J J ' 
(7) 

i=l j=l 

and the corresponding maximum value of integrated production 

oo m 

P(y~i) = f [k(t)]q n [Yi(t)] 6
J dt. 

0 j=l 

Proof. In the paper [3] the following optimization problem has been solved: 
find the values B1=Bf, C1 =C~, ... , Z 1=Zf, i=l, ... , n, which minimize 

11 n 

A= 2 Ai = }; {kiB;P C;Y ... Z;"'} 11a, q= a+JJ+ ... +w>O, (8) 
i=l i=l 

subject to the constraints 

n n n 

}; Bi~B,}; ci :::;;, c, ... ,}; zi ~ z, 
i=l i=l i=l 

Bi~O, Ci ~ O, ... , Zi>O, i= l, ... , n, 

B, C, ... , Z - given numbers; a, p, ... >0, w, ... <0. 

The optimum solution becomes 

and 

Bf/B= Cf/C= ... =Z~/Z=kjk, i= 1, ... , n, 

n 

A = {kq B - P C- 1 • • • z-"'}1 /a, k = }; k 1 • 

i = l 

(9) 



O?'imum control of a decentralized development planning model 

The same result is obtained when A is a maximalized quantity and q= 
= - (a+.B+y+ ... +w). When t E [0, oo] is a fixed number the problem of maximiza-

" 
tion of }; W; (t) xi (t), where X; (t) is described by (4), with Yu = <>i, i= 1, .. . , n~ 

i=l 

is equivalent to the problem (8). Observe that 

is maximum when 

00 i 

P= J .2; W;(t)x;(t)dt 
0 i~l 

" n 

.2; W; (t) Xi (t) = }; X; (t ) 
i= l i = l 

is maximum for each t E [0, oo ). 
Indeed, xi (t) is a parametric function of t of the variables Yu (t) and 

is zero for all variations hu (t) only if for all t E [0, oo) one gets 

d.Xi (t) 
dyu(t) = O, i= l, ... , n, j=l, ... ,m. 

These conditions are also sufficient for optimality. Q.E.D. 
It should be observed that the aggregated system characteristic (9) has the same 

analytic form as the subsystem characteristics but with the performance index 

" k = .}; ki . The smaller the value of k the better the properties of the aggregated system, 
i~l 

in the sense that A is greater (q<O), when B, C, ... , Z are kept constant. 
It should be noted that a closely related class of optimization problems can 

also be formulated assuming the production intensity X; (t) to be not less than the 
given demand function X; (t), i.e. X; (t);?: X; (t), t E [0, oo ), and minimizing the cost 
of the most expensive resources. Such a situation happens, for example in the electric 
power systems. Keeping in mind the proof of theorem 2 one can observe that it 
can be easily reformulated to satisfy the present assumptions. The formulae (6), (7} 
describing the distribution of the remaining resources preserve their previous form. 

The next important class of optimization problems for the LRD systems is. 
the optimization of investment or reproduction strategy. Before the general problem 
is formulated consider a simple single sector economy described by the equation 
[2, 9]: 

x(t) = A exp (yt) [L(t)] 6 [K(t)] 61 , (10} 

where: x (t) is the production income or national product intensity ; L (t) is the 
intensity of labor employed, or employment; K (t) is the intensity of capital used ~ 

A is a given positive number ; y is a positive number called the annual rise in efficiency ;. 
J, <51 are positive numbers, the elasticities of production with regard to labor and 
capital, respectively. 
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It is also assumed that J 1 = 1-J, i.e. the national product increases at the same 
rate as the combined increase of L (t) and K (t). 

The formation of capital is assumed to be linked with national product or 
income by the simple relation: 

dK (t) jdt = bz (t) (11) 

where b is a given coefficient and z (t) is the control variable which may vary between 
0 and x (t), i.e. 

0 :( z(t) =( x(t), t E [0, oo). (12) 

It is assumed that the capital used K (t) in the economy does not exceed the 
-capital available K (t), i.e. t 

K(t) =( K(t)=b J z(r) dr+c, (13) 

where c=K(O). o 

In the similar way the labor used L (t) should not exceed the supply of labor 
L (t) which is specified by the demographic growth, i.e. 

L(t) =::;; L(t)=L0 exp (J,t), (14) 

L 0 , A. - given positive numbers. 
The system performance measure is assumed to be 

OC) 

P(z)= J w(t) [x(t)-z(t)] dt (15) 
0 

where w (t)- given positive monotonously decreasing weighting function. A typical 
example of w (t) is w (t)=(l+s)-t where c is the discount rate. According to (15) 
P (z) represents the net income in the economy. The optimum control problem 
consists in finding such a nonnegative strategy z (t)=z 0 (t) which maximizes 

P(z)= l w (t) {AL~ exp [t(y+A.J)] X (b j z(r) dr+c r -6 

-z(t)} dt (16) 

Subject to the constraint 

( 

t )1 6 
G(z)=AL~ exp [t(y+M)] b f z(r)dr+c -z(t) ;;;: O, t E [0, oo). (17) 

Since no harm can be done by using the full employment and the capital available 
the upper bounds for L (t), K (t) has been set in (16), (17). 

1 
T 

We shall solve the problem (16) and (17) for the particular case w (t)={o' t< T 
' t;;;: 

using the method described in [4]. Denote AL~ n1
- 6 by a, y+A.J by rJ., and cjb by c1 • 

The Lagrangean for the present problem becomes 

T T [ t 
ct>(z, A.) =P(z)+ J A.(t) G(z)dr= J [I + Jc(t) ]rJ.exp(rJ.t) J (z(r) dr+ 

0 0 0 1 +c1) 1 - 6 -z(t) dt. (18) 



Optimum control of a decentralized development planning model 11 

Find the differential..i_ tP (z+yh; },)jy=o = dtP (z, A.; h) 1) and the gradient tP~ (z, A.) 
of (13) dy 

T [ ( t t 
dtP(z, A.; h) = J [l + A.(t)] (1-J)axexp(!Xt) J z(r)dr+c1)- 6 J h(r)dr+ 

0 0 0 

T T ( t 

-h(t)]dt= J h(r)dt{J a(l-J)[1+A.(t)exp(1Xt)x J z(r)dr+ 
0 t 0 

+c1r
0 

dt - 1- A.(r)}. 

r ( r )-o 
: :: )_) = 1 a(l-J) [l + A.(t)]exp(!Xt) x 1 (z(r)dr+ c1 dt - 1- A.(r). 

;! 5!:!all show that when T is long enough the following optimum "bang-bang" 
--~~ ==z" exists: 

Z0 (t)= , 
{

X (t), t E [0, Td 

0, tE [T1 , T] 
(19) 

~ tP is a concave functional in z the necessary and sufficient conditions 
~ ........ =-...-ty require [4] that the nonnegative Lagrange function }, (t) = A0 (t), exists 

(20) 

and the gradient is zero for t E [0, Td and negative for t E [T
1

, T], i.e. 

(21) 

These conditions have simple interpretation: when the constraint (17) is active 
the Lagrange function is nonnegative and it vanishes when (17) is non active. At 
the same time the gradient becomes zero (for z0 >0) and negative for Z 0 =0. 

The optimum strategy in the subinterval [0, Td can be derived by solving the 
equation 

which yields 

{ 
J }~ -1 

Z
0 (t)=aexp(1Xt) : [exp(!Xt) - IJ+c~ 6 

, t E [0, Tr]. (22) 

1
) d4> (z, },; h) should be treated as variation of the functional 4> at the point {z, A.}. It is a linear 

functional of the variation hand can be written d4> (z, A.; h) = (4>', h), where 4>' is called the gradient 
of 4> [4]. 
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Then from the equation 

r {a(; }o-1 <P~ (z0
, A0

) = f a (1- o) exp (1Xt) ~- [exp (1Xt) -1 J+ c1 [I +JcO (t)] dt-

t . -1-A0 (r)=0, 

one finds 

A0 (t)=Cexp ~ - e {t+ ~In [exp ( - IXt) -d]H-1 , t E [0, T1 ], 

where the constant C is chosen in such a way that A0 (TJ = 0, i.e. 

C= exp~e{T1 + ~ ln[exp(-1XT1)-d]H 

1 
d=---

' o IX 
1-clao 

(j 
e=a2 (1-J) - . 

IX 

The value of T1 can be derived by the condition <P~ (z0
, A0 ) lr=r, =0, i.e. 

r {ab }-1 J a(l-b) exp(1Xt) ~ [exp (1Xt)-l]+ c~ dt= 1 
T, 

which can be written 

exp(-1XT)-d [(aojiX)-c~ _ 1 
In exp ( -<~.T1)- d IX da (1- b) (T- T1) · 

(23) 

The analysis of (23) shows that when T is not long enough there is no reproduction 
period (T1 ~o) and z0 (t) = 0, t E [0, T]. 

The optimum investment problem can be easily extended to the multi-sector 
economy, described by (4), and 

m 

0 :::::; 2; zii(t) ::;; x;(t), t E (0, oo), i=1, .. . ,n, 
j = l 

t 

Yii(t)::;; Yii(t)=bii J zii(r) dr+c;j, j= 1, ... ,m, 
0 

oo n [ · m ] 

p (~) = [ iJ.; W; (t) X; (t) - jJ.; Zii (t) dt, 

where W; (t) - given weighting function ; bii, c;i - given numbers . 

The optimum control problem consists in finding such a nonnegative strategy 
~ (t) = {zii (t)} which maximizes 

p (~) = lt W; (t) {A; exp (y; t) J] [ bii j Zu (r) dr ri- it; zii(t)} dt (24) 
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subject to the constraints 

G;(~) = Ai exp (yi t)!] [bu j zu(r) dr rj -j$; Zu (t)~ 0, i= I, ... , n. (25) 

The general solution of the present problem is much more difficult and in order 
to solve it effectively special decomposition algorithms can be employed [5]. 

Another generalization of the model (10) is obtained by replacing the linear 
t 

rise in efficiency Yr by J y (r) dr, where 
0 

and 

O~y(t)+z(t)~x(t), t E [0, oo), 

(26) 

f is a given monotonously increasing function, y (t) - part of the income used for 
the purpose of increasing production · efficiency by research, innovations, new 
technology etc., y0 - positive number. 

The present optimization problem can be formulated as follows: find the non­
negative functions y(t) = y 0 (t), z(t) = z0 (t) such that 

Cl) 

P(y,z) = J w(r)[x(r) - z(r) - y(r)] dr (27) 
0 

Is maximum, subject to the constraints (13), (14), (26) and 

G(y, z) = x(t) - z(t) -y(t)~O, t E [0, oo), (28) 
where 

x(t) = A exp (j y (r) dr) [L(t)] 6 [K(t)]6'. 

It should be observed that the optimum investment strategy (such as (22)) 
depends on parameters A, y, <5, /3, A which at the beginning of planning period T 
are not known to the controller. The best what can be done is to extrapolate these 
parameters using the econometric methods based on the past observations of real 
economy. However, the A, y, <5, f3 will depend on the size of investments within the 
planning period. In other words there is a feedback loop existing between the macro­
model parameters and the optimum investment strategy. Besides, the macro­
parameters represent the aggregated effect of development processes which take 
place in micro-models. A possible approach to the optimization of development 
processes would be the formulation of the general optimization problem for the 
complete set of micro-models. Since that approach requires the solution of complex 
variational problems of a great number of variables it is not feasible. Besides, it is 
necessary to implement the solution in the form suitable to the existing decentralized 
management and administration. 
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The optimization of development processes in the decentralized form requires 
the investigation of relations among the macro- and aggregated micro-parameters. 

That is a goal which will be pursued in the next sections. 

3. The micro-model of the development system 

In the general model considered in the present paper the macro-model should 
be regarded as the aggregation of a number N of micro-models within the particular 
sector i having a hierarchic structure, which shows the streams of resources circulat­
ing among the individual subsystems. An example of such a sector with global 
production intensity x (t) (the sector index i has been dropped for the purpose 
of abreviation of notation) and global resources intensities Yi (t), j= 1, ... ,m., which 

ydt) !Jm(t} x(t) 
I I I I 
I I I I 

c 

Fig. 1 

!!Nm 

are utilized (consumed) by the sector, has been shown in Fig. 1. Each subsystem 
P., v= 1, ... , N, consumes a part Yiv (t), of Yi (t), i.e. 

N 

2: Yiv(t)Aiv(t)"(yi(t), j= 1, ... ,m, (29) 
v=l 

where Ajv (t) are given functions representing the transmission or transportation 
losses. 

It is assumed that Ajv (t)?1, j= 1, ... ,m, v= 1, .. . , N, t E [0, oo). 
The global production is assumed to be the sum of local productions Xv (t), i.e. 

N 

.2; Xv (t) Av (t) =X (t), (30) 
v=l 

where ),v(t)-given loss functions: 0"(A-v(t)"(1, v=l, ... ,N, t e[O,oo). 
The controller C allocates the available recources y i (t), j = 1, ... , m, which satisfy 

(29), among the processes P., v= 1, ... , N, in such a way that for each time instant 
t E [0, oo) the total production (30) attains the maximum value. 
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In other words the optimization problem for the controller consists in finding. 
nonnegative functions Yiv (t) = y~. (t), } = 1, ... ,m, v= 1, ... , N, which maximize (30) 
subject to the constraints (29). Assuming that each process can be described by the 
equation (compare (4)): 

m 

x.(t) = [k.(t) ]q n [Yiv(t)]'\ v= 1, .. . ,N (31) 
j = 1 

{ [ 

t ]}-1/q 
k.(t) = A. exp f y.(r) dr , 

m 

q=}; bj-1<0 
j = 1 

one finds out (using similar reasoning as in the proof of theorem 2) that 

N m 

x(t) = X0 (t) = max }; x. (t)A.(t) = [k(t)]q n [yj (t)]'\ (32) 
v=l j = 1 

and the optimum values of Yiv (t) become 

k* (t) A. -:- 1 (t) 
0 (f) - V JV (f) 

Yjv - k(t) Yi , 

where 

}=1, ... ,m, v=1, ... ,N 

N 

k (t) = }; k: (t), t E (0, oo ) . (33) 
V= 1 

It should be observed that the aggregated system characteristic (32) has the same 
analytic form as the sub-systems characteristics (31) but the aggregated performance 
index becomes N 

k(t) = }; k. (t) z. (t) (34) 

where 

{ 

m }-1/q 
l.(t) = A..(t) f] [Ajv(t)]-lij , v= l, ... ,N 

can be called the loss index. The loss indices satisfy the condition lv (t) ;?= l, t E [0, oo), 
v= 1, ... , N, and the aggregated performance index k(t) increases after each aggrega­
tion. 

As shown in the paper [6] for the case k. (t) = k.= const. , l.(t) = l.=const. , 
v = 1, .. . , N , it is possible to solve the problem of synthesis of the best organizational 
structure of the hierarchic system. In the simple case when the subsystems P., 
v= 1, .. . ,N, can be interchanged, i.e. when to the given transmission system, charac­
terized by the numbers 11 :(; 12 :(; ... :(; IN, one can assign the processes, characterized 
by the set of performance indices { k }~ , the minimum value of the resulting 

N 

performance k' =}; kv lv follows when k 1 ;?: k 2 ;?: ... ;?: k N. 
v= 1 

That result can be easily extended to the present case where kv and lv are given 
functions of time, and it can be formulated in the form of the following: 
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Theorem 3. The assignment process for the system with given {kv (t)}~, 
{lv (t) }r, t E [0, oo) is optimum when for each t E [0, oo) the following relations 

k 1 (t) -o( k2 (t) -o( ... -o( kN (t), !1 (t)~ 12 (t) ~ ... ~ IN (t) (35) 
·Of 

k 1 (t) ~ kz (t) ~ ... ~ kN (t), 11 (t) -o( lz (t) -o( ... -o( IN (t) (36) 

hold. The conditions (35), (36) become also necessary for optimality in the case of 
:strict inequalities in (35), (36). 

Using theorem 3 it is possible to solve the synthesis problem for multi-level 
hierarchic structure with processes described by (31) in the similar way as it has 
been done, for the simpler case of kv (t)=kv=const., v= 1, ... , N, in [6]. The resulting 
structure has the property that the aggregated performance index is minimum. 

It should be also observed that when the values of kv (t) change the structure of 
the best organization should change as well (in order to yield the minimum value 
of the resulting performance measure). That requires the intervention of the additional 
·controller which reorganizes the system structure if necessary. 

In practical situations it happens that the amount of resources used by the sub­
systems is bounded from below or from above. In other words there are additional 
·constraints imposed on subsystem characteristic (31): 

Yjv-o(Yiv(t)-o( Yj., j=l, ... , m, v= l, ... ,N, (37) 

where Yivo Yiv- given numbers. 
When the global amounts of resources Yi (t), j = 1, .. . , m, distributed among the 

subsystems, increase (decrease) the upper (lower) subsystem constraints become 
saturated, i.e . active. The saturation effect, which fixes the amount of resources 
·consumed by a particular subsystem P ;, is equivalent to such a change of k; (t) 
that the amount of resources received by P; is Yii or Yi;, j= 1, ... , m. Since the sub­
systems production capacities determine the saturation limits Yi., the assumption 
that the saturations are reached at the same time for all j is not very restrictive. 
lt should be also observed that the price being paid for small plant capacity and 
·operation on the upper saturation bounds is the increase of the performance index 
k; (t). When all the subsystem are saturated there is no optimization possible and 
the global performance may be very poor. 

In the cases when the subsystem characteristics do not posses the required 
.analytic form of (31), or when they are given in graphical form, as shown e.g. in 
Fig. 2a, for N = 2, m = 1, the approximation should be used. In the case of Fig. 2a 
the subsystem characteristic can be approximated by the function of the form 
F; (z)=k; (z+z;)1 • For that purpose it is convenient to construct the plots of 
[f( (z)]lf1 , i= 1, 2, as shown in Fig. 2b and approximate them by linear functions 
.of the form rt.;(z+z7), i=1,2. 

Then the functions F; (z), i = 1, 2, which approximate /; (z) become 

* i = l, ZE [Z1, Zr] 
F;(z) = k;(z+zJ1 +c;, _ 

i= 2, z E [Z2, Zz] 
(38) 

where k; = rt.f/(l+fJ), y= I+fJ, c; - numbers determined by the plot of/; (z). 
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Denoting zi+z~ by Yi one can observe that the problem of maximization of 
n 

}; Fi (zi)=ki (zi+z~?+ci 
i=l 

11 

subject to the constraints 1.: zi :(: Z, zi E [Zi, Zd, i= l, ... , n, is equivalent to 
i=l 

n n n 

max }; [ki YT+cd, }; Yi :(: Y=}; z; +Z, 
i = l i=l i=l 

When the intervals [Zi, ZJ are small the approximation can be exact enough 
for practical purposes. It is also possible to extend the approximation domain by 

a) fl{z); i~1, 2 

z 
0 It 

b) [f/(zJf/1; i=1, 2 

I [f2fzJ]'l'l 
I 

z , 

Fig. 2 

choosing another set of subintervals [Z'i, Zd, i= l, 2, ... , n, with the same or different 
y. Since the optimum solutions z~ satisfy the condition f~ (zD = 1; (z~) = ... = f~ (z~) 
it is convenient to choose zi, Z;, z;, Z;, ... , in such a way that 

f~ CZ1) = J; (Zz) = .. . = J:. (Z")' 

!~ (Zl)=J; (Zz)= ... =J:. (Z11), 

J~ (Z' 1) = J; (Z'z) = ... = J,; (Z'n), 

j~ (Z1)=f; (Zz)= ... =J:. (Z")' 
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The approximation can be extended to the multidimensional case. 
After these preliminary remarks and observations we can return to the main 

subject of the present section which is the optimum control of the development 
processes in the hierarchic systems with optimum allocation of resources. 

It is assumed that the demand for the global system production is less than the 
subsystems production capacities and the saturations is not present (at least in 
certain subintervals of the planning interval). The decision at the macro-level 
determines the sum of the global investments which should be spent for the de­
velopment of each particular sector. That sum should be allocated among the sub­
systems (by the sector controller) in an optimum manner. There are two main ways. 
or methods of subsystem development (called extensive and intensive respectively): 

(i) extension of the saturation bounds Yiv. which can be also called the plant 
renewal or reconstruction, extension of bottlenecks etc.; 

(ii) construction of the new subsystems and connection links, characterized by 
kv (t), lv(t), v=N+1, N+2, ... , and increasing production efficiency. 

In case when there is no saturation present the extensive method does not change 
the global performance index. However, the global system production capacity 

N 

characterized by Yi=}; Yiv' j= 1, ... ,m, increases. 
v~l 

The intensive method tends to increase the global system efficiency by replacing 
the obsolete plants, with large kv (t) lv (t), by the new factories with smaller 
value of kv (t) lv (t). Since in the last case the optimum assignment process may 
become violated the reorganization process of the whole structure may prove to be 
necessary. 

It should be observed that the value of kv (t) lv (t) depends on the capital 
investment and maintenance costs. Usually the sum of these two costs is limited and 
they are controversial in effect, i.e. the decrease of maintenance costs requires an 
increase of capital investments. 

In order to get a better insight into the situation a more concreate example 
will be studied in the next section. 

4. Decentralized development planning of the integrated 
power system 

Consider the integrated electric power system consisting of N units Si (power 
plants or generators) generating Pi (t), j= 1, ... , N, units of power, shown in Fig. 3. 
The transmission lines with resistances Ri (including also the internal resistances 
of the generators) link Si, j= 1, ... , N, with the common load which demands P (t) 
units of power. For the sake of simplicity in calculations it is assumed that the load 
resistance R is small as compared to Ri. In that case the part of power generated by 
Si and delivered to the load becomes Pi Aj=Pi Rf(R+Ri), j= 1, ... ,N. Then P= 

N 

=}; JciPi. 
j~l 
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--:..e power demand P (t) is a given function of time which changes almost 
-adicaUy in each day and each year of the planning interval [I ]. Besides, the mean 
~ of P (t) increases slowly in time. 

~ e integrated power production can be considered as a sector of the economy. 
T 

-:..~production income within T is I= J cP(t) dt, where c- the price of a 1 kWh 
0 

"" electrical energy. The net income of the 
sector is In= I- C1 - Cm, where C1 - investments 
and cm - is the maintenance cost (mostly the 
cost of fuel burned in the power stations and 
transmission losses). 

It is assumed that the fuel-cost C~p consumed 
by Sj depends on P1 (t) according to the formula 

where kj- given positive numbers, J> 1. Fig. 3 

An optimization problem for the system under consideration can be stated as 
follows. Find the nonnegative functions Pj (t)=P; (t), j= 1, ... , N, which minimize 
the global fuel consumption cost 

N 

subject to the constraints cmp=}; c;,p, 
j=l 

(40) 
N 

}; AjPj(t)=P(t), Pj(t) E f!'j, Pj], j= 1, ... , N. 
j=l (41) 

As shown in sec. 3 (formulae (32), (33)) the optimum strategies for Pj(t) become 

k*. o N 

PI(t)=A.
3

kP(t), k;=k;JcJ-a, k=};k;, j=1, ... ,N. 
J (42) 

j=l 

·In order to get the best efficiency of the system it is necessary to choose proper 
values of Jcj and ki> or in other words- it is necessary to choose the proper relation 
between the capital investments and maintenance costs. 

The capital investment C1 consists of two parts; the cost of the new transmission 
lines Cil, which is approximately proportional to the volume of copper used for 

N 

transmission lines Cil = }; Cf1, Cf1 = adj si (where dj- distance, si- crossection, 
j=l 

cx=const.), and the cost of the new power units CiP• depending on the maximum 
power production capacities Pi= max P~(t), and on the performance index kj. 

tE[O, T) 

A good approximation of the last relation is 

N 

cip=}; C{p, 
j=l 

Where f), c, K- given positive numbers. 

(43) 
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The maintenance cost Cm consists as well of two parts: the cost of energy lost 
in the transmission lines 

N N T 

Cmr = .}; C~1 = 2; fJ f Plj (t) dt, 
j = l ¥ j = l 0 

where fJ=const., P11 - the power lost in the j-th transmission line equal 

R- R. 
Pli(t) = R+JR

1 
P~(t)=A.1 .:. P;(t), j= 1, ... , N , 

and the cost of fuel (40), where 

T T 

c~p=k~- 1 J [P~(t)]6 dr=k~- 1 (k;Jk)6 A.j6 B, B= J [P(r)]0 dr. (44) 
0 0 

Since 
R. k* T 

C~ 1 =fJ.:. ~ J P(r)dr 
0 

where R1 =p (d1js1) (p- specific resistance of the transmission line) and s1 = C{1/adi> 

one obtains fJ fJ 6 T 
. (/. p 2 * (/. p 2 1-6 J 

kC~1=ARd1 k1 =ARd1 k 1 A.1 , A= p(r)dr. 
0 

One finds also 

Then 

R R 
A./;;;-=--Ci . R

1 
et..pd} w J= 1, ... ,N. (45) 

kCJ =K1--61[C!]o 
ml ; rl 

(46) 

where 
0 

ol =I-o' 
1 

o2 = 1-ol · K·=[AfJk·]62pa d2 ; ; R J, 

Then the following problem of the development of transmission system can be 
formulated. Find the best allocation of investments: C~/, j= 1, .. . , N, which minimize 
the maintenance cost 

N N 

kC = '\' kC1 = '\'I K 1
-

6' [C1 ]6' ml L.J ml L.J ; rl • 
j = l j = l 

Subject to the constraints 

N 

.}; Cf1 ~Cu, C{1";?:. 0, j=l, .. . , N. 
j = l 

The indices k1, j= 1, ... , N, are treated as fixed and given. 
Using the theorem 2 one obtains 

. KJ 
COJ--C 
it- K it• 

K 
Coj- J kC . 1 N 

ml- K ml• ]= ' ... , 

(47) 

(48) 

(49) 
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- e 

nen the values of ci~j are being derived the unknown parameters of the trans­
- -- -on lines s j = ci~j I rxdj, j = I' ... ' N, can be also determined. 

In a similar way the problem of the development of the power-plant system 
be solved. Eliminating ki from (43), (44), which can be written as 

one gets 

and 

where 

1 
k-=[SC)-1 Ci ;_Cl-6,)e k']~ 

J l[J J 

1 

Kj= [B(SC)-6• ..1.)1-6,)63]1-6•, 

(50) 

(51) 

(52) 

(53) 

Then the following development optimization problem can be formulated. 
Find the nonnegative numbers c;: (investments) j= I, ... , N, which minimize the 
maintenance cost 

N 

subject to the constraint 

k63 C = ~ (K)1 -6. [Ci ]6• 
mp ,L_; lP 

j=3 
(54) 

N 

}; cfp~cip 
i=1 

(55) 

The )~hj= I, ... , N, are considered as fixed and given. Using the theorem 2 one obtains 

K. 
Coj =___J_ C 

ip g iv• 
. Kj 

C O] --k63c 
mp- j( mp• 

N 

K=}; Kj, 
j=1 

j=l, ... ,N. (56) 

It should be observed that by elimination of ki and ).i (by (45), (52)) one can 
express Cmv• Cm 1 as a power-type function of C{

1
, Cfv and solve (by theorem 2) 

the optimization problem for the case when ki or ).i are not fixed. It is also possible 
to minimize the global cost Cmv+Cm 1 under assumption C;v+Cu ~ C;, where 
C;=given. 

A number of further generalizations of the development planning is possible. 
First of all it is possible to consider the power distribution and power consumption 

-c_; 
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system. In that case the subsystems SI> ... , SN of Fig. 3 should be treated as loads 
with the internal resistances and transmission resistances equal Ri> j= 1, ... , N, P (t) 
should be treated as available power supply. The direction of the arrows indicating 
the stream of energy should be reversed. The performance functions Fi (Pi) should 
be treated as the production values versus the power consumption. In the present 
model it is necessary to maximize the global production 

N T 

.2; f Fi (Pi) dt 
j=l 0 

N 

subject to the constraints }.; A.i Pi ~P(t) . 
j=l 

Obviously the optimi;z;ation of the present development model, including the 
transmission losses characterized by A.i> and subprocess parameters (ki ) can be 
done along the same lines as in the previous case of the power-generation model. 

In real integrated power systems these two models should be treated in the 
combined form, including the multi-level hierarchic structure, corresponding to 
the regional subcenters. In that last case it is also necessary to take into account 
the voltage transformers, hydro-power stations etc .. It may be also necessary 
to introduce the saturation bounds and use the approximation technique of 
sec. 3, for description of the plots of Fi (Pi) (see Fig. 2a, b) in the required analytic 
form. 

It should be also noted that the model of the integrated power system can be 
readjusted to serve as a model for other systems dealing with generation and 
distribution of resources, such as: integrated natural and industrial gas system, 
integrated water system etc. However, in these models the relation between the 
investment cost cil and the hydraulic resistance of the transmission pipes is much 
more comlicated (compare Ref. [7]). 

Now we can discuss the relation between the macro- and micro-models from the 
point of view of optimum planning strategies. The investment and maintenance 
costs, connected with transmission lines, will be neglected for the sake of simplicity, 
i.e. Cm= C,v, Ci = Civ· 

It should be noticed that when the development process occurs gradually, within 
the planning interval, the aggregated performance can not be treated as constant 
factor. The development process results in the change of aggregated performance 
index, which becomes a function of time, i.e. k (t). 

Since the aggregated characteristic Cm (t)=F [P (t)] has the same analytic form 
as (39) one can write 

Cm (t) = [k (t)]6 - 1 [P (t)] 6
, t E [0, T]. 

The aggregated investment can be approximated by the function analogous 
to (43), i.e. 

Ci(t)= §(P)'[k(t)]-i<, P= max P(t). 
t E [0 , Tj 
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t 

The aggregated investment strategy z(t) creates the capital J z(r) dr, which 
t 0 

·- spent on the construction of new power plants, i.e. J z (r) dr = C; (t). 
0 

Then an optimization problem for the macro-model can be formulated: 
Find the nonnegative investment strategy z (t) = z0 (t), which maximizes the net 

income: T 

I 11 (Z) = J G(z)dt, G(z) = cP(t) - Cm(t)-C;(t), 
0 

t 

C;(t)= .9Pe[k(t)]-;= J z(r) dr, 
0 

subject to the constraint 

G (z) ): 0, t E [0, T], 

where P(t), .9, P'i, i(, !5 are given. 
Eliminating k (t) one gets 

G(z) = cP(t)-[a j z(r) drr [P(t)]6
- j z(r) dr ): O, 

1-o 
jJ= - -- , 

IC 
(/3<0). 

(57) 

Assume that the constraint (57) is notactive. The necessary condition of optimality 
requires that 1,; (z0

) = 0. The variation of I 11 becomes 

di11 (z, A., h) = ! h(r)dr{-f fJ[a j z(r)drr-
1 

X aP(t)6 dt-f dt}. 

Then 

' T\ f3a[P(t)]a l 
I" (z)= J [ t ] 1 -a + 1 dt=O, 

< ajz(r)dr 
0 

and 
!5/3 _tJ_ 0+ {!.::...: 

Z0 (t) = f3 _
1 

( - f3a) 1 -a [P (t)] 1 -/J , t E [0, T] . 

The constraint (57) will be not active if 

where 

G (z0 )=P(t) {c-d [P (t)] 1 ~fJ- 1}>0, t E [0, T] 

1 /J 

d= (1- p-1) ( _ fJ)H a1-fJ 

0 
--1 

i.e. if the price c is set large enough with respect to d [P(t)] 1 -a 

(58) 
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t 

When the optimum macro-strategy of investment C; (t)= J Z 0 (r) dr, is known 
0 

it is possible to derive the best investment strategies at the micro-levels, using 
formulae (51)- (56). At the same time the aggregated performance index k (t) 
can be determined. 

As a result the decentralized two-level optimum development planning follows. 
The global controller derives an investment strategy based on the macro-model 
with the estimated (extrapolated) parameters (a, K). 

The local controllers dealing with micro-models derive the best local development 
strategies and determine the corresponding performance indices. When the estimated 
and derived (global) performances do not coincide the values of macro-parameters 
should be modified. Consequently the decentralized development planning requires 
an exchange of information between the local and global controllers. 

The decentralized development planning can be extended to the multi-sector 
and multi-level models which correspond to the existing administrative organizations. 

It should be also noted that the decentralized approach to the planning and 
development of economic models helps to surmount the most difficult obstacle, 
which is the gap between the macro- and micro-models. In the literature dealing 
with the macro-models of economic growth [2, 8, 9], the annual rise in efficiency 
is believed to be a function of the technical progress, research, innovations and 
inventions etc. These notions remain, however, to be pure abstracts if they are 
seperated from the concreate micro-models and the investment and maintenance 
costs. 
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Sterowanie optymalne zdecentralizowanym modelem 

planowania 

25· 

Przedstawiono zagadnienia sterowania optymalnego modelem planowania rozwoju. Model" 
ten obejmuje m czynnik6w egzogenicznych i n czynnik6w endogenicznych. Ich intensywnosci s<~, 
zwi<tZane ukladem liniowych r6wnan r6zniczkowych. Makromodel uzyskuje si~ w wyniku agregacji 
mikromodeli. Optymalnq, strategi~ rozwoju mozna realizowac w postaci zdecentralizowanej z wy­
mianq, informacji mi~dzy globalnym (makro) a lokalnymi (mikro) regulatorami. Jako typowy 
przyk!ad rozpatrzono zdecentralizowane planowanie rozwoju zintegrowanego systemu energetycz­
nego. Strategia rozwoju optymalnego polega na takim rozdziale inwestycji, kt6ry minimalizuje. 

globalne koszty utrzymania. 

OnTHMaJihHOe ynpaBJienue Mo)l,eJihiO )l,e~enTpaJIH3oBanuoro 

IIJiaHnpoBaHHH pa3BHTIIH 

B CTaTbe npep,CTaBJieHO OTITIIMaJihHOe ynpaBJieHJ.Ie MO,D;eJihlO p;en;eHTpaJili30BaliHOf0 TIJiaHII-· 
poBaHIIll pa3Bll'TJ.Il!. Mo,n;enh co,n;ep)KJH m 3r3oreHHhiX u n 3H,n;oreHHhiX nepeMeHHhiX, IIHTeHCIIB­
HOCTH KOTOpblX OIIHCbiBaiOTCl! CHCTeMOH JIHHeHHbiX p;mp<jlepeHUHaJihHbiX ypaBHeHliH. MaKpO-· 
MO,D;eJih TIOJI)"leHa TIYTbeM CHHTe3a MliKpO-MO,D;eJieB. 0nTHMaJibHall CTpaTeflill pa3BIITHll MO)l{eT 
6biTh peaJIH30BaHa B ,n;en;eHTpaJIH3HpOBaHHOH <jlopMe C o6MeHOM J.IH<j!OpMaUHH Me)l{;D;Y fJI06aJih­
HbiMli (MaKTpo-) li noKaJihHhiMH (MHKPO-) perymnopaMH. B Ka'l.eCTBe xapaKTepHoro nprrMepa. 
paCCMOTpeHO p;en;eHTpaJIH30BaHHOe TIJiaHHpOBaHHe pa3BHTHll CHHTerprrpoBaHHOH 3HepreTH'ieCKOK 
CHCTeMbi. 0nTHMaJibHall CTpaTefHll pa3BHTHl! 3aKJIIO'l.aeTCl! B pacrrpe;n;eneHHH KaiTHTaJIOBJIO)l{eHW 

C n;eJihlO MHHliMH3lipOBaHlill o6IUHX paCXO)J;OB. 
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