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In the present paper questions connected with the formulation of problems of 
finding optimum dynamic spatial structures of information systems are discussed 
in the form of integer programming problems. Possibilities of linearization of a non­
linear problem are indicated and the computational algorithm ARO for reduction 
of the original set of linear constraints is given. 

1. Introduction 

We shall call an information system (SI) [1], a complex of technical equipment 
together with connecting lines and operating personnel designed for the purposes. 
of receiving, storing, processing, transmitting, diffusion and delivery of information. 

Radio-television broadcasting systems, postal and telecommunicational systems,. 
systems of elaboration and diffusion of scientific and technical information, systems. 
of computer centers, etc. may be regarded as examples of the SI. 

The spatial structure of systems of this type is, as a rule, clearly determined,. 
that is the allocation of devices and links between them are given. 

We shall introduce a certain classification of spatial structures of the SI. 

We shall call a spatial structure static if the allocation of its stations and links: 
between them do not change within the time interval under consideration. 

If we consider a developing information system in which, for example, new 
stations and links are built, then we say that its spatial structure is dynamic. 

Among all dynamic structures we distinguish those that are subject to rapid 
changes (reorganization, displacement) due to changes in the environment from which 
information is collected or to which information is delivered. These we shall calf 
nonstationary spatial structures. 

Information systems of nonstationary spatial structures will be the subject of 
the present paper. Radar detection system the spatial structure of which should 
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be adjusted to rapid changes of a site and a shape of a sounded area will serve as 
an example. 

In the recent ten years much attention has been given to problems connected 
with the synthesis of optimal static spatial structures of the SI. Different aspects 
of these problems with reference to communication systems and particularly to 
telephony systems have been considered in [2- 6]. In [7] the problem of finding 
a cost-optimal number of links between the fixed nodes of a telephony network 
in presence of some reliability requirements has been formulated as an integer 
programming problems (with a linear goal function and linear constraints). Reference 
[8] is a trial of a comprehensive study of a question of complex computer systems 
synthesis taking into account their spatial structure. In [9] and [10] a problem of 
optimum locations of radar stations has been presented. In the former, the mini­
mization of the highest probability of not detecting a space object has been taken 
as a criterion and an algorithm based on successive approximations has been applied 
to obtain a solution. In the latter, the problem has been reduced to a linear integer 
programming problem and one of the Gomory's algorithms has been used for its 
solution. 

Much less attention has been given so far to problems concerned with dynamic 
structures. In this area reference [11] can be mentioned, in which dynamic programm­
ing methods are used in optimum planning of developing power supply networks. 
In [12] a problem of optimum planning of nonstationary spatial structure of a radar 
system has been formulated in outline. Generally speaking, the problem has been 
brought to a nonlinear integer programming problem. 

This paper is thought to be a continuation and extention of [12]. In section 2, 
apart from repeating the basic hypotheses of the problem, two criterions of optimal 
selection of spatial structure are presented. Special cases that lead to irregularities 
appearing as terms of "if ... then .. . " type are discussed. In section 3, the ways of 
eliminating the irregularities in a cost function and the ways of linearization of both 
a cost function and constraints are given. An ARO algorithm that allows for the 
computer reduction of a large set of constraints obtained either directly for the 
problem or as a result of problems linearization is described in section 4. In the 
conclusion the possibilities of effective solution of the problem under consideration 
are briefly discussed. 

2. Mathematical model of a detection system with non­
stationary spatial structure 

2.1. General remarks 

Let us consider a sector Q of a threedimensional Euclidean space R 3 (Qc R 3
) 

shape and position (related to predetermined coordinates) of which change in time 
t E [0, T) in the following way: 

Q, = const. for t, _ 1 ~ t<t, r= l,2, ... ,s, 

1 

l 
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r= s 

Q= U Q., t0 = 0, t, = T. 
r = 1 

Assume that for each r a certain partition of Q, is made, that is each Q, is 
<levided into a finite number m, of exhaustive and not intersecting one another 
subregions. One of the possible ways of discretization of Q, has been given in 
II2] . We shall assume for convenience, that the subregions are numbered by a variable 

i El= ur {I, 2, ... ,m}, where l'= {mr- 1 + 1, mr- 1 +2, ... ,m,}, r= I, 2, ... , s, mo = 
r = 1 

= 0, m,= m. 
The detecting devices that are at our disposal, e.g. radars are numbered by 

variable u E U = {1, 2, ... , w }. These devices may be devided into groups according 
to their basic technical parameters, for instance, according to the operating frequency 
·of a transmitter-receiver system. In these cases we shall agree that the group g is 
a subset of numbers U9 ={w9 _ 1 + 1, w9 _ 1 +2, ... , w9 }; g = I, 2, ... , h, w0 =0, wh = w. 

It is assumed in the following, that each group of devices is characterized by 
two parameters: sounding zone, i.e. the set of points belonging to the region Q 
in which an object is detected with the desired probability, and an average velocity 

"V 9 of transporting the devices belonging to the group g. 

The devices can be installed in places that are chosen from a certain prede­
termined, finite set J={I , 2, ... , j, ... , n}. 

Numbers of stations attainable at stage r will be the elements of the set 1'= 
= {n,_ 1 + I, n,_ 1 +2, ... , n,}, r= 1, 2, ... , s, n0 = 0, n, = n. Detection networks designer 
now faces a problem of locating devices at stations (taking account of a limited 
number of devices that cause a necessity for reiterated use of some of them) so as to 
·Optimize a predetermined criterion provided that at each stage r certain require­
ments are satisfied by the network designed. Such a criterion may be, for instance, 
maximum probability of detecting on object within a region Q, minimum number 
of devices necessary for task accomplishment or minimum cost of an enterprise 
provided that appropriate cost coefficients are introduced. 

On the basis of the above assumptions potential possibilities of a network can 
be described by means of two matrices called detection matrix and transportation 
matrix respectively, and defined as follows: 

A9 = ilaf) l, iEl,j EJ, g = I,2, .. . ,h, 

P = lltJ!izl l, jdz E J , jl # jz, g = 1, 2, ... , h, 
where 

(

1, when subregion i is covered by a detection zone of a device belonging 
aL = to group g and placed at station j, 

0, otherwise 

and tJ, h is a transportation time necessary for a device belonging to group g to be 
transported from station j 1 to station j 2 (hypotheses made further on this work 
allow for consideration of cases in which j 1 El'', j 2 E 1'2

, r2 > r1 only), between the 
stations considered. It may also comprise times of assembly and disassembly of 
a device at a station. 
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We shall introduce a decision variable xju defined as follows: 

x. der {I, when a device u is placed at station j 
1
"- 0, otherwise. 

The performance criterion and constraints representing demands for the network 
are in general composite function of the decision variable. 

2.2. Minimum number of devices criterion 

It should be taken into account in formulation of this criterion, that the same 
device may be used several times in the planned structure. Having this in mind 
we can write the minimum number of devices criterion in the form: 

where 

and u= I, 2, ... , w. 

u=w 

}; f" (z11) -+ min, 
11=1 

1
1, when Z 11 =_}; Xiu?ol 

f"(zu)= iEJ 

0, when Z11 = _.2 Xiu=O 
jEJ 

2.3. Minimum cost criterion 

To formulate this criterion we shall introduce two kinds of cost. The first one 
is connected with the preparation of a station for installing a device (e.g. earthworks, 
building operations, etc.) and we shall assume that it takes the following form: 

c-( .)={CilJi+di, when IJi= ..I;xiu?;l 
J 

171 0 when n.=O UEU ' "/] 

where ci> dj-constants, j= I, 2, ... , n. 

A case when some stations are attainable at more than one stage should be 
considered separately. In the system of numbering used here such a station will have 
different numbers at different stages. In this case the cost of preparation of a station 
should be calculated as follows : 

Ce(IJe)={CelJe+de, When IJe= .2 ..2; Xju?;l 
0, when IJe=O, jEJe UEU 

where Je, e= I, 2, ... , v is a set that consists of numbers of the station at all stages 
at which it is attainable and ce, de and constants. 

The second kind of cost is connected with a change of stations by devices and 
it can include cost of transportations well as costs of assembly and disassembly. 
This cost is expressed by the coefficient ci,i,u' U= I, 2, .. . , w; (jl>j

2
) EJ, (ciiu=O). 

As follows from the definition of the decision variable, the cost ci, i, u will be 
calculated whenever xi,u xi,u= I. It can be seen in Fig. I that the above equality 
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does not imply an actual change of stations by the device u. To avoid the incorrect 
cost calculation we shall introduce a function 

where r 1 , r2 = 1, 2, .. . , s, r2 >r1 , j 1 E Jr', jz E J", U= 1, 2, ... , w. 

Fig. I. Non-uniqueness of station change operation 

Taking into account the above remarks we shall obtain an expression for a total 
cost of a network's spatial structure design that is to be minimized 

2.4. Example of constraints 

A detailed discussion of different conditions that any planned network's spatial 
structure should satisfy has been given in [12] . Those conditions have been expressed 
in a form of sets of nonlinear and linear constraints. The former comprise constraints 
that represent some detection demands being imposed at every point of a region Q. 
The following system of inequalities, requiring every subregion Qi of Q to be observed 
by at least ex devices each belonging to a different group, may be a typical example 
of this kind of constraints 

where r= 1, 2, ... , s, i= 1, 2, .. . , m" and QIL is a set composed of ex different numbers 
of groups of devices (ex ~ h) and aL are the elements of the matrix A9 • 

The second group comprises constraints that guarantee fulfillment of station 
change conditions resulting from the matrix P and conditions due to a limited 
number of devices. The inequalities representing station change conditions are 
of the form 
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wherej1 El',j2 EJCr+kl, r=l,2, ... ,s, u=l,2, ... ,w, k=l,2, ... ,Kand K is the 
least natural number that satisfies the inequality 

tr+k-1- tr;): ti,i
2

" 

The inequalities due to a limited number of devices are of the form 

..2; ..2; Xju~ W 9 

jEJ' UE U9 

where r= 1, 2, ... , s, g= I, 2, ... ,h. 
The inequalities 

2 Xju~ I 
jEJr 

where r= I, 2, ... , s, u= I, 2, ... , w, express the evident fact that at ane stage any 
device can be placed at the most at one station. 

Inequalities of the form 

..}; xi"~ fJ], L Xju~ Yi 
UEU9 UEU 

where j E 1', r= l, 2, .. . , s, g= I, 2, ... , h, limiting the number of devices allowed at 
one station at the same time can be included in this group as well. 

3. Some methods of changing a form of programming 
problems 

There exists a number of possibilities of transforming integer and particularly 
binary programming problems into other equivalent problems that can be solved 
by various available algorithms. Some of these methods will be presented in this 
section. It is easy to find that transformation of a problem into a simpler form, for 
instance by means of linearization, leads to a considerable increase in number of 
variables and constraints. 

3.1. Elimination of conditional terms from a cost function 

We shall obtain a linear form of the expression for the minimum number of 
devices criterion, described in section 2.2 by introducing one auxiliary binary 
variable and two constraints for each function f" (z

11
) 

Yu E {0, 1} 

2 Xju- Yu;): 0 
jEJ 

~ ..2; Xju+nyu;30, u=I, 2, ... , w. 
jEJ 
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It can be easily seen that the auxiliary variable Yu = 0 if and only if Zu = 0 and Yu = 1 
if and only if zu?: 1. Making use of this remarks we shall write the minimum number 
of devices criterion in the following linear form 

w 

,2 Yu-+ min. 
u=l 

In the case of the minimum cost criterion, terms connected with preparation 
of a station are of a form similar to one of those appearing in fixed charges problems .. 
The "noncontinuity" appearing in the point Y/i (or rte) = O is removed in the known 
and commonly used way (auxiliary binary variables C, Ce and additional constraints). 
Conditions appearing in the function expressing cost of station change can be 
eliminated by introducing one binary variable Yi, iz subject to two constraints for 
each pair jd2 and each u. 

re - l 

.2 .2 Xju+Yj 1 j 2 u): 1 

r2-l 

.2 .2) Xiu+ (rz - rt - 1)yj 1 j2 u ~ (rz-rt - 1) 
r = r 1 + 1 j e Jr 

where r1,r2 =1,2, ... ,s, r2 >rt. j 1 E fr', j 2 Efrz, u=l,2, ... ,w. 
It can be easily found that 

and 

With the use of the auxiliary variables the minimum cost criterion takes the form 

In this case we have obtained a third order polynomial. 

3.2. Cost function and constraint linearization 

If in the binary programming problem considered above a cost function and 
constraints are of the form of polynomials of order greater than one, then the 
problem can be reduced to a linear one. An equivalent linear problem is obtained 
if each term of form n xj, where e s {1, 2, ... , n} and k is the number of elements 

jE@ 

of e, is replaced by a new binary variable x0 and two constraints 

,2 xi - Xe ~ k - 1,- ,2 xi+kx0 ~0. 
jE€1 jE€1 
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If a form of constraints is simpler, for instance such as that of observation 
-constraints presented in section 2.4 then a somewhat different method of linearization 
-can be applied. Any i-th constraint will be written in a form of a sum of conjunctions 
for the sake of simplicity where one subscript of a decision variable is used 

k=Pi 

.2.: n Xj ?I, i= I, 2, ... ,m. 
k~1 jE@ki 

The above inequality can be replaced by equivalent set of inequalities A x:::;: I, 
where A = /lauflm' x" and x is n-dimensional column vector au = 0 or I, m' :::;: m. 

Let the i-th inequality be regarded as a logical expression which is said to have 
value one when the inequality is satisfied and value zero otherwise and let algebraic 
:sum and product be replaced by disjunction and conjunction respectively. 

The logical expression thus obtained can be then transformed into a canonical 
normal form by multiple application of the following known tautology 

p v(q A r)=(p vq)A (p v r) . 

An expression in a canonical normal form is true if and only if its every elementary 
:alternative is true. This means that every inequality corresponding to each of these 
:alternatives must be satisfied and this leads to the set of constraints mentioned 
above that have a form occuring in the well known covering problems. For example 
inequality 

X1 x2+x1 x3+x2 x3+x2 x5+x3 X4 +x3 x5+x1 X4 x 5+x2 X4 x6 )':I 

1s equivalent to the following set of linear inequalities 

x 1 +x2+x3 )':I 

x2+x3+x4)': 1 

x2+x3+x5 )': 1 

X1 +x3+x4 +x5 )': 1 

X1 +x3+x5+x6 )': 1 

X1 +xz+x4+xs? 1. 

Those inequalities that correspond to alternatives absorbed by other expressions 
in the sense of Boolean algebra have been left out. 
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4. Linear constraints reduction algorithm 

It has been shown in section 2.4 that in order to satisfy the predetermined detec­
tion conditions one nonlinear inequality is required to be satisfied for each subregion 

s 

Q;. The total number of these inequalities is Z m, and takes the values of several 
r = l 

hundred up to several thousand according to a method of discretization. This number 
is increased considerably as a result of transformation of nonlinear into linear 
form of inequalities as shown in the previous section. It often occurs in practice 
that the set of constraints can be considerably reduced by removing those inequalities 
that are absorbed by others. For the purpose of computer reduction of a set of 
inequalities a simple algorithm is proposed below. 

Assume that the inequalities are of the form Ax ;;:::: b with additional assumption 
b; > 0 for i =I, 2, .. . , m. The coefficients in the i-th inequality will be treated as 
binary n-element sequences A; = {a;,, a;

2
, ... , a;J. A set of all sequences corresponding 

to the original system of inequalities will be denoted by A, A={A1 , A 2 , ... , A,J 
We shall introduce the definition of inclusion of sequences belonging to the set A. 

def _ 
A;, s A;

2 
<=>[(A;,~ A;)" A;,= 0] 

where ~ is a symbol of symmetrical difference and 0 is a sequence composed of zeros. 

Example 1. 
A1 = 10010 
A 2 = 11010 

A1 ~A2 = 10010 
11010 

01000 

(A 1 ~A2)AA 1 =01000 
10010 

00000 

We have obtained a sequence composed of zeros, hence A2 included A1 • 

Example 2. 

A1 =11110 
A 2 = 11010 

A 1 ~A2 =11110 
11010 

00100 

(A 1 -'--A2)" A1 =00100 
11110 

00100 

This time we have obtained a sequence that is not a zero sequence, hence A2 

does not include A 1 • 
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I! 

Let us denote As a sequence that is a logical sum of sequences for which }; aii = b,. 
j=l 

that is sequences in which the sum of ones on the left hand side is equal to the value 
of the right hand side. 

As= .U Ai, where 11 ={il t aii = b} . 
~Eir j=l 

The matrix of the reduced set of constraints should contain those elements of A 

only that do not include one another and are not included by As. It is evident that 
all sequences formed by As should belong to the reduced set. We shall denote W 

the matrix of the reduced set and W the corresponding set of sequences. On the 
basis of what has been said above 

Wder{Ai [. 1\ [(A;--'--Ak)AA;]A [(A; --'--As)AA;]#O}. 
l,k El 
i*k 

The reduced set of inequalities is uniquely determined by matrix Wand the two 
will be identified. 

At the stage of analysis of potential possibilities of a detection network when 
b is not known it may be worth-while to reduce rows of matrix A itself. For this 

part of a region for which homogeneous detection conditions (i.e. b; = const 
for i = 1, 2, ... , mr) are assumed the definition of the reduced set W' is the 
following 

W'def {Ai 1.1\ [(A;--'--Ak)I\A;]#O}. 
t,k E[ 

i*k 

An ARO algorithm gives the possibility of obtaining sets W' and W (which is 
equivalents to obtaining the matrice W' and the system Wx?: b). A flow diagram 
of the algorithm is shown in Fig. 2. The algorithm has been programmed in the 
ODRA-LJAPAS language for the computer ODRA 1204. The results of matrix W 
computation are presented in the table. 

A sphere of problems connected with the optimal selection of a nonstationary 
spatial structure of information systems has been presented. 

The basic practical difficulty consists in finding effective algorithms for solution 
of a resulting binary programming problem (0-1). A wide survey of integer 
programming methods and algorithms covering problems discussed here is given 
in [13]. Among algorithms that are not presented in [13] but can be used for our 

purposes we mention pseudo-boolean programming algorithms that are described 
in [14] and [15]. 

Works on programming some variants of pseudo-boolean algorithms for ODRA 
1204 computer are being carried out. 

I 
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( Start 

+ 
Construct sequence A5 as a logical sum of 
sequences for which E aij = b; 

Remove them from A J and insert into w' ·· ; 
and W 

Is there any A; that is not included in NO 
other sequence ? 

fYES 

Insert A1 into W' 

jPemove from A all elements that are included in A; I 

' I Does As include A; ? L NO J 
i I 

IVES 

f 
I Remove A; from A I I 

\ 
VESI 

Is there any element in A? I. 
l NO 

I Print sets w' and W 

! 
( STOP ) 

Insert A i into W I 
I 
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Fig. 2. Flow-diagram of the ARO algorithm 

Size of example m X n Computation time 
Comments I Number of 

example Before reduction I After reduction 
computer ODRA 1204, 

language ODRA-LJAPAS 

1 (225 X 10) I (9 X 10) 10 sec. 
2 (573 X 48) (33 x 48) - 2.5 min. 

ZAM-41 

I 

SAS 
3 (900 x 40) (31 X 40) Smin. 
4 (1064 X 52) (60 X 52) 10min. 

The author wishes to express his thanks to A. Michalski, M. Se., and T. Wie­
wi6rkowski, M. Se., from the Computation Center of Polish Academy of Sciences 
for making available LJAPAS translator and for help in its use. 
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0 zadaniu optymalnego wyboru dynamicznej struktury 
przestrzennej systemow informacyjnych 

Om6wiono problemy zwi(!zane ze sformu!owaniem zagadnienia optymalnego wyboru dynamicz­
nych struktur przestrzennych system6w informacyjnych jako zadania programowania dyskretnego . 
Wskazano na mozliwosci linearyzacji zadania nieliniowego. Podano maszynowy algorytm ARO 
redukcji pocz(!tkowego zbioru ograniczeii liniowych. 

K BODpOCy DOHCKa ODTHMaJibHOU ,ll;UHaMII'ICCKOH CTpyK­

Typbi uucJ>opMal(UOHHbiX CHCTCM 

B CTaTbe paCCMaTpHBaiOTCl! BOIIpOCbi, CBll3aHm.re C IIOHCKOM OIITHMaJibHOH ,!(I'IHaMH"l:eCKOH 
CTpyKTYPbi HH<fJOpMal.I)A'OHHbiX CHCTeM, c<fJopMyJIHpOBaHbi Ha l!3biKe l(eJIO'IHCJieHHOro rrporpaM­
MllpOBaHHl!. IloKa3aHbi B03MOlKHOCTH JIHHeapH3al(HH HeJIIiHe.il:HbiX 3a,!(a'l H IIpHBe,D;eH aJirOpHTM 
APO pe,IzyKI.(Hil KOJIH'lecrBa orpaHH'lemlli B rrcxo,n:Ho.il: 3a,n:aqe, 
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