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Basing on algebraic properties of right invertible operators in arbitrary linear spaces (cf. [1], [2])
a method of solving of equations with scalar coefficients by a decomposition of a rational function
into vulgar fractions is given. This method can be applied to differential and difference equations.

1. Introduction

In [1] the author studied algebraic properties of right invertible operators in
linear spaces. There is introduced calculus of right inventible operators, for instance,
thete is proved Taylor Formula for such operators, also there are given definitions
of indefinite and definite integrals for such operators. Using these properties, an
initial value problem and a mixed boundary value problems for equations with
operators being polynomials in right invertible operators (with arbitrary operator
coefficients) are solved in an explicit form. There are also given applications to
difference equations and hyperbolic equations. This theory is developped in [2].
Indeed, Lectures Notes [2] are prepared for students of the first year of studies
in Department of Cybernetics of J. Dgbrowski Military Technical Academy in
Warszawa,

In the present paper there is described the method of solving of equations with
scalar coefficients. In particular, if we consider the operator D =d/dt in some concrete
spices, we obtain results analogous to Operational Calculus in sense of Heaviside
or Mikusinski. However this method is much more general and can be applied in
cases, where the classical Operational Calculus is not working. The reason is very
simple: we do not use the notion of convolution and Titchmarsh theorem.

2, Algebraic analysis

In this section we shall give fundamental definitions and theorems which will
be usefull in our subsequent considerations. All theorems will be given without
proofs which can be found either in [1] or in [2],




Let X be o linear space over an algebraically closed field 7 of scalurs, In sequel
we can admit that ‘7 is the field € of complexes. By L(X) we denote the set of all
linear (i.e. additive and homogencous) operators A defined on a linear subset /),
of X, called the domain of A, and mapping ¢/, into X. The set Z, ={xe D, : Ax=0}
is called the kernel of an operator A eL (X).

DEFINITION 2.1. An operator D e L(X) is said to be right invertible if there
is an operator R e L (X) such that Nr=X, RX<Dp, and DR=1I, where I denotes
the identity operator.

The set of all right invertible operators belonging to L (X) will be denoted by
R (X). The operator R is called a right inverse of D. The set of all right inverses
of an operator D e R(X) will be denoted by “Kp. Sometimes we will write also:
‘Rp={R,}, - The set R, x={R, x},., where x € X is arbitrarily fixed, is called
an indefinite integral of x. Each of elements R, x, where yel, is called
a primitive element for x, because, by definition, D (R, x)=DR, x=x.

The kernel Zj, of an operator D e R (X) is called the space of constants for
D and every element z € Zj, is called a constant. So we have to differ scalars and
constants.

DEFINITION 2.2. An operator 4 €L (X) is said to be a Volterra operator, if
the operator 7—iA4 is invertible for every scalar .
The set of all Volterra operators belonging to L(X) will be denoted by F(X).

ProposITION 2.1. If DeR(X) and ReWp, then D* R¥=T for k=1;2 ...

DermNiTION 2.3. An operator FelL(X) is said to be an initial operator for
D eR(X) corresponding to an Re R, if

(i) F is a projection onto Zp, i.e. F>=F and FX=7,

(i) FR=0 on X.

THEOREM 2.1. Suppose, that “#,= {R,},r is a family of right inverses of an operator
DeR (X). Then this family induces uniq vely a family “p={F} . of initial
operators for D by means of the identity

Fy=I-R,D on %D, forall yer. 2.1)

It means that F, is an initial operator for D corresponding to R, if and only if
the identity (2.1) holds on the domain of D.

Theorem 2.1 characterizes initial operators by right inverses. In all applications
we are given on the begining an initial operator and we have to determine the
corresponding right inverse. This is possible if we use.

THEOREM 2.2. Suppose, we are given the operators D e R(X) and Fe L(X) such
that F>=F and FX=Z),. Then F is an initial operator for D corresponding to the
right inverse R=R—FR, where R is uniquely determined, independently of the
choice of a right inverse Re )2,

I

Turorem 2.3, (Taylor — Gonteharov Formula), Suppose t(hat D e R(X).
Let Upm{F,}, ., denote the family of initial operators induced by ‘X, and let
{myel be an arbitrary sequence of indices. Then for N=1,2, ... the following
identity holds on the domain of DV:

N=1

I=F,+ 3 R, ..R, F, D'+R, ..R, DY 2.2)
0 dad 1 ‘0

0 k- IN=1

k=1
In particular, if we put F, =F, R, =R (n=0,1,..,N=1),
we obtain a Taylor Formula:

N—-1
I= _E R¥FD*+R¥ DY on Dy (N=1,2,...). (2.3)
k=0
Observe, that a difference of two primitive elements for an xe X is a constant.
Indeed, if z=R, x—R; x, where R,, R; € R, then zeZp. This implies, that the
operator I =Fy R,, where Fy € 7y, R, € Wp, D € R(X) has the following properties:
(i) For arbitrary x € X the element I? x is a constant;
(i) IP=—1If (o, Bel)
(iii) I7+1f=I' (a, B, el
(iv) If y is a primitive element of an xe X, then IP x=F,y—F,y.
These properties permit us to call the operator 1} definite integral of an
operator D e R (X).

=
Theorem 2.3. Suppose that DeR(X), Re Rp,nV(X), Q (D)= > q, D¥, where
4gn=1, go, ..., qy_, are scalars. k=1
If 2=0 is not a root of the polynomial Q (%), then
<.

(i) the operator Q (1, R)= N ¢, R¥"* is invertible;
k=0

(i) @ (D) e R(X) and R=RV[O(L, R)]~*=[Q( R)]~* R¥ € Ry p NV (X);

N-1

(ii)) Zomy=[Q(, R)™! Zp={ze X: z=[Q(, B~ ¥ R*z, z, & Zpare

k=0
arbitrary} and moreover dim Z, =N dim Z,;

(iv) all solutions of the equation
gD)yx=y, yeX, (2.4)
are of the form ok
x=[0(I, R)]™* [R“' v+ Y R z,;], (2.5)

k=0

where zy, ..., 2y, € Z,, are arbitrary.

3. Exponential elements

Dernition 3.1, If 4 s an eigenvalue of an operator DeR(X), then every
eigenvector of £ corresponding 1o the value A is culled an exponential element,
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Trrorim 4.1, Suppose, that De R(X), Re Wy and that the operator /- AR
is invertible for a scalar A, Then

(i) Ais an eigenvalue of the operator D and the eigenspace X, of D corresponding
to A is

Xym{e, 2): e, (D)=(I—=AR)"1z, ze€Z, is arbitrary}.

Hence dim X, =dim Z,,. )

(i) If 270 and dim Z,#0, then there exist the exponential elements e; (2)5£0.

(iii) If # is an initial operator for D corresponding to R then the exponential
elements ¢, (z) are determined by their initial values

€2=(I—/-.R-)u= Ff",; 1- (3,1)

Proof. (i). By definition, (/—/iR) ¢; (z)=(I—2R) (I=JR)~! z=z, where z ¢ L
Hence ¢, =z+/ARe;, which implies De;=Dz+ADRe;=/e,. This proves, that e, (z)
is an eigenvector of D corresponding to the eigenvalue 7, provided ze Z,,. Since,
by our assumption, the operator /— iR is invertible, we conclude that dim X e
=dim Z,,.

(ii}) Suppose, that A0 and dim Z,%0. Since the operator /— AR is invertible,
the equality e, (z)=(I—AR)~! z=0, where z e Z, is arbitrary, holds if and only if
z=0, which contradicts our assumption, that dim Z,#0.

(iii) Definition 3.1 and the point (i) of our theorem together imply, that De, =
=/le;. Hence Fe,=(I—RD)e,=(I-/R) e, (by definition of the operator F). Since
the operator /—AR is invertible, we obtain the required formula (3.1).

CoroLLARY 3.1. Suppose, that D € R(X) and that there exists R € ‘R, NV (X). Then

(i) Every scalar A is an eigenvalue of D, i.e. for every A there exist exponential
elements (not all vanishing if dim Z,+0);

(ii) There exist x € X such that Dx=x, namely x=e, (z), where ze Z,,.

Proof. (i). The assumption, that the operator /—AR is invertible for every
scalar 2 and the point (i) of theorem 4.1 together imply, that every scalar 2 is an eigen-
value of D. Moreover, to every scalar / there correspond the eigenvectors e, (z)=
=(/—AR)~' z, where ze Z, is arbitrary. This and the point (i) of theorem 3.1
together imply that e, (z)#0, provided that z#0. Putting A1=1 we obtain the point
(ii) of our Corollary.

COROLLARY 3.2. Suppose, that DeR(X), ‘Rp={R,},., and that F, denotes the
induced family of initial operators. Then for every R, eV (X), Foe %, a, pel’
(Fp—F) e (z2)=AFz R,e,(z) (3.2)

for all ze Z, and for all scalars /.
Indeed, definition 3.1, corollary 3.1 and property (iv) of definite integrals (in
Section 2) together imply that
AFy Ry e,(2)=Fy R, [/e;(z)]=F,; R, De, (2) =(Fy—F,) e;(z).

') When it does not lead to any misunderstunding, we shall write briefly: ey instead of e (2),
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Suppose now that X is a linear space over the field R of reals, Write: Ve XY@ /X 2.
The field of scalars for the space Y is obviously C. For every y & ¥ we shall write
neEXy b lxg, Xy, X, € X and p*=x, —ix,. We extend the operators De R(X) and
Re ' RynV(X) by means of the equalities:

Dy=Dx +iDx,; Rp=Rx+iRx,. (3.3)
This definition implies that D{=0 if and only if {=z,+iz,, where z,,z, € X
and Dz, =0, Dz,=0, and moreover D e R(Y). Write:

1 )
()= 7 leis (O)+e_i:({*)],

| (3.4)
520 =75, [en(@—e-i:(C¥)],  § {*eZp, 2eC, -
and e, (()=({I—AR)"1 {, as before.
These definitions immediately imply the following equalities:
¢z Fiz)=([+ 4% R)™1(z, +ARz,),
(3.5)

8, (zy—iz)=(I+2*> R)™1 (ARz, +1z,),
where z,,z, e Zy= X. Indeed,
¢z Fiza) =% ez +izy)+e i (2, —iza)]=
=3I =iAR) ™ (2, +iz) + (T +IAR) " (z, —iz,)]=
=3(T+A% R?)~ 12z, + 2iARiz,)=(I+72 R)~1(z, + ARz,).
A similar proof is for the second of the equalities (3.5). In particular, if {={%,
l.e. if z,=0, we have
@)=+ R)™ z; 5,(2)=AR(I+ 2 R¥) 1z, (3.6)
where ze Z,c X.

Assume now that X is not only a linear space over R but, a commutative linear
ring and that the operator D e R (X) satisfies the following equality:

D(xy)=xDy+yDx for all x, yeD,. (3.7)

In this case the space Y=X@iX is a commutative linear ring over the field C,
il we define the multiplication by means of the equality:

, ! 2 s i
M =Xy Xy =Xy Xy i, X5+ X1 X,), Where 5 =x,4ix;, 5'=x|+ix,, X, X,
X}, X, € X. We shall show, that

"4 4+ (C)=‘rﬁ(C) (‘u (C) (3'8)
for all A, u GAC. (wmz iz, 2, 50 2= X,

) Le ¥ Inon diveet sum of X oand (X (ivpve X ),
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Indeed, by definition, we have De, .y, (O = (A |p) ;4 (£). On the other hand,
D e, (8) e, (O]=e, () Dey(O)+e,(8) De, (§) =
s ,U(_‘i (‘:J (',u (i} + ’]“cr'. (‘:) e,u (g) = ()" + “) c; (C) C)JI (C) £

which implies the required formula (3.8).

Hence i
Cutin,=Cu, Cin, - (39)

CoROLLARY 3.3. If X is a commutative linear ring over the field R, D e R(X") and
satisfies the condition (3.7), Re ‘R, NV (X), then the operators ¢, and s, defined
by Formulae (3.4) have the following properties:

(i) Forevery ze Z, and AieR

51 (2)+ei (@)=z.
In particular, if e is a unity of the ring X, then
s2(e)+c; (e)=e for every ZeR. (3.10)
(ii) For every ze Zp and ZeR
Ds; (z2)=1¢;(2), De, (z2)= — 15, (2).

Indeed,

o L
5; (@D +c; (2 :T [eia(@) ey, (Z)]'+Z?£' [ei(z)—e 1z (2)]P =

1

1
= ? [5’12;_ (2)+2e;(2) e~z (5)+C’i iz (2T

“de(2) ey (2)=ep(2)=2.

1
—ef,: (2)+2¢e;;(2)e_ii(z)—e 1,(2)] 2—4_

Putting z=e¢, we obtain formula (3.10). Moreover,
Ds, (z2)=ADR(I+72 R~ z=(I+2* R~ L z=1e,(2).
De, (z)=1% [Dey; (2)+De_ (D))=} id[e(2)—e_in(2)]=— 252 (2).

4. Solutions of equations with scalar coefficients

THEOREM 4.1. Suppose, that X is a linear space over the field C 3, DeR(X),
dim Z,#0, Re"R,nV(X) and that

N n
| 0()= Y au k= 3 -2y, @D
k=0 j=1

where ¢o, ..., gv—1 €C, gy=1, 4;#0, 1;# 7, for j#k, 0OSKM<N, (j, k=1, 2,...,n),
ry+...+r,=N—M. Write;

) As it has been mentioned in Section 2, this ussumption s not essentinl,
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ot =M []t=2,5m), (4.2)
J=l
n NiM
O )=[[=rysyi= N Gurks™ =4, (4.3)
j=1 k=0

(fos oo dy-ni—1 € C, y_y=1). Decompose the rational function [O(1,5)]" into
vulgar fractions. Since Q (1,5)=0 (1, 5), we have

n

QU =[O = Y M du(l=4s5)™" 4.4)

J=1m=1

where d,,, are well-determined scalars (j=1, ..., n; m=1, ..., r;). Then every solution
of the equation

QD)x=y, yel, (4.5)
is of the form
nooor N-1
\ q —m N 2
xX= ,_>_, dy(f—4; R) (R‘ y+ 2 R} zk) (4.6)
J=1 m=1 k=0

where zo, ..., zy-, € Z) are arbitrary and d,, ..., d,,, are scalars determined by the
decomposition (4.4).

Proof. To begin with, we consider the case M=0. Then J(t,5)=0(t, s) and
the point (i) of theorem 2.4, implies that the operator J (I, R) is invertible. Thus the
decomposition (4.4) and the point (ii) of theorem 2.4 together imply that

- N=1
x=[0(L, R)]‘IR“' y+ Z R¥ :k]=
K=o

n ri ;\'=_‘1
= E ‘Z din(I—2; R)™™ [R‘ ry+ l R¥ :,_],
J=1 m=1 k=0
where zg, ..., Zy—1 € Zp are arbitrary.
Suppose now that M <N is a positive integer. According with the notations
(4.3) and (4.4), if we put O (/=0 (1, 1), we can write the operator Q(D) in the
form

Q(D)=Q(D, I)=D" 0 (D, )=D" 0(D)

where the polynomial @ (4) has all roots non equal to zero. Hence the equation
(4.5) can be rewritten in the form

DM J(D) x=y. 4.7)

Put u=( (D) x. Then all solutions of the equation DM w=y are of the form

M
‘ QD) xmu=RM y+ N R 2,

LEL



— _

where 2, ..., £y -1 @ Z;, are arbitrary, Now we apply the first purt of our theorem
to the equation 1
O(D) x=RMy+ ' R*%,.
k= l)

We conclude that
M-1 ] N-M-1

x=[0(L R]™* {R"“ lR"1+ M Rz Z R* Zk}:
k=0

k= 0
where zg, ..., Zy_p—1 € Zp are arbitrary. Write
Zu=EZrssm-n . for m=N—-M, ., N—1. (4.8)

Then, according with formulae (4.4) and (4.8)

=[Q(1,R)1"[RNy+E Rexonss 3 R ]

k=0 k=0
N=M=1 N-—-1

= 2 Z dﬂ" (I ) R)"m [RNy+ v Rl\ :Is Rk EM'+m—N

i=1 m=1 k= 0 m=N-—M

n rj I N-—-M-—1 N—1 ]

k=N—-M

>

n rj ’ N—-
- S"’Z‘ i (I— A, R)”"‘[R”+Z R: 2

Jj=1m=1 k=0

where zg, ..., Zy_1 € Z, are arbitrary. This is, which was to be proved.

We still assume that all assumptions of theorem 4.1 are satisfied. An initial
value problem for the operator @ (D) is to find all solutions of the equation
(4.5) satysfying the initial conditions:

FDk X=Vi, VLE ZD! k=0, 1, aeny IV— ]. . (4.9)

where Fis an initial operator for D corresponding to R. This problem is well-posed
if has a unique solution for every y € X, Yo, ..., ¥x—1 € Zp. By definition, a homo-
geneous well-posed initial value problem has only zero as a solution.

CorOLLARY 4.1. Suppose, that all assumptions of theorem 4.1 are satisfied. Then
the initial value problem (4.5)—(4.9) is well-posed and its unique solution is of the

form. i N-1 &
=3 D dulI-4y R)™ [RN v+ O Y dvim-r—s B J] (4.10)

J=1m=1 k=0 m=0

where the scalars d,, are determined by the decomposition (4.4).
Proof. Formulae (4.3), (4.4) and (4.6) together imply that

N-M JN= N N1

D dv-m-s REx= 3] RV MFx=0( R)x=R"y+ D) Réz

k=0 kw0 kwQ

Acting on both sides of this equality by operators D/( /=0, 1,..., N~1) we

obtain
N=M N=1
2 Un-p-x D' R* x=D! RV y 31D/ REz,  j=0,1,.., N=1.

k=0 r_u

Hence we have the equality

J N=-M J
S‘I qN-M—h ‘DJ_.’"\’+ Z EIN"A“I‘E Rk—f_x=RN—'f "V+Z Dj_k Zk+
k k=41 k=0 ‘
N N—1
+ N Rein=R-iyez+ N Rz, j=01,.,N-1.
k=j+1 k=1

Since FR=0and Fz,=z, for j=0, |, ..., N—1, acting on both sides of this equality
by the operator F and applying the conditions (4.9) we obtain
J J J
Z An+m—p—j Ym= 2 G-k Vi—k= E Gy-y-x FDI™F x=Fz;=z;,
m=0 k=0 k=0
j=0,1, .., N—1,
which was to be proved.

Theorem 4.1 and corollary 4.1 show that it is enough to know all roots of the
polynomial Q (2) to determine all solutions of the equation (4.5) and to solve the
initial value problem (4.5)—(4.9). The polynomial Q (1) is called the characteristic
polynomial of the operator Q (D) and its roots are called characteristic roots
of O (D). Moreover, by the definition of exponential elements

"I
QD) ¢; ()= Zwm(v)— 6 ¥ ¢, ()=Q (1) ¢, (2) (4.11)
R:U
for all A€ C, ze Z,. Since all coefficients of the polynomial Q (A) are scalars, we
conclude that Q (2)e C for ie C.

Formula (4.11) implies that ¢, (z) is an eigenvector of the operator Q (D)
corresponding to the eigenvalue O (). If we put 2=y, where either u=4/; for a j=
w1, ..,1, or u=0 (only in the case M>1), we have Q (1)=0 and Q (D) e, (z)=
= (u)e, (z2)=0 for every ze Z,. Hence e, (z) are solutions of the equation
Q (D) x=0. We shall consider now the case, when all coefficients of the operator
Q (D) are real, i.e. qq, ..., gy—, € R. The results obtained remain true, since ReC,
but may happen that solutions have complex coefficients. Having these solutions
we will try to construct solutions with real coefficients.

If all roots of the characteristic polynomial Q (1) are real, then we do not change
the method of solving of the equation (4.5) and the corresponding homogeneous
equation, because all solutions obtained have real coefficients.

Consider now the case, when the coefficients of the characteristic polynomial
wre complex, It is well-know, that every polynomial with real coefficients has
complex roots pairwise conjugate, We shall apply this property, Examine two cases:




L) TOOTTT ONN CIEPVRETY TR T T TR

(A) The characteristic polynomial @ (4) has 2 imaginary roots: {u and ~{u
(where p#0 is a real). In the same way, as in Section 3, we consider the space Y=
= X@®iX and the operators ¢, and s, defined by Formulae (3.4). Then to two linearly
independent solutions e¢;, ({), ¢, ({¥) in the space Y, where (=z +iz,;, {*=
=z, —iZ3, 21, 25 € Zp in X, there correspond two linearly independent solutions
¢, (z,) and s, (z;) in the space X.

(B) The characteristic polynomnl QO (/) has two complex conju gdte roots:
D=, +ipty, A=y —ips, where p5+p3>0. This case cannot be solved in the space
X over reals without additional assumptions. Namely, assume that X is a commutative
linear ring and that D € R (X) satisfies the condition (3.7). In this case, using formula
(3.9) we conclude that to two linearly independent solutions e, 1, ({), €, -y, (€¥)
of the equation (4.2) in the linear ring Y=X@®i¥X, where {=z, +iz,;, {(*=z, —iz,,
z,, 2, € Zp in X, there correspond two linearly independent solutions in the space X
obtained in the same way, as in the point (A):

2y) ¢, (z1) and e, (2;)5,,(22),

where ¢, and s, are defined by formulae (3.4).
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Obodienne onepanHoONHOrc ICYHC/IEHHs

Vcnospsys anrebpamdeckre CEOCTBA TIPABOCTPOHABIX 0OPATHMBIX ONEPATOPOB B IPOLIBOJIE-
HLIX JHHeliHbIX mpocTpaHcrpancTeax [1, 2] mogaH MeTo/i PelieHus YIPaBIeHHH CO CRalapHBIMK
Ko3dUIHEHTAMH TPHMEHIIOMMIE ICKOMITOZHIHIO PALHOHAIBHOM (yHKOME Ha DJIeMeHTApHLIE
npobu. TIpejcTaBleHHBIT MeTOx MokeT ObLITh HCMONB3OBAH UL CIyYas naddepeHHanbHBIX
W Pa3HOCTHBIX YPABHEHHII.

Uogolnienie rachunku operatorowego .

Wykorzystujac wlasnosci algebraiczne operatoréw prawostronnie odwracalnych w dowolnych
przestrzeniach liniowych [1, 2] podano metode rozwiazywania rownan o wspolezynnikach skalar-
nych przez rozklad pewnej funkcji wymiernej na utamki proste. Przedstawiona metoda moze
by¢ stosowana do réownan rozniczkowych i réznicowych.
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