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The paper deals with the modelling of complex nonlinear and dynamic systems such as economic,,
industrial, ecological, social etc. systems. The model consists of a given number of sectors. Each
sector has a hierarchical structure with decentralized management systems. It produces a given
product and consumes parts of output production of the remaining sectors. The sector input-output
relation has been assumed in the form of a nonlinear dynamic operator. The sector decision centers
optimize the allocation of input resources in such a way that the output production is maximalized.
The supervisory controller optimizes the intersector cooperation links. In the first part of the paper
the general methodology of the model construction and optimization has been discussed. The
second part containes an analysis of specific problems connected with modelling the social, environ-
ment, education and research and development systems.

1. Introduction

There has recently been a considerable increase of interest in modelling of
complex production, economic, ecological, social etc. systems, which shall be called
cnvironment systems. In particular the econometric macromodel building on a
country wide basis has been growing rapidly in many countries (sce [1—4]). Some
of these models (as for example the model being developed in Project LINK [1])
hitve over 1000 equations relating to different sector of economics and regions of
the world. However, many of these models are not accurate enough and they dont
take into account some important real system phenomena. Among them one should
mention:

(i) the nonlinear and dynamic input-output processes of the individual produc-
flon plants;

(1i) the organizational structure and decisions taken at different management
and control levels;

(ii1) the regional structure of production, supply, demand and local goals and
devisions;

(lv) random phenomena and disturbances,
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An attempt to increase the model accuracy by taking into necount more variables
and equations complicates the model analysis ahd model understanding. Besides,
the econometric identification of the model parameters becomes more complicated.

An essential difficulty arise when one wants to take into account the decisions
taken by management centers. For the majority of the existing models which are
descriptive in character rather the decisions should be treated as random phenomena
unless they are known beforehand. This is not, however, the case for a longterm
planning. Then, if we want to have a normative model, which could be used for
effective planning purposes, it is necessary to build into the model the management
and control structure. It is also necessary to formulate the system welfare or goal
functional which depends on the decision and control actions. Solving the correspond-
ing optimization problems, i.e. finding the decisions which maximize the welfare
functional one can also determine the effect of nonoptimum decisions on the system
output and the resulting decrease of welfare functional.

The present paper pursues that last approach. It is assumed that the model
consists of n given sectors. Each sector produces a given product and consumes
parts of output production of the remaining sectors. The sector input-output relation
has been assumed in the form of a nonlinear, dynamic operator. Each sector consist
of many independent production units organized in the form of a multilevel hierarchic
structure and controlled by decentralized system of decision centers (controllers).

The econometric identification (estimation) of model parameters is carried out
at the lowest level of the organizational structure only and at each higher level
the aggregated production function is being determined in a purely analytic form
by a process of aggregation. The sector controllers are responsible for the optimum
allocation of input resources which should ensure the maximum sector output.

A higher level (central or supervisory) controller tries to maximize the goal
functional by determining the best sectors level of activity and intersector exchange
(cooperation links). That requires in turn the optimization of the investment policy.
The optimum investment policy has been implemented in the decentralized form.
‘The central controller allocates the investment resources among the sectors, which
in turn allocate them among individual production units in such a manner that the
resulting global output is maximum. -

The model can be constructed in such a form that the regional structure of
the country can be incorporated into the model structure.

The motivation for investigation of the model under consideration is to improve
the large scale and long range planning and decision making. For that purpose the
optimum strategies have been derived in the explicite form when possible and the
effect of the nonoptimum decosions on the system performance has been investigated.

The paper consists of two parts and conclusions. In the first part the general
methodology (based mainly on the previous author’s publications [5—15]) of the
model construction and optimization has been described. The second part containes
an analysis of specific problems in the social, and environmental sector including,
in particular, the optimization of the model composed of education, research and
deyelopment, and economy,
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2. General methodology
2.1. Production operator

The production plant can be treated as an input-output device which for the
given input variables x,, ..., x,, (such as raw materials, manpower, energy, financial
funds ete.) produces the output

z=A (X1, ooy Xp)-

A is usually a nonlinear dynamic operator acting from the space X of input
functions into the space Z of the output functions, i.e. A: X—Z. Neglecting the
plant dynamics the typical input-output relation for a single input assumes the g
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form, shown in Fig. 1. An approximation of z=4 (x), sufficient for practical

problems, can be written "
z=Kp [x],

where K — positive constant and

rp[x]={ 0 for xe [0, x],

[x=x]* for x>x,
o, & — given nonnegative constants.

It should be observed that for «=0 the function @ [x] assumes the rectangular
form typical for some production processes where the input increase beyond the
threshold value x yields the full production capacity. It should be also mentioned
that the linear approximation of production function (based on the past observed
values of x, z;, and shown in Fig. 1 by the line Oa) which is typical for many
econometric models will give considerable errors when the production resources
change,

Besides the nonlinearities the dynamic effects, caused by inertia and delays in
production processes, should be introduced,

The main idea is to use as 4 the product of ¢ with a linear Volterra operator

I

2O0=L(p= [kt p(r)dr, (1)
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where k (1, 7) is a given function which satisfies the causality gondition k (1, ©)y=0
for t<rt. : .
When k (t, ©)=k (t—1), the production plant is stationary in time, Stationarity
means that the system does not change in time. The systems which develop in time
are nonstationary. ‘
In the case when the production has been originated at 7=0 instead of (1) one
can write

z(f):_f k(t, 7) 9 (7) dr. (1a)

For a pure delay process one can write
k(t, )=K@®)o(t—T-1),
where & (f) — Dirac’s function, and obtain
z2(N=K() p(t—=T).

In the economic literature it is customary to denote the present values of z ()
by z, and express it by the past discreate values of ¢ denoted by ;.
In that case one can write

k(0= _Y_j K, ,6(—iT—1),
i=—wm

and obtain instead of (1)
T
g= 3 Kot @
e

For the sake of uniformity in future calculations we shall use mainly the

continuous representation (1) of A. .
Now we can write down the general form of the production operator (P.O.)

<=t [ o], ©)
J=1

where
0 for x; e [0, x;]
o]

[x,—x]v for x;€[x; X1,

where x;, ¥; — given positive numbers called the threshold and plant capacity;

a; — given positive numbers. e .
It should be observed that for x;=0, j=1, ..., m, and noninertial production

process the production operator assumes the form of well known Cobb-Douglas

production function. . .
The problem of identification of P.O. parameters can be splitted into two

n

independent stages: the estimation of parameters of [] v (x)), for the steady-state
Jul

- T N TR TS TR AT ———— T

form of plant operation, and the identification of transient function k (¢, 7) of
linear operator L. Since the both problems have been discussed extensively in the
literature (see in particular [17]) we shall not discuss it here.

In the case when the nonlinear (steady state) production function is given in
the graphical form if can be approximated, by a method described in Ref. [15],
by the ¢ (x) function with an accuracy sufficient for practical problems.

2.2, Optimization and aggregation

Consider a production system shown in Fig. 2 which consists of » plants

(P, i=1, ..., n) utilizing m input resources, X, ..., X,,, such as raw material, energy,
manpower etc.
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Let the production operators for P; be given in the form (3), ie.

r m
()= [ ki, ) [ [ o Lo @1 dr, i=1, o, @
0 j=1

Assume also that the global amounts of resources X7, ..., X, alloted to the
system be given and
T

}' x; (D digX;,  j=1,..,m, (5)

0

ba-

where x;; (r) — intensity of allocation of j-th resource to the i-th system; 7 — given
time interval, and

n
Xj=X,—T 3 x>0, j=1,..,m. (6)

f=1

The problem of optimum allocation of resources can be formulated as follows.
Find the nonnegative strategies x,; ()=%, (1), te€[0,T), i=1,..,n, j=1,..,m,
such that the integrated output production

" T
t!*{x)-‘); J-‘.(l} wo(£) dr, )




where w, (1) are given nonnegative weight functions, attalng in admissible region £2
its maximum value, i.e.

max @ (x)=P(£).

xen

The admissible region can be specified as follows

n T
Q={xu(r): 2 fx,-_f(t)drg)(,-, x,;(1)=0
i=0 0
j=1,m, i=1,.,n, tell, T]}. (8)
Assume also that
Z a;<1. (9)

-

Ji=

In order to solve the present problem introduce new variables
Xy (=% ()= %5 (1),

and change the integration order in (6), (4). Then

i Hy J= 1 P,

n T
o=} [ 1@ ol (@) dr, (10)

i=1 0

where

ni

ﬂh':- .
gyf(r)=”.\‘j‘,.’aj(r), i=1,..n,
J=i

n

e
q=1—‘2‘ o .
i=1

Applying to (8) the Holder inequality for integrals and sums (for details see

Ref, [10]) one gets "
o (< Fe | [ X7, (11)
i=1
where
F=) [fi@dr, (12)
) \ Ve
S@={ [ m k6 D (13

The equality sign in (11) holds if and only if

Xy ()= %=1 (2) F’ =1, 0, Jmly 0, m.

Then the result obtained can be formulated in the form of
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Tororem 1, Under the assumptions (4)—(9) the unique allocation strategy

A’J
X () =%, )=/ () 7 T®ime Tl B Pl (14)
exists, such that
max @ (x)=@ (H=F [ [ o, [X)]. (15)
xXENR Jj=1

where

n
for X12 Z a'.lj:

i=1

lXj = Z"; -E"ij}xj

0 for XJ-<2__\‘U,

i=1

?; [X;]=

When it is desirable to take into account the influence of x;, () acting in the past,
i.e, for 7<0 (which are not optimized in the present time interval), one should
replace (4) by

a)= [k ] [ @, [x,;(0)] dr, ")

—w J=1

und consequently get instead of (12)

n T
F=F'=§ _Jﬁ(r) dr.

A number of further extensions of Theorem 1 is possible. First of all consider
the situation when a part of production outputs z; starting with i=N+1, ..., n,
should reach at the given time intervals =7, 0<T,<T, the given values y,, i.c.

Zi (7"{):}‘!: 3

Such a situation happens when the given specified projects costing y; each should
be realized in the given time t=T,.

i=N+1, ..., n (16)

The present problem can be formulated as follows:
Find the strategy x;,=%,;, i=1,..,n, j=1, ..., m, such that the functional

N T
B (x)= 2 [ 2.0y wi(2) dt (17)

t=1 0

aftains maximum value subject to the assumptions and conditions (4)—(6), (8), (9)
nnd (16).

A possible way of solving the present problem is to inco rporate the condition
(16) into (17), i.e.

@ (x) = B () o 3 H
(x) I-%lil( )
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and assume that
w, for O0<t<T,

wi(t)=
) { 0 for t>T,. i=N+1,..,n

The unknown numbers w; should be determined by using the equations (16).
Using that approach (for details see Ref. [13]) one can use also the already obtained
results specified by Theorem 1. In order to ensure the realization of the set of projects
(16) one have to assume that a sufficient amount of resources exist. That condition

specifies a class of physically realizable problems.
Now the following theorem can be formulated.

THEOREM 2. Assume the problem (4)—(6), (8), (9) and (16) to be physically realizable.
Then the unique allocation strategy

X
f[ (T) -F +'_\‘i.f' :=l! -.-,N,
X5 (1) =% (0)= ' ¥ (17
w; ki (T3, T) *1}{'}”3’:‘:, i=N+1, ...,n,

where f; (T)={f wy (1) ki (2, 7) dr}”q, F= Z fﬂ- (t)dt
) i=1 0

w,()=w; (=T, i=N+1,..,n, (18)

exists, such that

max #(9=30=F [ [ [1,- 3 [~ X
i=1 i=1

XENR i=N+1
The numbers w;, i=N+1, ..., n, can be derived from the followin g set of n—Neq.

"

b!' w:lﬂ_. X (:ﬂj W_,-)”'I=F, i=N+1: s 11, (19)
J=N+1
where
e o, B ] ](H)_}
a;=| k(T;,7)dr, by=|—" X :
’ 6] o ) [ l:yt =1 i

The physical realizability coincides here with the condition of positive solution
of (19).
Indeed solving the equation

T m
2(T)= [ k(T ®) [ [ i@ =] de=

Ti

g : 1+ 3 ki)™
= [ @ [\557) demp i=NtL

Imi
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where

N T ] T
" ol ) . . lfa
F= 24 J'f, (1) dr+ ‘Z {w, ] k(T ) a’rl
fm1 0 I=N+1 0 [
one gets (19).

Anolhc?' possible extension of the problem being discussed concerns the situation
when the integrated output of certain production plants should reach the given
values, i.e.

Ti
[ 2@ dr=y,, i=N+1, ..,n. (20)
0

Obviously, the present problem differs, as compared to (4)—(6), (8), (9) and (16)
by the condition (20). Then in order to find the optimum allocation strategy we
can use the Theorem 1. However, the weight functions (18) should be replaced by

0 w, for 0<t<T;
H'..l )=
0 for t,>7;, i=N+1,..,n

As a result the optimum strategy becomes

X
. jl(r)7+$‘ij? i=1, ...,N, j=‘|,...,n’l,
X (M=% (7)= Ty X, (21)
wi [ ki (Ty, ) dr 7%y, i=N+1.,m,
0
and w; can be determined by solving the egs.

Tit m

ol Xj 2.“ xXj
k, (t g — - (T = i
6’6{ ;(,T)Q[H, 7 _DJ ki (T, ©) dr] drdi=y, i=N+1,..,n (22)

where
- L1E £ 1a
F= D' [fi@dr+ ) {] w, [ ki(t,7) all " (23)
=1 0 i=N+1 6 -r ’

.Il‘ is interesting to observe that the aggregated production function, under
optimum - control, for the three problems formulated above can be written in
the form

z=0®=F[ [ o,1x]], (24)

where

0, [X)] = lXJ‘E am] for X,

I=1

W
L~
=
I
s

0 for a"'[(XJ.
and wy (1) for fsN+ 1y, n are given or determined by the eqs, (19) or (22),




1t should be also noted that the subsystem of aggregated processes with tPlle
production function of the general form given by (24) can be aggregated again
within a class of p subsystems described by

z=F [ [oulXi)s i=1sep.
=1
In other words one have to find a strategy X;;=X;; such that the aggregated
output

Zi= Z[ (25)

D

-

attains the maximum value subject to the constraints

r
N Hae¥r el (26)
& i
¥l a0, 27)

Using the Halder inequality for sums it is possible to show that under the
optimum strategy

F- # .
Xy=F X +X], j=l..m  i=l..p, (28)
where
v p
a
F=YF, X;=) Xy &2X))
i=1 =1

The aggregated function becomes

m

Zh =t ” @ [X;], (29)
j=1 :
where "
[X;-X,]  for X*2X]

"
B for X' <X%, j=1,.,m.

Then the optimization and aggregation process can be repeted yielding at each
stage the production function of the same analytic form (24), (29) but generally
with the increased values for F and X ;. It should be also observed that the greater
F and the smaller X ; are the greater is the output of the resulting aggregated sy‘stem.

Using the optimization formulae (14), (28) it is possible to implement the optimum
allocation of resources using a decentralized system of decision centers. At the low?r
level the controlling center C (see Fig. 2) allocates the input resources, in a dynar?uc
manner, using the strategy described by (14). A higher level controller wh!ch
allocates the resources among the group of subsystems uses the formulae (28) which
are static in the sense that they allocate the lumped amount of resources for the
whole planning interval [0, 7']. It should be observed that using the present nggregns

g I

tion approuch one can determine the macromodel for a complicated sector of the
economy (which consists of a hierarchic organization of decision centers and
production plants) starting with simple micromodels of production units. This
approach is also usefull in the case of systems composed of independent regions.
which are organized in the form of an administrative spatial structure.

A number of extensions of the results obtained in the present section is possible.
First of all the transportation losses, which take place during the allocation of
resources, can be taken into account. For that purpose one should replace the
constraint (26) by

»
3 Xy b <Xt ol s, (6)
i=1

where Z;;21 — given numbers.

As a result of losses the system performance index F decreases.

It is also possible to synthesize the best organizational structure of multilevel
control which minimizes the global losses [15].

Another extension concerns the aggregation of variables at the higher level
decision centers and a corresponding expansion of variables at the lower decision
levels. Suppose that at the given level the aggragated production function of the form

i

i=1
is given. Generally speaking, the resources X; can be splitted into different groups
of activity at the lower decision levels. For example, the total budget of an institution
can be subdivided into the main enance cost and investments, salaries etc., which
iire important for the operation of individual departments but may not be of
immediate interest at the global analysis.
Let us formulate the optimization of expansion of variables problem. It consists
in replacing a choosen factor, say X% by the aggregate of M variables
M
AT B e
v

i=1
where fi; arc positive given numbers such that

M
N pi=1, f>0, i=1,... M,

i=1

In such a way that Z, (X,,) attains maximum value in the set

M
Q={X,: 2 SR E X0l el M}.
w1l

Timorem 3. An optimum expansion of variables strategy
X“-l?".ﬂ] x" I=1 . M| (30)
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M i M L
ph F"[VI Xy I [ X% = ¥ [ [ Ry [TX;J'
=l Jml

Xy &8 l=1 Jm 1
S Jy

F*=F {'I_‘Yl ﬁ?vﬁi}lm'

Proof. Indeed, maximizing the function

M- 1 anBar M1
' \ 1 ay it
Zv=[Xv_ v Xvi] /\ Xvi

i=1

«xists, such that

where

i=1
by solving the eqs.
AT SO =0, T=l, .0 M=1,

.one obtain
X\'E=Xﬂ=ﬁj XV, i=1,....,M,

© Since
M

Zkd=xw [ | gt

i=1

it is necessary to change F to F*, when replacing X™ by Z.(X5)
It is also possible to extend theorem 3 to the case of non-zero thresholds.

2.3. Optimization of cooperation links

Consider the system of n cooperating sectors shown in Fig. 3. Each sector,
say j, consumes a part X;; of the remaining sectors production (i#/) and produces

the output Xj;.
44 14 #X,,
|

by

Assume that the thresholds in the aggregated production functions (29} can be
neglected. Then the set of production functions, which describe the model can be

written as " )
”X,]““sz“, j=1,.,n, (31)

l=1

L}
where: F = positive numbers, ¢, = 1= N 2,50, «,,=positive numbers; o, = 1,
ll;,-ll --'vn- b
The cooperation between the sector i and j can be specified by the coefficients

ey=Xyl Xy, Ji=1,..,n.

The equations (31) can be written (by taking logarithms from both sides) as

n n
E a In X, = —In{Fjr ” c;;u}=1<j, j=1, . n. (32)

=1 i=1
Assuming that the system is regular in the sense that
D=Det |, ;| #0

it is possible to see that for each admissible cooperation strategy c;; € 2, where

n
“’?={CU: Z clj""'('- I: C;j?O, f9j=19 peey n}v
o |

i

the nonnegative solution X;; (c,;), j=1, ..., n, of (32) exists.
The global net output (or income) generated in the optimization time 7
i n
I((’):Z,1 W, )7“-(1— N c,-j)

dd
i=1 F=-1
i

N

Ak

J L
d

i5 u continuous function of ¢;;. According to the well known Weierstras theorem
[(¢) attains its extremum points in the compact set Q.
Then the following theorem can be formulated [53].

THeorem 4. In the regular cooperative system with the aggregated production
functions (31) there exist:

(1) the unique nonnegative production X, i=I,..,n for each admissible
dtrategy ¢, € 2, i,j=1,..,n;

(ii) the optimum cooperation strategy ¢;;=¢,€Q, i,j=1, ..., n, such that f(c)
iitains maximum value at &, i,j=1, ..., n.

The solution of concreate cooperation problems can be achieved for simpler
ouses in the explicit form. Consider, as an example, the two sector system shown
in Fig. 4. The eclectric power generating sector produces £ units of electric power
and uses ¢F units of coal. The production function of that sector (given usually
in the graphic form) can be approximated by a function of the form

E=K (cF), 0<d<l, (33)

Where K, d=given positive constants.

The full energy £ production is being used at the coal mines for driving excava-
tlon and transportation systems, Assuming thut DC electric motors are used mainly
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for that purpose one can write the relation between the output # (l.e, the amount
of transported coal) and the electric energy used for that purpose in the form [5]

F=K, EY3, (34)
where K, = positive constant.

& net output

| F(1-0)
ir |
electric ‘
power generafing of
plants
Fig. 4

It can be checked very easily that the net output
He)=F(1—c)= K"K ¢* (1—c)

2 a

“Egp BT p

attains the maximum value for

and

The resulting production levels become

§\% : d\*®
F=[K}* K] (u) , E=K!kZ ( ) .
2 2
When ¢ attains the boundary ¢=0 or ¢=1 the net output 7 (¢)=0. It is interesting
~ to observe that the net income can be increased by an increase of the parameters
K. K,, 6 only and not by a change in the level of activity of both sectors (for
example, by loading more the existing motors and electric power generators). It
means that a technological and technical reconstruction and investment improving
the sector parameters can increase the net income only.

The explicite form of the optimum cooperation strategy can be also obtained
for a more complicated situation when each sector of the system shown in Fig. 3
cooperates with its neariest neighbour only. In that case the sector production
functions (31) can be written in the following form:

-1 N Xy g -1 =10 Xty g In Xy g pia=

= =In {F{ efylf et} = Ky, im0, m

where the values of indices equal 0 or n41 coincide with # or | respectively, For
example

Xoo= X Cr0=Cqu
Solving for X, one gets

"
,Y”:_-I l {:K\. M=y c:‘vﬂw}_ﬁiv’ j= 1, - n (36)

y=1,v o TR
y= i

where
ﬁl\'=(_l)i+VDiw”Da V:le ey 1y

D, is the determinante obtained by replacing the column {K,}} with the i-th column
of D, D;,=subdeterminante obtained by expansion of D; along the elements of the
i-th column of D,.

Suppose the system is closed so

¢ -1+ e=1, j=lL..,n (37)

and one wants to maximize the output X;;. The corresponding optimum strategies
&P, ¢, can be determined by optimizing each factor of (36) of the form
[y graJBnwatRa=d gy o JEniwefgn,
subject to (37).
That yields the following strategies [9]

1
Ei-a= . (3%)
S d=1 1+:’1-j
O
Chit = Ty j=1,...n, (39)
where
PYy=D" [(=1)* ey o1 Dy g—i+ (D o 01 Dy paal-

It is possible to extend the results obtained to the case of opened systems by
nssuming that a part of output production goes out of the system. Assume, as an
example, that X, ; is being sold on the market (instead of being consumed by sector
&) with the income proportional to X, ¢, ;- That value should be maximized.
However in order to use egs. (38), (39) one can suppres the variable X, ; in sector S,
production function by assuming =, ;=0. In that case

Y= — %y n—1 Dn, n— I/D (40)

The optimization of cooperation in the more complicated cases, including the
case of nonzero thresholds in production functions, can be solved numerically
using the iterative technique of nonlinear programming, such as the gradient projec-
tion method, It should be also observed that in the general case of nonzero threshold
in production functions the nonzero activity in the model under consideration
requires o number of assumptions regarding the positive solutions of Xy, i=1, ..., n.




2.4, Optimization of Investment policy

Comparing the optimal strategy of allocation of resources and cooperation with
the strategy used in the real systems one might find out that they generally do no
coincide. As a result the losses in the performance follow.

As an example consider the loss of output performance in the sector with n
optimized processes (7) and the production operators

z ()= f k. (1, T)H[x,j(r) Fdr, i=1,..n.

ji=1

Assume £;;()>0, r€[0,T], i=1,..,n, j=1,...,m

Then n -
@ (x)= 44 w, (1) f K: (1, 7) ” [#, (D] de,
i=1 ji=1
where
K} (1, D)=k, (¢, r)”[x"(T)J (41)
;@]
Then the system behaves as if the performance under F has changed to the value
" T
Z‘ lf wi (1) K (8, 0) dt} dr<F.
i=10

A similar expressions can be derived for the decrease of performance following
nonoptimum cooperation strategy.

Obviously one of the main obstacles in implementation of the optimum strategy
is the limited plants capacity with respect to the input variables. For example an
increase of employment or raw materials consumption may not be realized because
there is no space for additional manpower or machines and tools. It is well known
that by an investment process the plant capacity can be increased. The investment
can also increase the output without changing the input capacity by improving
the production technology, automation modernization and new production tools,
better management etc. This requires utilization of products made by different
sectors of economy, mainly in the proceeding planning interval. In the model of
investment optimization we shall assume that M products Y7, ..., ¥3; were accumulat-
ed in previous planning intervals and can be therefore treated as exogeneous variables.
It is also assumed that the investment process is nonlinear, dynamic and as a result
the sector production operator assumes the form

M

z(0)= j Ki(t, 1) ]7 pilxi: 1] [ 0w @1 dr

Jj=1 v=1
where
[."'i\' (T) e yiv]ﬂv for Yiv (T)? :]_r’“;
oy (D))=
0 for yi (T) <y

, = given thresholds of investment processes.
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The optimum investment policy which maximizes the integrated output (7)
under the additional conditions:

{; b &
Z f v di<Y,, v=1,., M (42y
=10
Y @®=0, i=1,..,nv=1,., M (43),

can be derived using the formulae (14)

Y,
J'i\'=.i}vv=ﬁ (T)_]?‘_I[__.Yiv'r f= ls ey 11, V= ], LR M' (44)'

The aggregated output production becames

F=d (% 7)= F“”%[H”% 141, (45)
j=1
where

0 for Y,< Vi

By a number of optimization and aggregation, which correspond to the structure
of decision system, we arrive to the n sectors model of Fig. 3, described by the
production function

n
J=1
where
M

[] o172

v=1

1/a;

Fj=F

It is also possible (using methods described in Sec. 2.3) to find the optimum
infer sector investment strategy. For example if it is necessary to optimize the i-th

sector output
X [ ] rpv(m]

v=1

subject to the constraints
n
2 Yi&Y,, Y20, vml, .. M, i=],..,n»n
(™

one can use the nonlinenr programming technique. When the optimum values of
Yigw Yo Al gm vl o M, have been determined the corresponding values
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of investment resources at ench level of optimization oun be determined in a backwurd

manner, In other words, a decentralized process of investment decisions follows,

where the higher-level decision centers allocate the resources [or the lower-level .
(controlled) investment processes.

3. Specific problems of sector analysis

3.1. Society and welfare

Society is the main sector of the complex environment model under consideration.
All the remaining sectors perform services or produce goods which are consumed
by social system. Besides productive investments, which increase the production \
rate of system development, the investments in the social sector should be taken
into account. They should increase the economic, social and cultural standard of
living by building new houses, {transportation, telecommunication, cultural
institutions, sport facilities etc. Among social services one should mention: medical
and social care, education, recreation, entertainment etc.

The output of the social system in the form of labor or manpower serves as
one of the inputs to all the remaining sectors of the model. However, the maximum
output is not the main goal of the social sector performance. A welfare function
of that sector should be constructed in such a way that it should include the
satisfactions of social groups in different geographical regions connected with
realization of demands for consumption goods, capital investments etc.

Keeping that in mind an analytic model of regional allocation of services, goods
ete. will be introduced in the present section [11].
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Fig. §

Consider the model shown in Fig. 5, which consists of n regional decision
centers Sy, ..., S,, and the higher level (supervisory) decision center S. A given
number of goods, services, resources X'”, ..., X'? produced by corresponding sectors
in region i should be allocated by S; in an optimum manner among the local sub-
systems SS,f”, v=1, ..., N;. The supervisory decision center S controls the amount
of goods etc. ¥{", i=1, ..., n, j=1, ..., m, exchanged between the specific regions §;.
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It can be assumed that for certain number of goods and services the supply equals
demand. First of all that will concern all the planned values (v)) produced by the
corresponding sectors (compare (16), (20)). There is, however, a number of goods
and services for which the supply is less then the corresponding demand. It concerns
such items as: housing, transportation, medical and social care etc, Each sector
is trying to put these items on the list of maximalized outputs. But despite that the
total production is less than the total demand. In the capitalist economy the process
of allocation of scarce goods and services in that situation is regulated by market
mainly and to a less extend by gouvernment expenditures. In the socialist countries
prices are usually fixed and the state decisions allocate the expenditures for such
items as transportation, social and medical care, housing, education etc.

When the amount of allocated goods etc. is less than the demand the subsystems
suffer losses. Then the goal of the decision centers is to allocate the goods is such
a manner that the global loss or dissatisfaction function is minimum.

Denote the expected demand for the particular item J in the subsystem v of
th;c region i by (). Assume the amount of item ; alloted to region i: x{? is less than
7, ie. xD <z, and as a result a dissatisfaction of subsystem follows, which is
an increasing convex function U (x) of the vector variable

E’il) —x B _ @ D _

i
X=X vl oy 2T ydg e Ay ymJS "

That function determines the priority relation which says x>0 is better than
y=0 if and only if

Ux)>U(@).

X1L

|

Fig. 6

In Fig. 6 a typical plot of U (x)=D=const. for m=2 has been shown. The
shaded area under the plot correspond to that values of x which create the dissatisfac-
tion less than D,

[t should be observed that the plot can be approximated by the function of the
form

D=oonytexy vy,
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where oy, o, — positive constants. In the general multidimensional case the
dissatisfaction function can be written as

DD (x D)= [k ]7(4;) \('ﬂ))a_,’ (46)

J=1

m
where «;, kK =positive constants, g= > z;—1>0.
=1
Assuming that the patameters of (46) are known or determined experimentally
dD"’ d\',,
_D(i)
to formulate the optimum allocation problem. Find the optimum strategy (%, )
which minimizes the global dissatisfaction

(for that purpose one can use the relation o; = ,j=1, ...,m) itis possible

n Nt

b= 3 Stovan) )

i=1 v=1
subject to the constraints
Ni
D, <xP-¥P, @)
v=1
or
Nt
S‘ E=xyz 3 H-2P+7P>0, 48")

v=1

J=1, i =1, am,

F—x0>0, v=1,..N, j=L.,m,i=l..n, (49)
n
2 YP=0, i=1,..,n. (50)
. i=1

The last equation (30) means that no goods etc. are generated within the system.
Taking into account the existing administrative and social structure it is desirable
to formulate the optimum strategy in the decentralized form including at the lower
level the decisions concerning ¥V and at the higher level the decisions concerning
¥, That can be achieved using the aggregation approach described by (24)—(29)
and results obtained can be formulated in the form of the theorem (for details see

Ref. [L1]).

THeoREM 5. The unique optimum decentralized strategy of allocation

k¢ i)

(l) _x(? s x(f) p—— “)
¥,

_(i) A}{l)_l_ Y(l)]

vl Ny, 1=, 000 =15 00m, (51)

W kﬂ)

{ I Ni
o P :
tp=sry] 3 5o 3] Sleteny,
iml y=1 i=1
I=lymin My F2 s, B, (52)
exists, such that

D(£, §)= min D(x, y)= (EZR”’) n [Z Y’ 0 X}ll}zj, (53)
=1

* ¥ el 1y=1 foj=1 i vmi
where the admissible region 2 is specified by egs. (48)—(50).

It is possible to extend theorem 4 to the case when transport or maintenance
losses during the allocation process are present. In that case instead of (48") one
can write

N
Z x® iG<xP—y®

v=1

and the corresponding optimum allocation becomes [11]

/}(1) TN
()_-—m b =) (i i v
Si=% Ty 70| 2, ) A — X+ Yj"],
VIl =1
v
A ()]
l; Ev n n Ni
i) — ¥ =(i) 5(0) (i T () i
M=ty 31 3t 3 ap]- s,
.{i_r.v_i i=1 i= v=1

where
K“’—/“)H Gyt y=1,.., N,

Another possible extension [11] concerns the case when we have a multilevel
hierarchic structure of regions or towns which differ by the amount of services or
allocated items.

Itis also possible to consider a dynamic optimization models when the dissatisfac-
tion function changes in time and the functional

T

D(x,»)= | 22 DO (x, y, O dt,

O

should be minimalized, with respect to the integral constraints

T N;
J 2 MO dsxP-¥P, i=1,..n, j=1,.,m,
0 ym]

1O =x (OO0, (=1, ..un, j=1,,.,m, v=I1,.,N, tel0,T].

To wolve the present problem one can use the method of Sec, 2.2,
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3.2, Pollution influence on the environment

The productive activity performed by the sectors of the environmental system
is usually accompanied by side production of waste materials which are generally
harmful to the human environment, At the present state of science and technology
the most of the waste materials can be purified, utilized or recycled. However,
the cost of purifying of waste materials increases rapidly when a high degree of
purity is required. Since the environment has on ability of clearning itself with the
waste decay ratio (which depends on the waste ingredients) the following approach
to the pollution problem has been proposed : minimize the cost of waste and pollution
treatment subject to the conditions that the degree of environment pollution is less then
a given value. Following that approach consider the pollution control model shown

in Fig. 7.
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Assume that the waste with intensity Q; (¢), i=1, ..., n, generated by n given
polluters P; (such as factories, power plants, urban centers etc.) is being treated by
the waste treatment plants WTP; and with the intensity g, it is discharged into the
environment (i.e. into air, water or soil). @, in turn may depend on the sector
productions (X;;). The degree of environment contamination (expressed by such
factors as pollutant fall out, dissolvent oxigen (D.0O.) concentration, or the biological
oxygen demand (B.0.D.)) x; (r) can be observed by the pollution sensitive devices
in the m given points or areas. The information obtained in that way together with
the information regarding the wether forecast etc. is being used by the controller C
to optimize the decision variables g, i=1, ..., n.

The performance of po/liution control can be measured by the functional

T
[ w, (1) x,; (1) dt, (54)

10

I

@=

b4

i

where w;. (f)=given nonncgative continuous weight functions, 7=optimization
horizont.

The input-output dynamical properties of the environment according to the
theoretical and experimental data can be approximated by the Volterra operator

n T

x(0= 3 [ Kyl o) gu@de, =1,y m, (55)

fwl 0
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wherf ‘K,‘, (#, 7)== given nonnegative continuous functions which satisfy the causality
condition K, (¢, 1)=0 for t<z.

A t){picall example of the cost function of the waste treatment plant has been
shown in Fig. 8. It can be approximated by the function

Cilg)=ki " (Qi—q), PB>1, k,>0. (56)

be o)

Fig. 8

It is also assumed that the total waste treatment cost is limited, i.e.

I

M cwyasc, (57)

i=1 0
where C=given positive number.

- The pollution treatment optimization problem can be formulated as follows.
Find the nonnegative strategy ¢;=¢;, i=1, ..., n, such that

m :T n T
@@= D' [ wi®) ' [ Kiy(t, ) 0@ +k}™* ¢} (0)] de d
J=110 i=10

where =1/, attains for ¢=¢ the minimum value subject to the constraints (57) and

Qi(r)_k}““ C?(T)?O, te [0, T]’ (58)
¢ (1)=0.
Since the term _T) (59
m n T :
s Z 2 ] Wy (t) J' KI’J (ts T) Qi (T) dr dt
J=1 I=10 o

is a constant, the problem boils down to the maximization of

n T
F(c)= Z-‘[ fi(z) CE(2) dr,
whc!'e o

" | 1/a
f:(r)-['f ) wm)xutr.nm] o




T Py

Subject to the constraints (57)(59),

It is obvious that when the constraint (58) & not uetive the optimum e
strategy can be derived by using Theorem | When (58) 18 nctive the opth
strategy can be derived from the eq. '
0i(H)—k1=* Ci(t)=0;

Then the following theorem can be proved (for details see Ref, [12])
THECREM 6. An optimum pollution strategy
-~ ~ C 4 (2 &
CO=CO=L0F> i=1,..,m tel0,T]

where

i (1) for 1¢5,

LO={ F , o
C'Ir}'””'Q}/“(r) for tes,

B , o 4 ‘
Si={t:fi ()= *C-k%‘”“ 012, tel0,T), i=1,.,np,
n T
5. RV & 1
F= > [ find
=110
exists, such that
& (C)=min [F—F(C)]=P—F'~*C"
c=0

and ©Q is the admissible control set defined by (57)—(59).
The optimum waste discharge strategies become
a(D=ki=*Ci(t), i=1,.,n. '

Using the aggregation Theorem 6 it is possible for a given admissible pollut
level ¢ to find the corresponding minimum waste treatment cOst ¢ (by solving

eq. P—e=F1"*C"%
_ [B—¢)e
= F—lja -

When the function @ (X;) which expresses the pollution level in terms of weet
production activity X, increases rapidly it may happens that the correspondin

13

waste treatment cost becomes greater than the production income, In thi

. "
case a new technology of production or new waste treatment plant should

developed.
That requires capital investment which can be optimized by the methe
described is Sec. 2.4. \
Using the aggregation formula (60), (61) it is also possible to optimize n comple

hierarchic systems of environment pollution control (for detnils see Ref, [13]]
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ly pesenrch und development (R D) constitute the main factors

i development rate of the economy, In the simple economic develop-

I8 these fuetors are considered as contributing mainly to the technical

I produetion processes, It is argued that the research activity generates

b, echnologleal und technical solutions which by a process of concreate

L levelopment produce new technology and increase the efficiency of
luetion processes.

puli and development could not be able to exist without the financial

sipport from the economy. The both sectors in turn depend on the

ahlltul lnbor which is produced by the education sector. The education

Mo supported by the economy, and to a less extend — by the (R+D)

Wty 1 the form of training of the teaching staff which is angaged part

fBeiieh netivity).
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Fig. 9

RN Hie model of the system analysed in the present section assumes the form
W0 Flg 9. The model of the education sector for the two-level structure (the
inddinte nind graduate studies) has been shown in Fig. 10.
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The resources Xy, X3y can be allocated among the [ndividual eduen
institutions Uy, vy Uy Gy, oy Gy by using the Theorem 2. |
The input-output production model of the education institution can be (Al

in the form (4) or (4'). The threshold and maximum capacity (X, &) for diffe
inputs can are determined directly from the minimum budget, staff, the slee W
capacities of the education facilities. The values of the exponents «,; can be determin
if the different input-output data for the past activity are known,
The functions k; (£, 7) which determine the dynamics of education processes s

be determined by input-output observations. Suppose for example thf\t at the |
1967 hundred students in the form of a unitary step had been admitied (o the
years post graduate studies. There is usually a delay (7,~3 years) of the outp
production and an exponential growth with the time constant 1-2—-{! yours,
shown in Fig. 11. As a result the corresponding stationary k; (1) function eun
- approximated by the function 4

{
Looexp(—“) for t=Ts,

k@o={ @ Ti
0 for t<Ty,
A post graduate
output
00— =
H
3 | | ] -
1967 1970 1973
Fig. 11

As far as the output production of the education system is concerned it eun i
assumed that in the n—N given education branches the expected output demunil

are known and equal

J)u,N+ 13 #eea yu.m .]"a. N413 2oy .vﬂ'.il’

respectively. These numbers can be determined when the future employment

(R+D) and economy sectors is being planned.
The remaining outputs of the education sector are being optimalized in &
a way that the integrated output
I
‘ =0 (1) Wiy () o 2 (1) Wiy (0]
0

D (x)=

L.

W AT PO TR e . : qar

i Thit conoerns firat of all these branches of education where the demands
Wi than the possible wupply of trained specialists. The weight functions
annimed in the form

W)= w, exp=y, ¢, (63)

W0y Inerense along with the respective demands. It is assumed that the

| values of these numbers are being determined by the higher planning
Wille the allocation of the outputs can be realized by the methods described
“l

Wil be observed that the sector controller C, which obtains the resources

1 from the eooperating sectors of the model of Fig. 9 can split the existing

W0 0 number of new inputs for the lower level subsystems. Assume for
the nggregated sector production function in the form

Xy = Ff Xy Xon, g=1—oz; —y, >0, (64)

.:" b (he (otal financial grant or budget obtained from the economy which
B8 weblirnrily devided between the maintenance (X,) and the investments

Xa = X+ X,.
HeW production function can be written in the form
Ky mELE X0 Yo You, (65)

Aenrding to the Theorem 3 the optimum strategies for X, X, become

’vm=ﬂl /V.n, /?:—_*ﬁz Yal (66}
,.-:=[ﬁflh ﬂﬁ*]‘“’" (67)

Prtfa=1, By, f2>0. (68)

W8 Aintenance and investment costs X,, ¥, should be treated now as fixed

Wi be wlloeated among the corresponding subsystems by the formula (28).

IIAE appromeh it s possible to introduce more decision variables at the

Wling levels of the education administrative structure, The maintenance

LI e wplitted e.g. into the salaries of the professors and the salaries of the

I Ieehing salll The same can be done with respect to the investments which
Alivided between the investment in laboratory equipment and new building etc.

W We oan conider the (R+D) sector. In a similar way as if has been done

silioation sector a simple model of (R+D) consists of N research fields or

s and i N development projects, The control or planning center allocates

FORN Bueh aw e, selentific and technical staff, manpower, financial funds,
i equipment among the individual R and D; subsystems, The output z,
by R amsumes mainly the software form, 1.6, the form of scientific und

'A I information, patents, reports, computer lgorithms, ete. There are many




possible forms of evaluation of =, intensity, 1t may be characterized e g. by the volume
of scientific information (measured by the amount of reviewed publications)
generated in unit time etc,

The planning center evaluates the research results z; (obtained mainly in the
preceeding planning intervals) and selects a number (#—N) of research projects,
costing y;, i=N+]1, ..., n, respectively, which should be realized within the present
planning interval [0, T]. The time intervals (7;) necessary for realization of each
project y, are also determined. Besider the optimum allocation of resources the
planning center should also determine the best time shedule for realization of
individual projects and research activities.

It should also determine the best relation between research and development
activity. It should be observed that most of the existing (R+D) and production
systems are nonlinear and dynamic. The output of the industrial production P (¢)
originated by R and D projects increases along with time and generally speaking
it is delayed with respect to the resources cost function C (t) used by (R+D) and
production, as shown for a special case in Fig. 12.

Fig. 12

At the same time the price or weight w (¢) attached to the production output
decreases monotoneously in time. As a result a time moment =7, exists such that
the production income w (7,) P (7,) equals the production cost C (7.). Arround
that time a new production process based on recent (R+D) projects should be
originated. The value of research output alone, measured by the number of
publications, patents etc. and shown in Fig. 12 by the dotted line, reaches usually
a peak value and then decreases in time.

Since the inertial and nonlinear effects are present in the (R+D) systems the
input-output operator can be approximated by the operator of the general form
(4), (4"). The R system performance measure can be assumed in the form of the
integrated weighted research activities @ (x) of the form (7). Then the optimum
allocation of input resources strategy, which maximizes the performance measure
subject to the constraints (5), (16) can be determined by using Theorem 2 and 4.
It should be observed that the planning center can change the relation between
resources alloted to R and D as well as the individual research fields and projects

by changing the weight functions w; (¢).

Ax follows from (18) the maximum output of (R4 1) depends on the parameters
of production operator, In particular it is desirable to get small research thresholds
and good dynamic characteristic &, (7, 7), i.e. the maximum gain and short delays.
When the development program (X)) increases the research gain @ (x) decreases.
Since the new projects can be originated only by using results of research previously
done the proportion between research and development should be kept within
given limits.

It should be also observed that the global amount of projects and fields of
research should be choosen from a larger possible set of projects n”>n. That approach
enables the selection of the best program of research and development. As shown
in the Ref. [13] by neglecting the dynamic effects and assuming «;~0 one can reduce
the problem of choosing the best (R + D) program to discreate programming (which
can be treated as the first approximation in choosing the optimum planning strategy).
1t is also possible [13] to extend the method under consideration to the case of
multistage and multilevel decentralized (R+D) planning systems.

Much what has been said so far with respect to the education and (R +D) sectors
concerns as well the economic sector. We shall not repeat, however, that analysis
and concentrate on the determination of the optimum cooperation strategy among
the corresponding sectors, shown in Fig. 9. X

The problem of optimum cooperation consists in finding ¥ .=X.; &#=1,2,3,
c#r, such that

f=max (”ﬁ}“yzl—fsz), (69)
XpcER
where
o _rp: Yrﬁ+ —’rt"{\A_;ir r,p= 1, 25 39 "'?‘:[}
Xo& Mo Hoazlls (p,r,e)eP

Xy=Fr XX (p,oriehP (70)
P={(p, e, r):p#e, e#r, p#r,p, t,e=1,2,3}

In other words we want to find the optimum cooperation strategy between sectors
with the production function (70) which will produce the maximum net output
of the economy.

By introducing the variables Cop=2X,,/X,, (69) can be written in the form

I= max X;; (c,,) (1 —c31—¢32),
crp€s?’
y O<c,<l, r,p=1,2,3, p#r
L= ie . Bt B ) ;
Crpt o<l (p.e,r)eP
After simple calculations one gets [14]

y=0ia Das/D %y Dan/D 231 Dya/ a3 D3y /D, Dyaf ,—&32 D
lhAtlJ” af ‘lll‘; v/ (.“\ )J_\,D(r:; 3afL (ngxnu 0(3.’_1. 23/D

A _[.'rln Da/p ].'J ta Day/D Fo Diya/D (l=¢yy— Zns)
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where
| =R
D=|=ua, l —tlay A0,
—O®yy a3 1

Dy, =subdeterminante of the (i, k) element of D.
The optimal values of ¢;; which maximize I become

" —~ty2 Dsy " %13 D33
€12~ —— g C1a =" i

d, ; dy
" 21 D3 - o33 D33
Gy =———— Cy3=

d, ’ - d, ’
" #3r Dys . —33 Dys
CAl STy Gy ==

D+d,y N D+d; °

dy =03 Diy3—ay, Dy, dy=uy; Dy3+as, Dy, dy=03, D3 —t3, Dss.
Besides

P Xi’f_‘?
D-d,
Given ¢é,, and X,, the values )7”,, p.r=1,2,3, p#r, can be determined by the
relation

—2 ¥
rr’_crp Ar-r'

It should be noted that after computation of the numerical values of optimum
cooperation strategy it may happen that the real cooperation strategy differs from
the optimum values. In that case a process of cooperation improvement based,
generally speaking, on the subsequent optimum investment strategy can be proposed.

4. Conclusions

As stated in the Introduction the motivation for the research done and presented
in the present paper was the improvement of the large-scale and long range planning
and decision making using the nonlinear and dynamic modelling approach.

It has been shown that the methodology based on the aggregation concept
make it possible to construct an analytic model dealing at each decision level with
the amount of variables which corresponds to the information important and
available at that level.

That model is not based on the observations of macroprocesses (which is
a common practice in the most econometric macromodels) but it is an aggregated
structure of concreate production processes. Since all the decision centers are
incorporated into the model structure one can investigate the effects of these decisions
on the future system development and improve the future forecasting.

The model can be easily extended, I necessary, to incorporate more production
plants and declsion conters at each sector, The corresponding change in the para-
meters of the aggregated production function makes it possible to investigate the
influence of & concreate investment process on the system output.

The derivation of optimum allocation strategy within each sector is quite simple
and the caleulation effort does not depend on the number of processes or variables.
In order to derive that strategy a number of planned outputs (y;) should be sent
from the control planning center to the sector controllers what is a standard
procedure at least in socialist countries.

According to that procedure the outputs proposed by the sector management
are being confronted with the corresponding demands for y; and an eventually
corrected set of numbers y, is accepted as the planned system production.

The weight functions which determine the maximalized sector outputs should
be also supplied to the sector controller. They should take into account the social
demands for the scarce products existing within the model. The social model welfare
function determines also the best allocation strategy of scarce products within the
social and regional structures. Changing the weights attached to the maximalized
sector outputs it is possible to investigate the corresponding changes in the social
dissatisfaction.

The weight coefficients may incorporate as well the prices, which are considered
to be given exogeneously (as it is usually assumed in the models of socialist countries).
They can be treated as decision variables and the influence of price changes on the
system growth can be investigated. A corresponding optimization problem for the
best price strategy can be also formulated.

The decentralization of decision atrategies corresponds to the existing
administrative and regional management structure. Many of the existing systems
of long-range planning can be therefore modeled and incorporated into the model
structure.

The derivation of the existing and optimal cooperation strategies among the
corresponding sectors may reveal many possible ways of acceleration of the system
development. That requires, generally speaking, evaluation of the cost connected
with new investments, reemployment and retraining of manpower, automation etc.
The complex model under considerations enables to investigate such problems in
an analytic and efficient way.

Among the problems which can be investigated by using the present model
there are also:

(i) the changes in system growth resulting from redistribution of gross naticnal
product among the consumption and investments in different sectors;

(ii) the influence of environment pollution (resulting from the industrial
development) and waste treatment costs on the systemn growth;

(iii) the relation between the education research and development costs and
their influence on the system growth, the intersector flow of skilled labor etc.;




to import new technology, patents and leencen or develop them within the
(R4 D) system;

(v) optimization of employment and educntion within the seetors
structure; ‘

(vi) optimization of the processes of exploatation and utilization of
resources; .

(vii) the influence of changes in organization and structure of the socll
on the system performance;

(viii) the effects of changes caused by the redistribution of investments
among the sectors (e.g. the industry and agriculture) on the system pgrow

The flexibility of the model structure with respect Lo aggregation of {
sectors and processes enables also the cooperation with the other existing !
of a more specific character such as e.g. the econometric, demographie,
energy models etc. The methodology presented here may be also used [or fu,
development of these models.

From the analysis carried out it is obvious that the model discussed iy exps
usefull for investigation of the sectors with highly inertial and nonlinear prog
such as e.g. education research and development, agriculture and forestry, inve
etc.

The paper did not consider the influence of the competetive, antagonistie envl
ment, such as e.g. the competition on the capitalistic market et¢, on the &
development. These problems can be, however, investigated using the W
methodology (see Ref. [6]). '
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0 | sterownnle optymalne zlozonych systemow
eyeh Arodowisko

dutyesy modelownnin zlozonych systemodw nieliniowych dynamicznych, takich jak systemy

10, presiyslowe, ekologiczne, spoleczne itd, Model sklada sig z kilku sektordw. Przyjmuje
Wly seltor ma strokturg hierarchiczng z zdecentralizowanym systemem zarzadzania.
Witen okredlony produkt, a takze zuzywa czesé produkeji wyjsciowej pozostalych sekto-
il wlg, 2o zaleznodd wyjbein od wejscia sektora ma postaé nieliniowego operatora dyna-

I
b devyeyine sektorn dokonujy optymalizacji rozdzialu zasobow wejsciowych w taki
Wy ko malizowaé produkeje wyjsciowa. Regulator nadrzedny optymalizuje polaczenia
Jie milgdey sektorami,
phrwnm veghel procy omowiono ogdlng metodologie budowy modelu i optymalizacji.
L ey enwlern ananlize wybranych zagadnien zwiazanych z modelowaniem systemow
W, dan | oroswoju oraz systemu reprezentujacego problemy spo leczne.

FPORIIIE B OHTHMAIBIOE YIPABJICHNE ¢JI0KHBIX CHCTEM
MIDINX Cpety

PG HRERETCH MOACITMPOBAIS CHOKHBIX HEIMHEHHBIX M AMHAMHYMECKHX CHCTCM, TAKHX
SRUHUMUB0IIE, POMBILICHIBIS, DYKO0THYecKkHe, OOIIeCTReHHbIE M IP. CHCTCMBI, Mogens.
0 eerodeknx cexropon, [pennonaraercs, 4o Kax/ablii CEKTOP MMEET MepapXHYecKyo
Y 0 RHEHTPRAIODARION YIpADICHIECKOH cucTeMoit ynpasnenus. CekTop NPOH3BOINT
WL TPOIYIET, B THKIKE MCMOIb3YET MacTh BLIXOAHOIO NPOAYKTA OCTalBHBLIX CCKTOPOB.
R TN, 110 SABHCHMOCTE MEICIY BBIXOAOM M BXOJOM HMEET JUB HEIHHCHHOTO AWHAMH-
BRI TopR,
l,.hlﬂ‘i! HPMIETHE petennit cekropa Npou3BOAT ONTHMH3ALHIO pa3fie/la BXOAHBIX PECypcoB
S UOPIAONM, SO0 MOKCHMIIUPOBATE BBIXOIHOE TPOU3BOCTBO. Peryisarop BEICHICTO YPOBHS
MAMPYET G KOONEPOIHN MEIKILY CCKTOPaMU.
(1 el sacri paborkl paceMotTpena obuas METOAOIOrHA NOCTPOEHNS MOJEIU H ONTHMH-
W Bop wpets prnOoThl CONePIKHT ANAIK3 HEKOTOPBLIX BONPOCOB CBA3AHHBIX C MOACIHPOBA-
WUC TR OOPRIONANI, NECASAOBANMI 1 PASBATHA 0 TAKIKS CHCTEMBE OT pakarowieii ob1ecTBen-
WP ML,
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