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W0 (i fug system described by the equation X (1)y=Ax (1)+Bx (t—1)+ Cu (1), where x () € R",
Sl e KMy A, B, Csconstant matrices, is considered. A general solution to the problem
WLy 1o zero function for such type of systems is obtained. The solution is given in the
1 Jntibile algebrale criteria expressed in terms of some special functions of the matrices 4, B, C.
Il wie obtained thanks to a new method of transforming control problems in time-lag
f h]lu wiilvalent control problems stated for some non-delayed system with additional equality
- e o nltdal and terminal states. To solve the reformulated controllability problem some
JLIEURT] milntlnnbitity of trajectory and compensation of disturbances for linear non-delayed
W plven,

i tHon

e puirpose of the paper is to obtain testable algebraic criteria for controllability
0 funetlon fn u linear constant time-lag system. The class of systems considered
Wi by the following equation !

XD Ax(D+Bx(t=D+Cu(®), te0,,], t,>1, (1.
b il conditions
-
X()=x,e R, x(t—1)=f(@), te]0,1], (1.2)

) jl [U. [yes R, 1 [0, 7,]=R" are bounded measurable functions, 4, B, C are
Wl matelees of suitable dimensions.
W ahull further use the terminology of controllability and relative controllability
buntrollubility to zero function on [r,~1,¢,] and to origin at #, respectively,
01 I nssamed to be fixed,
The problem under consideration was investigated by many authors. Banks [11]
' 0 thorough review of main results obtained up to 1972 in the field of time-lag

| M lir;in with delay A 1 can be easlly rewrltten [0 the form of (1,1) after a suitable
Wilon ol i,




—

- bt
l

systems controllability, so we shall summarize only the previous workn, € ayntem theory the coneept of muximal (with respect to ordering generated
i) sontrolled fnvariant contained in a given subspace plays an important

Kirillova, Churakova obtained some algebraie eriterin but for specinl o -
They proved that if one of the following holds (1) rank [B, €)= runk g T arltlims for computing maximal controlled invariants are cited below.
and det B#0, (3) A=0 and rank C'=1, then controllability 18 equivalent 1 RSB 0AS (21718 ae tollows.

C(.'mtro‘[lab.ilily. It may be interesting that algebraic eriterin for relutive control : , , e x : A .
lglvcn_m [.l]’ [2] were obtained by a conjecture that every system of the fo " | A1 There T:xlﬂl i LII]I(.]I'IC maximal (/1: S)-invariant contained in a given
Is pointwise complete, that is, at #=0 for any >0 and any X R there e Ao A Furthermore it equals to X, where
initial conditions (x,, £ : soluti : , _

s (xo, /) such that the solution to (1.1), (1.2) x (1) =x; (see W BemX, X=X, OA=1(S+X,_,) and dim X=p.

The conjecture, however, is not true in general, as it was § ‘
rop ks J13 ; ot true in general, as it }Mlb shown by Pnpﬂl A W further write Mic " X)) for the maximal (4. S)-invariant in X and
verkin [13] on g pounterexamplc. In order to avoid the problem of '13 - 3 urther W“‘.L M.f“ i oz ,) & I-K mdmm-d (-’ rsiins ks
comple_teness Manitius and Olbrot [5] defined controllability as reachubility " "a ) Instend of Mic(A, Ry, X) or simply Mic X if A, B are understood.
vector in R" at 1, and obtained controllability criteria in the case of miny i
in “state” x and control w. Weiss gave in [4] a sufficient condition (o
controllability in the form slimilar to [1], [2], which is also a necessary one prul \ !
complete systems are considered. For this class of systems there is o eriteriog a0 The maximal (A, S)-controlled invariant contained in X is equal to
controllability of (1.1) obtained by Weiss [3], unfortunately not in a cumptltnb“ "

The most difficult case is that of pointwise degenerate (not complete) uyh Kom X
In this paper a method used in [6] for examining pointwisc degeneracy In ' -
to obtain general solution to controllability problem for time-lag nyltoml.
method is presented in Section 3 and has, in fact, a point in common with il 3 V(1) AX(0)+ Bu (1), 120
of Popov [5] who used the same equivalent system without delay. In Seetlon ‘ by gl i .
introduce the concept of controlled invariant by Basile and Marro [9] and fur Q51 <, Sheontant mamiens
develop some theorems on maintainability, reachability and compensution
disturbances for linear systems. The results of Section 2 have direct applicntion Tulliwa
?he prot_)f of controllability criterion (Sections 4, 5). Two numerical examploy g -
in ?;iggzhfﬂsgus;rztet;hcf ;]enf. 7 . : 5 T INION 2.2, A vector xg € X is said to be X-maintainable if starting from x,
X g paper the fo omnsc_noldm?n will be used. By R,, N, we denw Wisetory of (2,1) completely belonging to X can be obtained by means of a bounded
the range and the null space respectively of the operator A. R"*™ iy the upuee ol w
all realﬂnxm matrices, R"*! will be written as R", For a su bspace Ze R il | 41 I
Ae R.H " denote o (Z)=Z+AZ+..+A""*Z and o (B) instead of LN ‘
Identity operator will be denpted by I and the Moore-Penrose generallzed i Hhere oxlnts o trajectory of (2.1) such that x (0)=2x,, x(#;)=x; and x(f)e X
t;f@A b))ifl“* A1 ,X;is the set {y| Ay e X}=A* (XN R,)+N, provided that X, J‘., | m. hl ¥ | ) l 1

: 1s an orthogonal complement [x ¢} s the § ) ' ‘
—— Weg shall sonietimc;;t\tv?'it}; Eji’%;'};’dj:tl.mi:;II:.:T::E:F?::TQ: Th' muln result of [9] is the following criterion of X-maintainability

amputational technique offered by Basile and Marro [9] is more conveniant
ek 1ot use the inverse A", The algorithm may be introduced in the form of

X=Xt 4+AT(X,.,NS) and p=dim X,

HIVBI B aystem

0 subipaee X R, define the notion of X-maintainability and X-reachability

INFTION 2.3, A vector x, € X is said to be X-reachable from an x, € X at time

MMA 20 A veotor xy e X is X-maintainable iff
2. Preliminary results on controllability, maintainability . Xo € Mic (4, B, X).
and compensation of disturb i '
’ Aehts o near SR ~ Blee, by definition, Mic(Mic X)=MicX it follows from Lemma 2.3.

Let us start with definition of controlled invariant due to Basile und

[9, 10]. . o BLLARY 2.1, A vector x, is Xemaintainable if and only if it is Mie X-maintain-

L]
i the sequel we need an algorithm for finding all Xereachable states at 7= |

DEFINITION 2.1. Let 4 € R"*" and let S be a subspace in R il
T A bipkeL the system (2,1), This problem was solved in [8] and [12] for the special cuse xy =0,

is said to be (4, §) -~ controlled invariant (or briefly (4, §) — invariant) I AN e X4,




LimmA 2.4, The set of all vectors N-reachable from the origin at tme ;=0 0,
e Mes(A, B, ximi lability subspaee) .

:he .f:wm“:)['lnhnulr;:zu::[. ﬁ:‘n“i" 3, X) (maximal qontealiability subiasy 7-Oionoy. I0(2.3) halds then there exist matrices Dy, Dy such that Dy Dy =D
18 DRMERENRY Al i 0 Ry, Ry, & Mie X Clearly this representation is unique only if Ry NMic X'=
Xm0, X, =Mic X A (AX).+Ry) e D8 may be neutralized to zero setting e.g. v, = —B" D, z. By a result
] : hnm and Morse [B] there exists a control wy=Fx for some F/'e R" " such
aking Mes X=X, ¢=dim Mic X, - . : k 7
R RG-SR wd RS e elloet of D, 2 on the trajectory of (2.2) is localized to Mic X. By Lemma 2.3

In this section the notation Mes X for Mes(A, B, X) will be uned ' ) ! ) -
: [} Mig X then one can find wy such that e x,+ | et =% By(s) ds is in Mic X

Remark. The algorithm above was not explicitly stated by the authorm. 0

can, however, easily deduce it from an algorithm given in [8], Theorem Ay P o0 Wy linearity wsu, -Fuy-+us is a properly chosen control.

into account Lemma 4.3 and Theorem 4.3 of [8] and Theorem 6,1 ol [ﬂ- BEAAILY, Suppose v, is X-maintainable for each z. Take z=0. By Lemma 2.3
In [8], Theorem 4.3, a different way of computing Mes X' 18 DI‘CHGHIOd. : oh that v e Mie X, Hence x, is Mic X-maintainable for each z. In fact, if’

quote this result in the form of: W0 sanirury for some z' and some ¢'>0 the state x (¢') cannot be in Mic X then,
o w2, v () i not X-maintainable in the system (2.1) and this implies that
LemMA 2.5. The maximal controllability subspace has the form of a contral Wil Aemulntainable for z=z" on [0, ¢'], z (1)=0 for #> ¢’ which is a contradiction.

subspace &7 (Rg N Mic X) where A=A+BC for some Ce&R"" NIME B0 0t iy # there exists a control u such that x (f) € Mic X and simultanously

A Mic X< Mic X. 8 MByk Mie X, The latter follows by Definition 2.1. This and equation (2.2)
The existance of C is proved in [8]. WL Ty any 2 D 2 (=X ()= A x (1)—Bu(t) e Mic X+ R, almost everywhere.
To extend the result of Lemma 2.4. we prove the following: : (40 follows immediately.

THeorEM 2.1. The set of all states X-reachable at #=1 from an xy & Mie XS SURNLLALY 2.2, Let a subspace Y<R' begiven. The property that for any
element of the quotient space Mic X/Mes X and is of the form . 4 Mot A°H Pie & there exist an x, € Y such that x, is X-maintainable is valid for the
¥, € Mic X is an arbitrary vector X-reachable at =1 from Xy, W (3 T

Proof. If x, (1), x5 (1), 1€ [0, 1], are trajectories in X starting from Ay & M : R, Ry+ Mic X.
and corresponding to controls uy, i, respectively then, by linearity, xy (1)
corresponds to u,—u;, starts from origin and belongs to X. Hence, by il Bulficlency follows from Theorem 2.2 setting x,=0. For necessity it
2.4, x5 (1)=x, (1) € Mcs X that is x, (1) € x; (1)+ Mes X for an arbitrary Xsre ‘ Loved, we in Theorem 2.2, that if the considered property holds the require-
vector x, (1). Conversely, it is readily seen that any vector belonging to A4 ol Vanaintainability may be replaced by Mic X-maintainability. We complete
can be reached from x, by a trajectory in X if x, is X-reachable [rom sg¢ . el e In Theorem 2.2

Now consider the system (2.1) with additive disturbance z ; e st ol Corollary 2.2 means that the possibility of choosing the initial

FO=AxO)+Bu()+Dz(1), 120, Bives no wdvantage as far as the compensation of disturbances is considered.

where z () € R?, D is a constant matrix, u, z are assumed to be bounded, e ANy 20, Assume that (2.3) holds. Given an arbitrary disturbance z, an
defined over finite or infinite interval. RN vy of (2.2) i X-maintainable iff xo e Mic X.

We state the following problem for the system (2.2): “Under whit Go : N ¥ _
the state xo is X-maintainable for each disturbance z?" ; i I In view of Theorem 2.2 sufficiency is obvious. By (2.3) and Theorem

" =9 t
When x,=0 and u is chosen in the form of a constant feedback the soluth | pumsible (o choose a control u, such that [[eA¢=2)(Bu, (s)+D z(s)) ds is
this problem is that R,=Mic X (see [8]). In general the following theorem & : i il
e WL E 0, Now set s, +u, where u, is arbitrary, If x(¢) is in X for some
¥ L n B 5 " s N ’ z ol o
THEOREM 2.2. Given a subspace X< R", an initial state x, € X" of (2.2) v X by then It follows from above that also e xo+ [ e~ Bu, (s) ds is in X

tainable for each z iff x,e Mi¢c X and - . 0
g Thin implies, by Lemma 2.3, that x, € Mic X,
R,-,t: Mif' .Y"l" .R“.

i e aeguel the knowledge of a set of all Xereachable states at /=1, provided
Moreover, the above conditions are necessary and sufficient for Mie A% 0, 0 e glhven, Iv desired. The solution to this problem can be easily obtained
tainability. mation of Theorem 2.1 and the result has similar form,




Toomem 2.3, The wet of all vectors Nerenchable at =1 from an x, e X W

-'ltlnu into necount that x, (0)=x, this implies
a given diturbance z affects on the system (2,2) (v of the form x, + Mes X when

. 1(0)m o+ K (1 3.6
is an arbitrary vector Xereachable at =1 from x, by a given 2, A Ao A1) ©0)
No. 0 0
3. An equivalent non-delayed system and reformulation of Yo = ") T 1 0 ) 3.7)
the controllability problem ; : O
| 0 0 70

Let us consider now the system described by the equation (1.1) with {nitiuk
conditions (1.2) and the controllability property on a given interval [0, 7], #; =1}
that is the property that :

For given xp, v, / every solution to (3.3) satisfying (3.6) can be transformed,
i necordance with (3.2), into a solution to (1.1) satisfying (1.2). This follows
Immediately by the method of continuation and uniqueness theorem for differential-
Vxoe R'NfeF Jue¥: x(1)=0 on [t,—1,1,] (3.1 dillerence equations.

Thus the equivalence between n-dimensional time-lag system (1.1) with (ls2)
elined on [0, #,] and nk-dimensional non-delayed system (3.3) with (3.6) is
eatablished. This makes possible to replace the problem (3.1) by a certain problem
for the system (3.3), (3.6) and to obtain then computable algebraic conditions for
vontrollability.

where % =BM ([—1, 0), R"), % =BM ([0, ¢,], R") are classes of bounded measurable
functions.
Let & be the integer such that k—1</¢,<k. Denote

X(E+D)=X;1(0), u(@i+t)=u;+,(r) for i=0,..,k=1, te]0,1]. (3.2)
Then we have by (1.1) and (1.2)
X ()=Ax, () +Bf(O)+Cu, (1), 1e][0,1],
X (O=Ax,()+Bx () +Cuy(t), tel0,1],

#, Controllability conditions in case ¢, =k

In this section we consider the case f;=/k, an integer. Denote

. }’0: Ru % {O}ﬂ{k“‘]) . ?:Rrr(fc—]) % {O}H’
X (D)=A x,()+B x; 1 ()+Cuy (1), €0, 1],

(4.1)
}/l:Rn(k-nl) % {0}211_
where the k-th equation is to be extended on the whole interval [0, 1] by defining

u (t) on (#,, k] in an arbitrary way. The equation above can be written in the form Now, because of equivalence established between (1.1), (1.2) and (3.3), (3.6)

the following lemma can be proved easily.

y(O=AyO)+BfO+Co(), te0,1] (3.3) .
— (l)eR""{ ve ¥ =BM (0,1], "), A R"" Be Rwn and C e RE<Hn LiMMA 4.1, The system (1.1) is controllable on [0, k] iff
are as follows (A1) V(ro,f)e Yox F3(yy,v)e ¥, x¥  such that by
xq (1) 1y (1) .
x, (1) 10, (1) Y (©)=yo+Ky,
y(@®)=\". » @A=L (3.4) ‘
. : both (i) and (ii) are satisfied for the system (3.3)
X (!) Auk (t) "
: (i) y(t)e Y Vrel0,1]
A..0 B G A il
B4 . ) y(h)=y,
A= mad 8 ’ b= O ’ Cm= C' . (35) 5 . : o=
Sy : a Proof. Notice that y(t)e ¥ on [0, 1] is equivalent to x(r)=0 on [k—1, k].
0 BA 0 0 sin@

Condition (ii) with y (0)=y, + Ky, guarantees that (3.6) is satisfied. The equivalence
between (1.1), (1.2) and (3.3), (3.6) completes the proof.

Now we are in a position to use the theorems given in section 2 for proving the
X (D=x;4., O=x() for i=1, .., k=1, main result of the paper, that is the controllability criterion.

By the continuity of a trajectory x (r) and from (3.2)
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Trurorim 4.1, The system (1.1) is controllable on [0, k] T | B e -y ‘SRt the vestor
Sk Ry In Lemma 4,1 must belong to Mie Y,

Ry= Ry + Mie ¥, ‘

p= Re+Mie Xy 4 yy Lemma 4.1 and considerations above the property
Y, + RiZ (B)e (1= R e*) Mic ¥4 R Mes ¥, (L ) Implios the following

where B Yy e Yoxo/(B) dyeY;:

Mic Y=Mic (A, C, ¥)
) 0 (0) ot Ry, @ Mic ¥,

fes Y=Mes (A4, C, ¥ .
Mes Y= Mes (4,60 8) L) sy @ 0% (ot Ry 4w+ Ms 7.

I ! A A km ¥ kn g 3 ‘ 4
A=A+ CD for some De R such that . e propelty (A2) s equivalent to
A Mic YeMic ¥ ) V(e Y, el (B) IpeMic¥:
B is an arbitrary Aknxn matrix such that _ ! , ve K e y+w+Mes ¥)+y,. (4.6)
s - 1 -~
RzceMic Y, R;_z=Re. W0 Mot, It v clear, by setting y=y,+ Ky;, that (A2) implies (A3). For the

o, lot Moe R M1 he the orthogonal projector onto Y, and let y,=K* y

Proof. At first notice that the existence of a matrix D follows from the f Al ' )
Ky of the simple form

that A Mic Y= Rp+ Mic ¥ (see [8], Lemma 3.2). This follows also trivially 'l

‘Lemma 5.3 in this paper. The existence of B follows easily from (4.2), 07,... 0

: 00, . ”
Necessity. If (1.1) is controllable on [0, k] then by Lemma 4.1 . Rt e - _ 4.7)

Y (0,f) € Yox F 3ye KY,:yis V-maintainable. Hence, making use of Corall
2.2 yields (4.2). Now let A, B be matrices having the properties required, For i
(y.f) € Mic Yx .7 choose the control 3

: ]
e onn einly verify that
A " i B
oy (I)=C+ ((A-—/i\) y(f)-i—(f)’_ I;’) f({)) ‘P,n_ ol ER"' =] Py K=0, Poys=ys for y,in Yy.
Since R;_;=RgpcRs Rz_pcRy and € CF restricted to Rg s an dentl Nuw, It follows from (A3)
operator, the equation (3.3) with v=v; may be written in the form Poye0+yo=yo.

yO=AyO)+Bf ().
Provided that ¥ (0)=y e Mic ¥ the solution to (4.5)

“" hl\l\llt‘i th“l ‘l'n -+‘ !(‘.|'| 'r-'-(l’n'*" K)K {) y=y e MIC ?’ Which gives the Property
A (), Purthiermore ' ,

=ht)e Rt R(e* y+w+ Mes T)+ K+ po=e* (yo+Ry)+w+Mes ¥

t
y(f)=et y+ r eA=9 B f(s) ds 4 ‘ Ly, wl, K K is the identity on ¥, Mes Y= ¥, and etye Mic ¥, we 7 (B)<
3 |‘ e ' ¥, for by definitions of A and B
P . . o agia T y CFuy | ' h | s 1 o
is in Mic Y on [0, 1], since RﬁcMzc ¥ and Mic ¥ is invariant under A nid RieMic ¥, Ry=Mic Y.
ogi & i ;1(1_5) = a ; ¥ . ‘ e ‘
Thus it is obvious that e y+0fe Bf(s)ds is the endpoint of & (rject Hhis the equivalence (A2) < (A3) is proved. Writing (4.6) in the form of
(3.3) starting fx:om _1’16 J_\/[fc ¥ and completely belonging to Mic Y. Then by - o~ Kw € (Red— 1) y+ R Mes ¥
2.3 the set et y+ [ e~ Bf(s)ds+Mcs ¥ consists of all vectors Ferangl Binlly ween that
0 d

from y (0)=y at =1 b (A (o VR (55

Let us note that i pomiplotes the proof of necessity.

(9] w= feju—x) Bf(s)ds, f& F )=l (B), . i olenoy: Let (4.2) and (4.3) hold, First of all observe that by (4.8) it remains
& , that (1.2) and (A2) imply (A1), For any (g, /)@ Yy % & choose the control

the controllable subspace of the pair (A, B), : ' vy, oy




e gy T T
ot 0 T

noof controllabilily
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where ©, is defined by (4.4), to obtain the equation similar to (4.5) _ 2“‘ Ben 10, i1, b=t <ty <k
()= Ay (4 B+ Coy (), i

‘ ’ -

As was emphasized before c"(.l'(.‘-l'ﬁ.!'l)>|<_]. et (8 B f(s) dy o Mes ¥ D

Sk Lt re(0, 1), The controllability of the system (1.1) on [0, #]
aerihed by means of some dynamic properties of the system (3.3) quite

set of all points ¥-reachable at r=1 from y (0)= g Ky, while the “disturbam Yy in i wection 4 for the case ¢, =k. Let us introduce then
finfluences the system (3.3). So the property (A2) means that for any (yg, /)& Y »
there exists y; € ¥, and v, € ¥ such that the trajectory of the system (4,9) 0L The system (1.1) is controllable on [0, #,], t,=k—14+7, 7€ (0, 1), if
from yo+ Ky, attains y, at t=1 and y (1) € Mic ¥ for all ¢ considered. The o ¥ IF the wystem (3.3) has the property
©w=1, +v, and the vector y, fulfill the requirements (A1) for the system (3,3) ¥ I /)@ Yo % # 3y, 3, )€ Y, x ¥y x ¥ such that if y (0) =y, + Ky, then
the controllability conditions (4.2) (4.3) are proved. J‘(H* ® on [0, ), . §
As a special case of controllability property (3.1) one can consider the pl‘ﬂ | B (1)),
of controllability with respect to either xo or /. Namely, a vector x; {8 sl 16 W i)e Y, on [t 1],

controllable initial point if the initial pair (xo, 0)€ R"x # of (1.1) is contralleh Py,
on some interval. Similarly a controllable initial function can be defined, The :
(1.1) will be called IP-controllable (ZF-controllable) if all initial polnts
functions) are controllable. From the proof of Theorem 4.1 one obtaing immeding

L ol Controllability of the system (1.1) on [0, #,] implies that the condition
ol [f 1, k) may be fulfilled for any initial pair (x,, f) by the choice of

| pontrol (ep, after getting x (1)=0 on [t,—1, ¢,] one may put « (¢)=0 on
[ The converse is obviously true. This can be expressed in terms of the

COROLLARY 4.1. Tl tem (1.1) is /P-controllable on [0, k] if and only If ) , X
h e it (1913 e v WL wystem (3.3) with (3.6) as stated in the Lemma. In fact, (i) and (iii) are

Yoo (I— K et) Mic Y+ R Mes Y. '-; BRIty (1) = 0 on [#y, k] which is easily seen from (3.2), (3.4), (4.1). Condition
.‘l fiulred wo that the equivalence between (3.3) (3.6) and (1.1) (1.2) holds.
COROLLARY 4.2. The system (1.1) is [F-controllable on [0, k] if and only if llton (1) can be omitted, but it is useful in the sequel.

Ry=Rg+Mic Y e next (wo lemmas are needed in proving controllability criterion.
B0 J

Rl (By=(I—-Ke*) Mic Y+ K Mes Y. (1 WMA A0 Lot VY, be defined by (4.1) and let

For systems which are not [P-controllable one can get, in like munners th Mie PmMic(d, C, ), Mic Y,=Mic(4, C, Y,), then
description for the set of all controllable initial points.
Mie Y= Mic Y,. 6D
COROLLARY 4.3. The set of all controllable initial points of the system (1,1) A8 BERBE Thio proof follows trivially from the fact that ¥ ¥ and the Definition
the form A 3 AN
o P(Yo N (I—Ke*) Mic V4K Mes 7)

where Rr*kns p=[[,0, ..., 0] (4‘{ MMA 80, There exists a De Rk guch that for A=A+CD the following

A very simple necessary condition for controllability (/2-controllability) e § e hold

obtained from (4.10). A Mic Yye Mic Y, , (5.2)

COROLLARY 4.4. If the system (1.1) is IP-controllable {controllable) on [0 & Hig A Mic Y= Mic Y. (5.3)

dim P Mic P=n. (41 foofl, Since, by Lemma 5.2, Mic ¥ = Mic Y, one can choose a basis ¥y, 2, «.s Vo
b _ . i b AV such that i, o, v p€q is a basis for Mie Yy, By definition A Mie Ve
Proof. Applying the transformation (4.12) to both sides of (4.10) and observie | Ry and A Mic ¥ e Mic ¥, + Rz, This implies Ay, =w; + o, for some

that PK=0, PY,=R" one gets (4.13). : Mh' Vol ispoand woa Mie ¥, i>p, and for some v @ R™, i=1, .., ¢. Now
It is interesting to know, for systems which are not IF-controllable, o construgti D such that f)l,- ~v,, This I8 possible since dim {yy, ey} =g @dim
description of a set of all controllable initial functions, This problem however remui Lty ] Thus the proof is complete,

ustolved aud. will o} b troniss dnSEAGRIRE Now the controllability crlterfon oan be proved In the form of
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Trmoren 5.1, The system (1.1) Is controllable on [0, £, ]y k=1 < <k If and only SN2 (BY), dofine ymyo+ Ry, yym =e"4" y;, wim—e"4tw,.

Rﬁ(‘.‘ Mie Y, + R"r ’
7 (B)yx (Yo+ K (B))= E(Mic Px Mic ¥,)+Mes ¥x K Mes Yy,

where : Ee /i
~ ol L Bt

\ e R.!lmx 2kn L

A=A+CD for some De R"*™ such that (5.2) and (5.3) are satisfied, #%

an arbitrary knxn matrix such that

Rz=Mic Y, and R;_s=Re.

Proof. By conditions (ii), (iii) of Lemma 5.1 controllability of (1.1) on [0,‘
implies that for any “disturbance” f there exists a Y,-maintainable vector 1y is
Corollary 2.2 this implies (5.4). Now we have to prove only that il (5.4) holda |
controllability of (1.1) on [0, #,] is equivalent to (5.5). Let A, B be mateioes : - -
required in theorem. The existence of A, B follows from Lemma 53 and from ¢ Yo= (/=K e') Mic Y, +Mes Y+K Mes Y. (5.8)
inclusion (5.4) respectively. Note that, by Lemma 5.2, (5.4) implies (4.2). Apply!
Corollary 2.3, if (B1) holds then y (0)=yo + Ry, € Mic ¥ and yy,@ Mie ¥

Theorem 4.1 one concludes that et y (0)+wy + Mes ¥ is the set of all
¥-reachable at t=t from y (0)e Mic ¥ where

W, =f ¢4 =9 B f(s) ds.
o

Similarly eA(=9 y, +w,+ Mes Y, where
1
Wy= f et =9 B f(s) ds,

T

is the set of all points ¥;-reachable at r=11from y(r)=)2 € Mic Y. It is an eleme Weanl, Follows trivially from the Theorem 5.1.

fact in controllability theory that the transformations f—wy and Sy deling e obtalns easily the result analogous to Corollary 4.4.

(5.6), (5.7) are onto 7 (B). Since the integrals in (5.6), (5.7) are defined aver [

intervals (except the point 7) it is clear that / (w3, w2) is onto o (Ayx LAY 8.0, If the system (1.1) is IP-controllable (controllable) on [0, ¢,] then

From above considerations it follows that the property (BI) implies

(B2) ¥ (vor Wiy w2) € Yox Z (B)xof (B)3 (3, 2) € Yy X Mie ¥y
(i) yo+Ky, € Mic ¥,

(i) 32 € e (yo+Kyy)+wi+Mes ¥),

(iii) p; € et y,+wy+ Mes Y.

Tt is easy to verify that, conversely, (B2) implies (B1). Finally the e
between (B2) and

(B3) Y (yo, Wy, W2) € Yo x .7 (B)x . (B)3 (3 yi) e Mic ¥x Mie ¥y

() w,ey+yy+Mes Y,

(i) yo+ Kw, G,\’-i-Rc‘iK’t"T v+ K Mes Yy,
can be proved,

F e MI‘MF(‘ ¥, wi e/ (B) since from (5.2) and from the structure of

¥ Whle subspuce it follows that the sets considered are invariant under A

tiatlon it is readily seen that B2(ii)=+B3(i). The condition B2 (iii) implies;

Wi b Ky oy = Ke' yy+ Kwy+ K Mes Y, and hence B3 (i) follows.

I the gonverse, define y,= —c?* ), w, = —ed* wr, and y,;=K* y. Then we
the proof in like manner as in case of (A3)=-(A2) in the previous section.

property (B3) is equivalent to (5.5) in an obvious way. Thus the proof of
m A0 v complete.

1§

! paldering specinl cases of 7P- and IF-controllability one obtains the following

BLLARY 8.1, The system (1.1) is /P-controllable on [0, #,], k—1<#, <k if and

a0

: funl, Setting /=0, it follows from the proof of Theorem 5.1 that IP-con-
1 AN th 9""! Iy equivalent to (B3) with w,=w,=0. Hence B3 (i) implies that y=
[ S0 [or some fle Mes ¥, Substituting this to B3 (i) yields -

b

Yie Yo ‘:I(‘l';._F) & Mic Y, xMes Y:y, € (ﬁe:‘—f) vi+i+KMes ¥, (5.9)

W Ehin I8 equivalent to (5.8). Conversely, (5.9) implies that for each y, € ¥, there
Ay = Vi i@ Mic Y, + Mes Y= Mic Ysuch that yo € y+K e y3 + K Mes Y,
_ Hils In the modification of (B3) for the case of IP—controllabilit;.

LLAIY 5.2, The system (1.1) is IF-controllable on [0, #,] iff (5.4) and (5.5)
Fym0 are watisfied,

dim P(Mic Y, +Mecs ¥)=n. (5.10)

f tig that in case ry=k—1-+7, 0<7<l, the derived conditions (5.4),
A M), (4,10) does not depend on 7.

0 ayatem with lag h#l, >0
|

| X (1) AN (1) = B (1= 1) -+ Cu(f) (5.11)
: W e the transformation rsssh, x (shysz(s), w(sh)y=w(s) to obtain
: ) 2()mhA z(0)+hBz(s=1)+hC w(s). (5.12)

the controllability of (5.11) on [0, k4] is equivalent to controllability of

0 [0, &) and this b equivalent to (4.2), (4.9) with o* replaced by o4, This



is evident since the other terms in the criterion does not depend on i, A=0, that s,
Ry = R,;, Mic (4, €, ¥) = Mic (hd, hC, ¥) etc. After similar substitution the
Theorem 5.1 is valid for the system (5.11) in case 7, #/kh.

6. Examples

Example 1. Consider the system of the form (l1.1) with matrices 4, B, C as
below 00 0 001 0
A=|10 =1}, B=|010|, C=|0].
00 1 000 i

Note that the system is relatively controllable on [0, 2] (see [2], [4], [3] for the
criterion of relative controllability) since

rank (C, AC, BC)=3.
It will be shown in what follows that the system considered is not controllable.

Let k=2 be an arbitrary integer and let us check the controllability on [0, k]. At
first compute Mic ¥ using Lemma 2.2.

0 0 0 ;€0 0..00

0 0 €y €a 00

==l * i Ré= B Qi .
0 0 0 g 8 ® W 00

€1 € €, O 0 0 0 e €1 €3

where e,, ¢,, ¢; are the columns of the identity matrix 7 e R*** and, for conveniency,
{A} denotes the range R, of a matrix A4 when the clements of 4 are written explicitly.

Hence 00
oo
00|
e, e
1
and 0 0 ‘
AT (X,nR2)=10 0 l
C3 t_!z |
0 e, —c—?3l
since BT ¢, =e¢;, AT e, =0, BT e;=¢,, AT ¢;=¢,—¢;. Now one obtains
(00000
X,=Xo+AT(X,nR7)=100 . . .}

leses0 0 0
[0 Oe, e; e

o — - — - - -

Xi=

Similarly
0
Xy =Xo+ AT (X,NRE)= 3 + X,
€y
0
and
e;¢,0...000 000
0 e, e,
10 0 g4

5ok e; 00
000 €y '€3 &5 000
000..00 0 ¢ e,e;

Furthemore X,=X,,;=... and thus Mic ¥=X".
Let us rewrite (4.2) in an equivalent form

Rj = (Mic T+ Rp)" =(Mic T)*nR;

Here
[¢;0 0 0]
IOI 0 ol
Rz=loo 1 .\
G |
000 1

It is readily seen from above that (4.2) cannot be satisfied since a vector
{’1
.ol L
e(Mic Y) " NR;
0
is not in Ry and this implies, by Theorem 4.1, that the system considered is not

controllable on [0, k]. Since k is an arbitrary integer so there is no a ¢, >0 such
that the system is controllable on [0, #,].

Example 2. Assume the matrices 4, B, C of the system (1.1) are as follows

00 [ 01 1
"*‘[01]’ B_flo]’ C_lo‘

Consider the controllability on [0, #;], 2<1¢, <3. Here, by Lemma 2.2

lejies 0] €3
Mic V=0 0e,|, MY, =|0
000 0
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This can be also verified directly using the definition of maximal contre i | ¢, ¢, 0 ¢,
invariant. I ¢ 0@ 0
Clearly Ryc Mic Y, +Rp so that (5.4) is fulfilled, By the construction of : L g Il(Mff‘ O Mie V) 0000
proof of Lemma 5.3 , I ket e, e 00
000 0 0eyere,
D=|D 0 0)eR**¢, D=[0, =1], 0 000
0:DO0 , fer 0
Ay 090 0 e,
Al L0 g' ;;1 2 3 Mes Px Mes Y, ={g 3 '
where |0 0
" _[ 0 O] bt O R In the zero vector, 10 0
=10} e tan check easily that the vectors of o7 (B)x (Y, +K o (B)) are linear
_ ; binutions of the vectors from £ (Mic ¥x Mic Y)+Mes Yx R Mcs Y,. Thus
One can choose B=B or more simply I8 : {8 antintled and the system considered is controllable on [0, ¢,], t; >2. However
—e, 0 el sontrolluble on [0, 2] since in this case
B=| 0 0]eR% , " fes)
00 dim P Mie ¥Y=dim 10'1 =1 <22
It may be checked easily that AB=B which implies o (B)={B)}, B The necessary condition (4.13) is not satisfied,
Now compute \
0 0 0 ;
Ref=|(e=1)A+10 0| e Rexe, Ennelustons

(e—1)B, (e=1)A+I0

; Ilplluh ulgebraic necessary and sufficient conditions of controllability to zero

taking into account the relations ; IR for linear constant time-lag systems have been derived. The conditions
' Mly damputable, that is, iff one knows the matrices 4, B,-C of the system (1.1)

B2=0, A*=A, AB,+B, A=B,, I*=A. o i :
Wl e terms appearing in the criteria can be easily computed and the conditions

Subsequently ¢ L Be cheeked, This has been illustrated by two numerical examples. The criteria
Mes Y= (Mic Y,NRg)=0, 0 the phper have rather geometric than purely algebraic form. Nevertheless
) : i Wie eilled to be algebraic since they can be easily expressed in an usual rank-
s Lt b e 0 a8 Ik (e necording to the rule
Mes Y=o7 (Mic YRy)= | |0 | |=10 eat. - .

0 00 ‘ R, < Ry <+ rank B=rank [B, 4].
Hence it may be verified that the subspace £ (Mic ¥ x Mic Y,)4+Mcy PR R WA results in the paper are also valid for systems with lag h#1, h>0
includes the subspace . (B)x (Yo+K 7 (B)). In fact, it follows from Ahs I thit some small changes are made. The general scheme for obtaining
lllhillty conditions based on equivalent system (3.3) with condition (3.6)
e; 000 W8 upplied for systems with many commensurable delays, Moreover, in like
0000 fy W0 wide class of optimal control problems for general nonlinear nonstationary
T Byx (Yot R T (B)= 0000 SR, s Il wystem can be transformed Into problems for some non-delayed system,
0 e e0 i Ppioneh may have advantage, especially for some fixed time control problems,
000w Wh the equivalent non-delayed system han the dimension An while the timeslug
(] o o I - Ay e it mdisa ] ( | o O UL I | T L L
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condition of the type (3.6) are equivalent to (k= 1)n sealar equations, I AEOHIILIX, CTAMOIAPILIX CHCTOM © JRNAYILBANCM

true dimension of the problem is preserved. The disadvantage {8 that the for
of a new non-delayed problem may be much more complex than of the prahl PACCMIT PHBAGTEN TIHENIIT IHHAMINCCRAS CHETEMA © BAaNadBIBAHNEM, NPeaCTan-

time-lag system. WRRBRen & ()= Ay (O By (D4 Cut), tae x(t)e R u(r)e R"; A, B, C— nocro-

M Honyseno ofuiee pewienne npobiemMnl yNpapaseMocTH K HyneBoit dyHkin.
BB e B dopye b, aareGpanieckns yenonnii nocTpoeHHbIX Had OCHOBE HEKOTOPbLIX
B B Mg o, 4, Kparepult ynpanasieMOCTH 10JIYMEH NPH TIOMOLLK HOBOTO METO4,
D aasennTs npobaemy yopanjicHus B CHCTEME C 3anas3jbiBaHHEM PaBHOCHILHOI

Al eroTopolt cneremit Ged samasasisanuii, B KOTOPO HAYAIBHOE H KOHEYHOE COCTO-
AR TROPIIO T A0NOANHTeILH0E  ypasueraue, Jias pelienus SKBUBAJEHTHOH mpobiemabl

WA PRIIOMEI0 HECKONLKO TCOPEM O CHOCOBHOCTI YASPHMAHNS TPACKTOPHK H KOMIIEHCA-
Ve o ey cxcremax 63 3anasabiBaHis.
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|

Algebraiczne kryteria sterowalnodci do funkcji zerowej
dla liniowych stacjonarnych ukladéw z opdznieniem

Rozpatrzono liniowy uklad dynamiczny z opdZnieniem opisywanym rownaniem & ()= s
+Bx(t—1D)+Cu(t), w ktorym x(1)eR*, u(t)e R"; A, B, C— stale macierze, ,
Otrzymano rozwigzanie og6lne problemu sterowalno$ci do funkcji zerowe| (zerowegs
zupehego) dla tego typu ukltadow. Rozwigzanie jest podane w postaci sprawdzalnyeh numisy
algebraicznych kryteriow wyrazonych za pomoca pewnych funkeji macierzy A, #, €' K1y
otrzymano stosujac nowa metode umozliwiajaca zastapienie problemu sterowanin W h
z opoZnieniem rownowaznym problemem w pewnym ukfadzie bez opdznienia spelnlnfgeyin ¢ ‘ ‘. 
we wiezy rownosciowe narzucone na stan poczatkowy i koncowy. I
Dla rozwigzania problemu w nowym sformulowaniu podano kilka lemuatdw M"

utrzymywalnoéci trajektorii oraz kompensacji zaklocen w liniowych uklndach bz opi f_.
]
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