Adaptive stochastic approximation and sample mean algorithms for tracking
 by
 MARIUSZ BARSKI, WOJCIECH JEDDRUCH
 Technical University of Gdańsk
 Institute of Informatics

The stochastic approximation and sample mean with constant memory algorithms are used for tracking a randomly time-varying process in random environment. A mean square error and convergence properties of both methods are investigated. When variances of the measuring noise and the process to be tracked are not known, the method of adaptation is presented. The result of computer simulation are given, as well.

1. Introduction

It is often necessary to obtain estimates of the instantaneous values of timevarying parameters from noisy measurements. This problem arises in tracking of moving targets, identification of nonstationary plants and many situations connected with measuring of time-varying quantities. Solving this problem can be realized with optimal schemes as Wiener or Kalman filters (see e.g. [1] and [2]). However, these schemes require accurate prior statistical information about process and disturbances. When it is impractical or impossible to arrive at this information, sub-optimal and adaptative techniques must be considered [3].

Another way of solving this problem is the use of heuristic algorithms, like this. in [4].

This paper describes two adaptive algorithms for tracking; the first one based on the stochastic approximation method, the second one on the sample mean with a constant memory.

2. Stochastic approximation algorithm

Let the tracked process be described by equations (1) and (2):

$$
\begin{gather*}
x_{n+1}=x_{n}+\varepsilon_{n} \tag{1}\\
y_{n}=x_{n}+z_{n},
\end{gather*}
$$

where: (1) x_{n} is the process submitted to increments ε_{n}, and y_{n} is its observation masked by noise z_{n}; (2) $\left\{\varepsilon_{n}\right\}=\varepsilon_{n}, \varepsilon_{n-1}, \ldots, \varepsilon_{0}$ and $\left\{z_{n}\right\}=z_{n}, z_{n-1}, \ldots, z_{1}$ are realizations of white, independent, stationary random sequences with zero mean and bounded variances.

The aim of a tracking algorithm is to give as good as possible estimate \hat{x}_{n} of the instantaneous value of the process x, basing on observation sequence $\left\{y_{n}\right\}=$ $=y_{n}, y_{n-1}, \ldots, y_{1}$.

The form of equations (1) and (2) generating the process and its observations, suggests the use of stochastic approximation method for tracking. Up to now it has been employed when $\varepsilon_{n}=0, n=1,2, \ldots$ [5], which corresponds to the estimation of a constant parameter, e.g. the mean of the random value.

Furthermore it was generalized on the case of process generated by the equation

$$
x_{n+1}=a_{n} x_{n}
$$

with known coefficients a_{n} and named dynamic stochastic approximation [6, 7]. Now, we will use the stochastic approximation algorithm for tracking the process (1).

The algorithm has the form

$$
\begin{equation*}
\hat{x}_{n+1}=\hat{x}_{n}+\lambda_{n}\left(y_{n+1}-\hat{x}_{n}\right) \tag{3}
\end{equation*}
$$

where \hat{x}_{n} — estimate of x_{n} (with \hat{x}_{0} chosen arbitrarily), λ_{n} — weighting coefficient.
When the constant parameter is estimated, algorithm (3) converges to the true value in the mean square, under the following conditions [8]

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{n}=0, \quad \sum_{n=0}^{\infty} \lambda_{n}=\infty \tag{4}
\end{equation*}
$$

These conditions does not include the condition

$$
\sum_{n=0}^{\infty} \lambda_{n}^{2}<\infty
$$

which is needed for convergence with probability 1.
Now it is reasonable to expect different properties of the algorithm (3) and different conditions on $\left\{\lambda_{n}\right\}$. Each term of the sequence $\left\{\lambda_{n}\right\}$ weighs the effect of a new observation on the instantaneous value of the estimate. Particularly: if $\lambda_{n}=1$, then all the previous but last observations are ignored and $\hat{x}_{n+1}=y_{n+1}$; if $\lambda_{n}=0$, then the last observation is ignored and $\hat{x}_{n+1}=\hat{x}_{n}$.

The tracking of the process is impossible without taking into account new observations, so it should be

$$
\lim _{n \rightarrow \infty} \lambda_{n}>0
$$

which is in contrary to (4).
Thus, let us examine the properties of algorithm (3). Define the tracking error after n-th step by

$$
\begin{equation*}
\Delta x_{n} \Delta x_{n}-\hat{x}_{n} \tag{5}
\end{equation*}
$$

and substituting the expressions (1) and (2) into (3) and (5) we obtain

$$
\left(\Delta x_{n+1}\right)^{2}=\left(\Delta x_{n}+\varepsilon_{n}\right)^{2}\left(1-\lambda_{n}\right)^{2}-2 \lambda_{n}\left(1-\lambda_{n}\right)\left(\Delta x_{n}+\varepsilon_{n}\right) z_{n+1}+\lambda_{n}^{2} z_{n+1}^{2} .
$$

Making use of assumptions on ε and z and taking expectation of both sides of the above expression we have the recursive relation for the mean square error of the estimates

$$
\begin{equation*}
b_{n+1}=\left(b_{n}+\sigma_{\varepsilon}^{2}\right)\left(1-\lambda_{n}\right)^{2}+\lambda_{n}^{2} \sigma_{z}^{2} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{\varepsilon}^{2} \triangleq E \varepsilon^{2} ; \quad \sigma_{z}^{2} \triangleq E z^{2} ; \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
b_{n} \xlongequal{\Delta} \underset{\left\{z_{n}\right\},\left\{\left\{_{n}\right\}\right\} / b_{0}}{E}\left(x_{n}-\hat{x}_{n}\right)^{2} ; \quad b_{0} \stackrel{\Delta}{x_{0}} E\left(x_{0}-\hat{x}_{0}\right)^{2} . \tag{8}
\end{equation*}
$$

Setting the first derivative of b_{n+1} with respect to λ_{n} equal to zero, and solving for λ_{n} we obtain the sequence $\left\{\lambda_{n}^{o}\right\}$ that minimizes (6). The result is

$$
\begin{equation*}
\lambda_{n}^{o}=\frac{b_{n}+\sigma_{\varepsilon}^{2}}{b_{n}+\sigma_{\varepsilon}^{2}+\sigma_{z}^{2}} . \tag{9}
\end{equation*}
$$

Substituting the expression of (9) into (6) and setting

$$
b_{n+1}=b_{n}=b_{\infty}^{o}
$$

one obtains the minimized limiting mean square error

$$
\begin{equation*}
b_{\infty}^{o}=\frac{\sigma_{\varepsilon}^{2}}{2}\left(\sqrt{1+4 \frac{\sigma_{z}^{2}}{\sigma_{\varepsilon}^{2}}}-1\right) \tag{10}
\end{equation*}
$$

and the optimal limiting, constant weighting coefficient

$$
\begin{equation*}
\lambda_{\infty}^{o}=\frac{\sigma_{\varepsilon}^{2}}{2 \sigma_{z}^{2}}\left(\sqrt{1+4 \frac{\sigma_{z}^{2}}{\sigma_{\varepsilon}^{2}}}-1\right) . \tag{11}
\end{equation*}
$$

It should be noted that if $\sigma_{\varepsilon}^{2} \neq 0$, the optimal sequence $\left\{\lambda_{n}^{o}\right\}$ goes to nonzero limiting value as n increases without limit, which confirme our previous expectations. That is, algorithm (3) with sequence $\left\{\lambda_{n}\right\}$ given by (9) is an optimal (in the mean square sense) stochastic approximation algorithm for tracking the process (1).

It appears that this algorithm is analogical to the Kalman filter obtained for equations (1) and (2). The only difference is that the Kalman filter is really a one-step predictor while algorithm (3) realizes pure filtration. However, if we design the Kalman filter for pure filtration (see e.g. [1]) it becomes identical with the stochastic approximation algorithm (3).

The identity of the optimal stochastic approximation algorithm and the Bayesian estimator was shown in [9] in the case of estimation of a constant value ($\sigma_{\varepsilon}^{2}=0$).

It is seen from (9), that the optimal algorithm (3) is a nonstationary one. However, it tends to the stationary (time-invariant) algorithm, with constant weighting coefficient given by (11). This stimulates the following question then, how will the
algorithm with a weighting coefficient constant from the beginning be working and what will the optimum value of such a cocfficient be?

Substituting $\lambda_{n}=\lambda=$ const. and $b_{n+1}=b_{n}=b_{\infty}$ in (6), and solving for λ we obtati

$$
\begin{equation*}
b_{\infty}=\frac{\sigma_{\varepsilon}^{2}(1-\lambda)^{2}+\lambda^{2} \sigma_{n}^{2}}{2 \lambda-\lambda^{2}} \tag{12}
\end{equation*}
$$

It can easily be shown, that expression (12) has a minimum given by (10) with λ given by (11). It means that the limiting mean square errors of the optimal stationary and the optimal nonstationary algorithms are equal.

3. Sample mean constant memory (SMCM) algorithm

Now, let us examine the properties of the simple algorithm

$$
\begin{equation*}
\hat{x}_{n}=\frac{1}{N} \sum_{i=n-N+1}^{n} y_{t} \tag{13}
\end{equation*}
$$

which computes the sample mean of N last observations. If the number of observations exceeds N then the mean square estimation error given by this algorithm is

$$
\begin{equation*}
b=\frac{(N-1)(2 N-1)}{6 N} \sigma_{\varepsilon}^{2}+\frac{1}{N} \sigma_{z}^{2} \tag{14}
\end{equation*}
$$

It is seen from the above expression that the m.s.e. consists of two componenti, The first one, dependent on process variation, and therefore proportional to σ_{h}^{\prime} The latter one, dependent on the measurement noise, and proportional to σ_{i}^{2}, Thie increase of N results in a decrease of the effect of the measurement noise, but at the same time decreases the ability of the SMCM algorithm to follow the changes of the process. Thus, the optimal value of N, that minimized (14), would be a compromine between the noise damping and the ability of tracking the process. It occurs for

$$
\begin{equation*}
N=\sqrt{3 \frac{\sigma_{z}^{2}}{\sigma_{\varepsilon}^{2}}+\frac{1}{2}} . \tag{18}
\end{equation*}
$$

Expression (15) gives the solution for N in real numbers, however, while the algorithm (13) requires natural numbers for N. Thus, as an optimal value N^{0} of N this natural number neighbouring with solution (15) should be chosen, for whidi the error (14) is smaller.

In order to compare the quality of the algoritms (13) and (3), let us allow for moment that N^{0} could be a real number given by (15). Substituting (15) 10 (14) we have

$$
\begin{equation*}
b^{o}=\frac{\sigma_{t}^{2}}{2}\left(\frac{4}{3} \sqrt{\left.\frac{1}{2}+3 \frac{\sigma_{z}^{2}}{\sigma_{t}^{2}}-1\right)}\right. \tag{16}
\end{equation*}
$$

Plots of the m.s.e, versus $\alpha^{d} \sigma_{n}^{2} / \sigma_{1}^{2}$, which depiets the functional relations of (10) - curve 1 , and (14) (with natural N^{0}) - curve 2, are shown in Fig. 1. The ourve 2 is a piece-wise linear, tangent to the unshown plot of the error (16) in points,

Fig. 1. Mean square error of the TISA (1) and SMCM (2) algorithms. The points marked by circles indicate where the optimal SMCM ulgorithm changes N to $N+1$
for which N given by (15) is a natural number. The points marked by circles correspond to the values of α for which setting of two succesive natural numbers for N in (14) gives the same value of error. These values of α are given by

$$
\begin{equation*}
\alpha_{N}=\frac{\sigma_{z}^{2}}{\sigma_{\varepsilon}^{2}}=\frac{2 N^{2}+2 N-1}{6} ; \quad N=1,2,3, \ldots \tag{17}
\end{equation*}
$$

and indicate when the optimal algorithm changes N to $N+1$.

A. Adaptation

The optimization of the time-invariant stochastic approximation (TISA) and AMCM algorithms requires knowledge of α. If α is not known there is a possibility of estimating it, on the base of observations y_{n}. A priori unknown value of α is then heing replaced by actual estimates Q_{n} in the tracking algorithms.

Let us consider an estimation of α by independent estimation of σ_{z}^{2} and σ_{z}^{2} with the following expressions

$$
\begin{equation*}
\partial_{t n}^{2}=\frac{1}{n(k-l)} \sum_{i=1}^{n}\left[\left(y_{i+k}-y_{i}\right)^{2}-\left(y_{i+1}-y_{i}\right)^{2}\right] \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\theta}_{3 n}^{2}=\frac{1}{2 n(k-l)} \sum_{i=1}^{n} k\left(y_{i+1}-y_{i}\right)^{2}-1\left(y_{i+n}-y_{i}\right)^{2} \tag{19}
\end{equation*}
$$

where k, l - natural numbers chosen arbitrarily, and $k>1$.
In order to prove the mean square convergence of both estimatorn one nhenhi notice that they are the results of the subtraction of the estimators

$$
\begin{equation*}
\hat{e}_{s n}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i+x}-y_{i}\right)^{2} . \tag{20}
\end{equation*}
$$

The mean value of the $\hat{e}_{s n}$ is

$$
\begin{equation*}
E \hat{e}_{s n}=E\left\{\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=i}^{i+s-1} \varepsilon_{j}+z_{i+s}-z_{i}\right)^{2}\right\}=s \sigma_{n}^{2}+2 \sigma_{n}^{2} \tag{21}
\end{equation*}
$$

Hence

$$
\begin{equation*}
E \hat{\sigma}_{\varepsilon n}^{2}=\sigma_{\varepsilon}^{2} \quad \text { and } \quad E \hat{\sigma}_{z n}^{2}=\sigma_{z}^{2} . \tag{2}
\end{equation*}
$$

Now, it will be sufficient to show the mean square convergence of (20) to (21) After many transformations we have

$$
\begin{align*}
E\left(\hat{e}_{s n}-E \hat{e}_{s n}\right)^{2}= & \frac{1}{n}\left[s^{2} E \varepsilon^{4}+\frac{6+s}{3} E z^{4}+\frac{s(36-2 s)}{3} \sigma_{z}^{2} \sigma_{t}^{2}+\frac{s\left(4 s^{2}-9 s+22\right)}{3} \sigma_{n}^{4}\right] \\
& +\frac{1}{n^{2}}\left[\frac{s\left(s^{2}+1\right)}{3} E \varepsilon^{4}-2 s E z^{4}-\frac{s\left(s^{3}-3 s^{2}-s+3\right)}{3} \sigma_{t}^{4}+2 s \sigma_{t}^{4}\right] \tag{21}
\end{align*}
$$

Thus, if the probability densities $p(\varepsilon)$ and $p(z)$ are symmetric ones, and all the moments arising in (23) are bounded, then

$$
\begin{equation*}
\lim E\left(\hat{e}_{s n}-E \hat{e}_{s n}\right)^{2}=0 \tag{24}
\end{equation*}
$$

On the base of (22) and (24) one can conclude that the estimators (18) and (19) are convergent to σ_{ε}^{2} and σ_{z}^{2} accordingly, in the order of $1 / n$.

The expressions for the variances of the estimators (18) and (19) are very similar to that of (23). They are functions of numbers k, l and 2 -nd and 4 -th momentif of variables ε and z. However, the minimization of these variances with reipeet to k and l (or, in other words, the increase of the estimation efficiency) if not possible because of lack of any prior information about the momentin mentioned above.

It should still be noted, that computing the estimates (18), (19) can be obtained via equivalent recursive formulas

$$
\begin{align*}
& \hat{\sigma}_{\varepsilon(n+1)}^{2}=\hat{\sigma}_{\varepsilon n}^{2}+\frac{1}{n}\left[\frac{\left(y_{n+k}-y_{n}\right)^{2}-\left(y_{n+l}-y_{n}\right)^{2}}{k-l}-\hat{\sigma}_{n n}^{2}\right], \tag{25}\\
& \hat{\sigma}_{x(n+1)}^{2}=\hat{\sigma}_{n n}^{2}+\frac{1}{n}\left[\frac{k\left(y_{n+1}-y_{n}\right)^{2}-l\left(y_{n+k}-y_{n}\right)^{2}}{2(k-l)}-\hat{\sigma}_{n n}^{2}\right], \tag{26}
\end{align*}
$$

1. Numerical examples

We whall illustrate the work of the adaptive tracking algorithms by giving namerical example. The example consists of a computer simulation as follows.
Making use of an algorithmic generator of pseudorandom numbers, process x anid ifir observations y were generated according to equations (1) and (2). Basing on ahervations y_{n} variances σ_{n}^{2} and σ_{z}^{2} were estimated by the algorithms (25), (26). Then, nitimal values λ^{0} and N^{0} were computed from (11), (15) and (17). Current values if λ^{01} and N^{0} were used, then, in the algorithms (3) and (13), from which the TISA and SMCM estimates of x were obtained.

The probability density functions of the ε and z were assumed to have the form of

$$
p(\varepsilon)=\left\{\begin{array}{l}
\sqrt{6} \text { for }-\frac{1}{2 \sqrt{6}}<\varepsilon<\frac{1}{2 \sqrt{6}} \\
0 \text { out of this interval }
\end{array}\right.
$$

Fig. 2. Typieal plots of a convergence of λ and N to its optimal values

$$
p(z)=\left\{\begin{array}{l}
1 \text { for }-0.5<z<0.5 \\
0 \text { out of this interval }
\end{array}\right.
$$

Since, for these densities we have $\alpha=\sigma_{n}^{2} / \sigma_{n}^{2}=6$, then $\lambda^{0}=1 / 3$ and $N^{0}=4$ In the estimation algorithms (25), (26) $k=10$ and $l=5$ were taken. Before obtaining the first values of the estimates $\hat{\sigma}_{n}^{2}$ and $\hat{\sigma}_{\pi}^{2}$ (i.e. before the moment of $k+1=11$) in the tracking algorithms $\lambda=1$ and $N=1$ were taken.

Next, in order to ensure a correct work of these algorithms, it was assumed that

$$
\begin{aligned}
& \text { if } \hat{\sigma}_{z}^{2} \leqslant 0 \text { then } \lambda=1, N=1 \text {, and } \\
& \text { if } \hat{\sigma}_{z}^{2}>0 \quad \text { and } \quad \hat{\sigma}_{\varepsilon}^{2} \leqslant 0 \quad \text { then } \quad \lambda=0, N=N_{\max },
\end{aligned}
$$

where $N_{\max }$ denotes the capacity of the register the observations y_{n} were stored in
As a result of simulation, the plots of λ and N versus the number of iterationit are shown in Fig. 2. It is evident that they approach the optimal values given above.

For the purpose of illustrating how the both tracking algorithms work in thie optimal regime $\left(\lambda \approx \lambda_{\infty}^{o}\right.$ or $\left.N=N^{o}\right)$, in Fig. 3 the process x and its TISA and SMCM estimates are shown, for $n=3000$ to 3030 , where the inequality $\left|\lambda-\lambda_{\infty}^{0}\right|<10^{-3}$ holde

Fig. 3. Example of optimal TISA and SMCM tracking $0-$ process x, \square - observation $y,+-$ TISA estimate of x_{1} \triangle - SMCM estimate of x

4. Comments and conclusion

Two adaptive algorithms were presented which are capable of tracking a randomily time-varying process. These algorithms simultaneously track and estimate ilif unknown variances of the process and noise. Parameters k and $/$ which appeit if the variance estimators should be, however, chosen arbitrarily,

Additional work remains to be done on the use of the presented algorilimen if the situation when the random sequencies $\left\{a_{n}\right\}$ and $\left\{z_{n}\right\}$ are nonstationary

Reeent research indicates that if the variances of 6 and z are changing randomly, it ean simply be done by replacing $\gamma=1 / n$ with $\gamma=$ const, in variance estimators (25) und (26),

Heferences

, Nait N. E., Estimation theory and applications. New York 1969.
1 Jazwinski A. H., Stochastic processes and filtering theory. New York 1970.

1. Liondes C. T., Pearson J. O., Kalman filtering of systems with parameter uncertainties it nurvey, IIII, J, Control 17 (1973) 785-801.
2. Einenstin B. A., A self-learning estimator for tracking. IEEE Trans. Systems, Man and Cybernetic.日MC-2 (1972) 281—284
3. Цшшкн, Я. З: Применение метода стохастической аппроксимации к оценке неизвестной пнотности распределения по наблюдениям. Автоматика и Телемеханика (1966) 94-96. 6. Ципнн Я. З., Каплинский А. И., Ларионов К. А.: Алгоритмы адаптации и обучения і нестанионарных условиях. Техиическая Кибериетика (1970) 9-21.
1, Cimin Y. T., Fu K. S., Stochastic learning of time-varying parameters in random environment. IEEE Trans. Systems Sclence and Cybernetics SSC-5 (1969) 237-245.
ii. Jomucir $\mathrm{W}_{\text {., }}$ Convergence and the convergence rate of iterative procedures for identification of linear systems (in Polish) Arch. Autom. Telemech. 14 (1969) 459-469.
4. Chien Y. T., Fu K. S., On Bayesian learning and stochastic approximation. IEEE Trans. Systems Selence and Cybernetics SSC-3 (1967) 28-38.

Adaptacyjne algorytmy aproksymacji stochastycznej i średniej arytmetyeznej dla celów nadążania

Pray rozwiazywaniu zagadnień związanych z na dążaniem za procesem przypadkowo zmiennym W Urable, wykorzystuje się aproksymację stochastyczną i algorytm średniej arytmetycznej ze skońromį pamiẹcį. Przeprowadzono analizę blędu średniokwadratowego oraz własności zbieżności dla haldej z omawianych metod. Dla przypadku, gdy wariancje szumu pomiarowego i procesu, za hierym nadqzà siẹ, nie są znane, podano metodẹ adaptacji. Przedstawiono również wyniki modelowania na maszynie cyfrowej.

Алаттвпыне алгоритмы стохастической аппроксимации

\% вритметического среднего для цепей слежения
При решени попросов, связанных со слежением за процессом случайно изменяющимся月0 времени, нспольустся стохастическая аппроксимация и алгоритм аритметическото средиене о конечной памятыо, Проведен анализ среднеквадратической ошибки и свойств схо(кнноет дли рассматриваемых методов, Для случая, когда дисперсии измерительного шума \#иыененного продесса пеизвестны, дается метод адаптации. Представлены также результаты чолелярования на ЦВМ.

