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m puper presents i version of the local maximum principle based on the theory of Dubovitskii-
"u)llllll‘ Nystems of operator constraints satisfying so called Green formula are introduced. A Green

'.Mlﬂlllll and o local maximum principle for systems with delayed argument are proved, extending

- B lier renults,

Intraduction

In Mection | of this paper, a variational theorem based on the theory of
Pibovitskii-Milyutin [5] is proven. The theorem is formulated for the general case
ul nonlinear operator constraints and extends similar results obtained in [2], [6],
0] fr (he linear case; it is also connected with the saddle point theorem proven in [1],
Wit the ussumptions made here are more straightforward. Only equality constraints
Wi sonuldered ; because of this limitation more detailed discussion of the assumptions
I powsible,

These results are restated for the case of the constraints operator being defined
; l!llﬂl!ly by the abstract state equations which satisfy a Green formula. The results

Wiilned ure the continuation of some concepts and theorems of Aubin [2]; a local
Wiabmum principle in a distinct form is derived, generalizing local maximum
leiples known for systems described by ordinary [8] and partial differential
slntione (9],
~ Nut untll recently Banks and Kent [3] using the results of Neustadt [10] proved
[ Veiy peneral maximum principle for systems described by functional differential
Bultlone; however, it was not possible to establish the nontriviality of adjoint
Wuilablen, Jucobs and Kao [7] applied the multipliers rule to the systems with time
g wnd proved the local maximum principle in the normal form (4o #0) in the
Whseioe of constraints for control and under the assumption of complete
suitrollability,
~ Phe theorems of Section 1, are applied 1o the case of systems with lags in Section 2.
N tontlin of Jucoby and Kno are extended to cover the case of constrained control
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and systems which are not completely controllable, Seetion 2 containg also U ()t A dwclosed fn LAF and only if im A™ s elosed in U, 16 im A is closed, then

comparison of results known for systems with delayed argument, Im A¥ = (ker A):

In Sections 3 and 4 the problem when the attainable subspace is closed i diveusss . j
and two examples are presented. Section 5 containg final conclusions whieh apply
to infinite dimensional systems in general and can be of interest in numericul wark,

Part () of the theorem follows immediately from the definition of the adjoint
sperator, Part (i) can be found in [4] (Chapts. V1.6.2 and VL6.4).

We nmsume that the following will be satisfied from now on: U and L are real
Bunueh spnees, @ and M are the subsets of U, @ is nonempty and open while M

Notation 4 "l vlosed, convex and of nonempty interior; S: @—L and J: 0— R are continuously
: ti ~ Proohet differentiable mappings.
If X, Y are Banach spaces, then X* will denote the dual of X and %' (X, ¥) the The space U will be called the space of controls, L — the target space, M — the
set of all continuous linear operators from X to Y. For A& Z (X, V), A* will denote Wl ol ndmissible controls.
its adjoint, ker A its null space and im A — its range. If =X i an open el und; The following basic problem will be considered:
S: @Y is a Frechet differentiable operator, then its Frechet derivative at Ay “ Y
will be denoted by S, (xo) or briefly S, . If U is another Banach space and @, ¢ (BP) minimize J(u)
denote the open subsets of X, U and F: 0, x0,~ Y is Frechet differentiuble, then on the set MN{ue@: §u)=0}.
the derivative of F at (xg, to) € 0, x @, with respect to x will be denoted by F, (¥g ugl FOr 1, @ O, the subspace im S, of L will be called the attainabils sibspets of 5

or briefly by F,, when u, is fixed.
¢-, +> will denote the duality between X and X*; that is, for x¥ & X' ¥ & X
% iq . e 1 - o3 < T o] 4 4 o
{x*,x) is the value of x* at the point x. If K= X, then K* is defined by Tuponem 1, Let @ be a local solution to the problem (BP). Then
K*={x*e X*: {x*, x)=0 Vxe K}. (1) If the attainable subspace im S; at i is not a proper subspace dense in L,
i then there exist n number A,=0 and a functional /* € L*, (4o, [*)#(0, 0), satisfying

Wl g, o slmply attainable subspace, when wq is fixed.

If K is a subspace, then K* is and we will write K*=K"* in this case. _
Finally, the following convention is adopted concerning the derivatives of i mup - {=do Lo+ ST I*, d—up=0 VYue M. (1)

v R r t R™ wh fo. 1;] is an interval of R: . -~
SrR'X R x[to, t;]>R™ where [to, #,] is an interya 1 (1) If im 83 is a closed subspace of L, the tangent subspace to the set S~*(0)

BF (%1, %21 W0 equal to ker S; oand int (M —a)Nker S; is nonempty, then Ao#0 in (1).

=D, [ (X1, X2, 1), i=1, 2; ‘ p
Prool,

wd (1), Suppose that J; =0; then the pair (1, 0) satisfies (1). If im S; # L, then by
Nyputhesls im S; #L; hence by Hahn-Banach theorem or by (i) of Theorem 0,
there exisin n /* w0, I* € ker .S';:’, and (1) holds with (0, /*). Therefore one can assume
=N 0, im Sy L
Deflne the cones

8x;
if x; (+) are R" and R", respectively, valued functions defined on [ty £; ], then
af (x4 (1), x2(2), 1)

ox;

will be denoted briefly by D, f(z).
A vector from R” and its transpose are not distinguished, while A" denotes ths K, ={ue U: {J;, up<0}

atrix A. . < il g
transpose of matrix e Ui o, d»0 VieU VY0<e<ge, (li—ul<d=t+eie M)} Kiy=kerS;.

From theorems 7.5, 9.1 and 6.1 of [5] it follows that there exist functionals
. u;. u; # v, M': 8K (Il 2, 3) Uf;', Hz, u3)#(0,0,0), such that

Wi A s uy =0, (2)

=D, f(x: (1), x2 (1), 1)

1. Basic theorems

In this Section we shall introduce the basic notions which will be used throughag
Theorems 10,2 and 10.5 of [5) imply that u)= —A4e/J; for certain 1,0 and

the paper.
The following theorem will be of constant use in the sequel, ﬂ":'-(/« e 500" Sinco im S; =L, it is closed and by (ii) of Theorem 0 it obtains that
Mi= N 1" for certain (* e L¥,
TuroreMm 0 (Banach). Let U, L be Banach spaces and A e & (U, L), Then From theorems 8,2 and 10,1 of [8] and from (2) one hus { = Aq Jy +S3 1%, (1= u) =

(i) (im A)* mker A* and im A% (ker A l(u}. Wm0 Ve Moo that (1) holds, Ag and /* eannot vanish simultaneously,




since then wj=u3=0 and from (2) uy=0, contradicting the nontriviality of
(e, 95,05)

ad (ii). Arguing as above, we prove the existence of a nonzero triple of functionals
(u, 13, u3) satisfying (2). Suppose that 1,=0; hence u}=—2,J; =0. (1) implies:

(STF,uy<0 YueM—i. 3)
By hypothesis, there is @ e int (M —i)Nker S; ; hence
(SE I ay=(l*, S; a)=0, iiecint(M—q) )

From (3) and (4) we deduce that u;=S7 /*=0. By (2), also u;=0. This
contradiction proves (ii).

Thus the theorem is proved.

The basic problem (BP) and Theorem 1 can be easily generalized to the case
when the constraint set is equal to Mn{ue 0: S(u) e K}, where K=L is a convex,
closed cone. Such a problem with M=0=U and S affine was considered in [2]
and [9], Theorem 13.1, Chapter 3. The general problem with S being K-convex
was studied in detail by Golshieyn [6]; however, the case of equality constraints
(K=1{0}) was investigated under the assumption that S be linear and surjective
(Theorem 2.1, Chapter 3 of [6]). Note that the very general results of Neustadt [10]
do not allow to establish the nontriviality of the multipliers in the case of operator
equality constraints, unless L= R".

The really restrictive assumption here is that int M+ @. In the course of the above
proof, it is verified that K,NnK,NK;=@ and then the fundamental lemma of
Dubovitskii-Milyutin [5; Lemma 5.11] is applied to show the existence of u}, u5, u3.
If int M =@, this argument cannot be utilised. In this case, K,= @ and the conical
approximation K; of M at 4 should be defined as

K;={ueU:3>0 eueM-i}.
It can be proved that the following assumptions would do in this case:

— KX+ Kj is *-weakly closed (which can be viewed as an analogue of Min-
kowski-Farka$ Lemma);

—K;NK3;=K;nK; (which in fact is an analogue of Kuhn-Tucker regularity
conditions: see [1] and [11] Chapter 2.1).

These assumptions must be verified directly in each case.

Another way of proving the local maximum principle without assuming int M # @
is to consider the linearized attainable set S;(M) and to prove that its conical
approximation at #, which is equal to S;(K};) cannot be dense in L. Then the theorem
on tangent functionals ([4] Chapt. V.9.10) will yield the existence of a nonzero /*.

Both methods are frequently used but they require rather detailed assumptions
on the constraints; in the sequel, we shall stick to the assumption that int M # ©.

The case when the attainable subspace is a proper subspace dense in L, is
essentially singular and the assumptions of Theorem 1 here cannot be weakened,
as the following Lemma shows,
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LEMMA |, Let Se & (U, L) and im S be a proper dense subspace of L. If U
is a Hilbert space, then there exists a continuously Frechet-differentiable functional
J: U= R such that the following minimization problem:

minimize J{u)

on the set ker S={ue U: S,=0}
has a unique solution @, and if ,=0, /* € L* satisfy

—do Jp 4 S®*=0 &)
then A,=0 and /*=0.

Proof. By theorem 0, im S* cannot be closed and hence there is an vq e (ker )™\
Noim S*. Fix an #tieker S and set v=vo+i,J (W)=%<{u—v, u—ov).

Then 1 is clearly the unique solution of the problem (SP); moreover, J; = — ;.
Since v, ¢ im S*, (5) cannot be satisfied with 1,#0. But 1,=0 implies S* [*=0
and /*=0, because of (i) Theorem 0 and the density of im S.

Theorem 1 and Lemma 1 show that in practical applications the choice of the
target space L plays a very important role. The topology in L cannot be too weak,
otherwise the above mentioned singularity would occur, On the other hand, the
topology should not be too strong because this will usually result in a complicated
form of Lagrange multipliers. These problems will be discussed in the next sections
in the case of differential equations with delayed argument, but the conclusions are
general and apply to partial differential equations as well.

In the remaining part of this section, we shall apply Theorem [ to the case when
the operator S is defined implicitly by the abstract state equations satisfying so
called Green formula. In fact, we shall build a model of many dynamical optimization
problems and obtain the local maximum principle in a general, yet distinct form,
together with adjoint equations and transversality conditions. Aubin [2] was first
to investigate this problem in the linear case and applied it to partial differential
equations.

Assume that

— X, Wy, Wy, Y, L are real Banach spaces,

— F: XxU-Y,G: Wi—L,Q: Xx U-R, Q;: W,—R are continuously Frechet-
differentiable mappings and B, e % (X, W), i=0,1.

The problem is:

| minimize Q (x,u)+Q, (B, x)
I on the set of (x, #) e Xx U such that ue M and

(P)} F(x,u)=0
| -BD x=b0 (6)
| G (B, x)=0 ()

where by is o given element of W,
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Assume further that:

(H.1) — there is a nonempty open subset @< U such that to every uwe @ there
corresponds unique x= () satisfying (6) and that the mapping #:0—-X is
Frechet-differentiable;

(H.2) —for any uge 0, xo=% (1) there exists operators Djoe 2 (Y% XN,
T, € & (Y*, W) satisfying: '

(i) {Fx, X, Wy ={(By X, T, > +<X, D wyV xekerBoVyeY¥,

(i) for any Ze R, w* e W, there exist an y € ¥* such that

(D w, xy=(00y,, x> Vx€eker By
Ty, w=w*

Here, F,, and Q. denote the Frechet derivatives with respect to x of F,Q

respectively, evaluated at the point (o, ig).

Under the assumption (H.1) problem (P) can be converted to problem (BP)
by defining J and S in the following manner:

J:0—>R, S:0-L (€ asin (H.1))
JW)=0(F (), u)+ 0, (B, oF (1)),
S(u)=G(B,oF (1)).
Assumption (H.1) guarantees the existence of a solution x = 7, u to the equations

F, x+F, u=0,

(8)
.Bﬂ x=0,
whatever is ue U. Let wo=B, X, and consider the “terminal condition”
G, 0B, x=0. 9)

Equations (8), (9) are the linearization of (6), (7). The attainable subspace of
the system (6), (7) at u, consists of all /€ L such that there exist an ue U and x=
=7, (u) being the solution of (&) satisfying G, 0B, x=[; note that S, =
=G,,0 B, o F,,, hence the above assertion simply describes im S, and justifies
the name “attainable”. '

System (6), (7) will be called regularly li nearized at ug if the subspace tangent
to the set S~ (0), where S=GoB,oF is equal to ker S, . Clearly, any affine
system (6), (7) is regularly linearized.

Now we are ready to state the local maximum principle for the problem (P).

THEOREM 2. Let 7ie @ be a local solution to the problem (P) and set £=7 (i),
=B, £. If the corresponding attainable subspace im S;=im (Gy 0B, 0 F;)of
the system (6), (7) at & is not a proper subspace dense in L, then:

(i) there exist a number 4,>0 and /* € L%, (Lo, I*)#(0, 0) such that the solution
w of the equations:

(DE wy x> =Cho @iy X Vi & ker By, Ty wmho Qi =G I* (10)

R L L i it i, shvidiunlied

gatisfies the maximum condition:
(=do Qo +FPy, t—uy=20 VueM; (1)

(i) if, additionally, im G is dense in L, then (Lo, w)#(0, 0);

(i) if the system (6), (7) is regularly linearized at #, the attainable subspace at
it is closed in L and there is e int (M —i1) satisfying (8) and (9) (ug=1, xy=%,
uy=t, x=F ) then A, #0.

Proof.
ad (i). It suffices to compute J;, S% and apply Theorem 1.

Jy=0;0 F;+0; +Q 08,08
Let i, be a solution to
Dy, x)=(0z,x) VxekerBy, Tiyi=0- (12)
Then, for any ue U
{Qz0Fn+0,50B 0 F ), uy=L0;s, Fy W+{Q5, BioFjup=
— (D% yy, Foud+<{Ts w1, B o Fy upy=CFa0 Fy u,pi)=
=(=F; uy>=C(=FF yi, ..
in virtue of (H.2 (1)), (8), (9) and (12). Hence
J;=0;—F; v:.
Take any ue U and /¥ eL*, and let y, be a solution to
(DF w2 x)=0 VxekerBy, T;ya=—G,I" (12a)
Just like above, we have:
(S u, [¥y=(GyoB o F,ul*y=(B,oF;u, Ga Fy=
=—{(BioFru, Toy:)—{(F; u, Dz wy=—{FroFythy)=
=(Fy uy wap =<, Fi ya),

so that S¥ [*=F 7w, where y, is a solution to (12a). Now, let =20 W+, where
¥, v, satisfy (12), (12a) and (4, /*) are as in Theorem 1, (). Then  is a solution
to (10) and the maximum condition (1) vields (11).

ad (ii). Suppose the contrary, i.e. (Zo, w)=(0, 0). Then (10) implies /* € ker GE3
by hypothesis im G is dense, which is equivalent to ker G5 ={0}. Hence /#=0
and (Lo, I*)=(0, 0), contrary to (i).

ad (iii). Follows immediately from part (ii) of Theorem 1 and the definition
of a regularly linearized system.

Note that Theorem 2 will remain valid if one substitutes assumption (H.2) by
the following:
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(H.2") —for any uye0, xo=% (u,) therc exist operators Dl e & (Y% X",
T e (Y™, Wy), i=0, 1, satisfying:

() (Fy, %,y =<Bo %, TS, w)+<By X, T4, y>+<x, D wy Vxe X, Vy e Y™

(ii) for any Ae R, w*e W, there exist an y € ¥* such that
D::; Wz)“Q.\'ua Txl,, tj[=w$ *
Clearly, (H.2") implies (H.2) with T, =T} .

In order to illustrate the meaning of the above formalism let us consider briefly

the following example:
T

minimize [l g (x (1), u(r), 1) dt

on the trajectories of the system

(=A@ x(O)+B(t)u(t) ae. in [, 1]

x (to)=x7

g (x (fl)) =0,

where x (1) e R", u(r)e R, A, Bare nxn and n xr matrices and g: R" % R"x [ty, t;]=
R, g RP=R".

The adjoint equations in this case are given by

— ()= ATy ()= 20 Dy q(1),

y(t,)=DTgl, leR"

B LS

P
(D, f;(r}=£(.f (D, @ (1), t) where i, £ are the optimal control and solution). ’

These equations are related to the state equations by means of the integration by
parts formule:

L5

to

+ .J.I x(t) (= (6) —AT () w(n)) dt.

This is a special case of (H.2' (ii)) where (F;, XN ()=xO—-A@ xQ®), (D,j; y) ()=
(= AT Dy (1), Box=x(to), Byix=x(t), TS w=—v (to) To,y=v (1)
and the spaces X, Y are defined in a suitable way. It is easy to see how the other
operators should be defined, and that the maximum principle (11) is here
equivalent to

—Jo Dy g +w () B(H=0 ae. in [ty 1]

(Ao=0), that is,

dH (1) 4

1]

AU fumain

_}' w (O (X (=A@ x(D) di=y (1) x(t)—y (to) x (o) + §

Cireen formulas can be written for systems described by discrete and partial
differential equations [9]. It is also possible to write such a formula for systems
with time lags.

2. Systems with lags

In the following, we shall deal with the problem

Iy

minimize ¢, (x(t))+ [ ¢ (x (), u (@), 7) dr

with constraints:
(O =f(x(0), x (= ®), ulr), 1)
Hlh=xt
X ()=o)

(DP) g (x(t))=0
g(X(0,1)=0

and with the additional restriction
ue McU([ty, t,])

where M is a closed, convex set of nonempty interior in the space U ([7,, #;])
of control functions defined on [¢g, 7,].

a.e. on [fo, 1]

a.e. on [a(ty), fo]

a.e. on [ (), t1]

We assume that:

(A.1) —for any t¢e[a (f), t;], x(r) is a R* vector, and u (f)e R, t € [ty, 1,];

(A.2) —the functions g,,q.f, g, g are defined on the following spaces:

gi: R"—=R, q: R"x R"x [tg, t1]—=R

£ R"% R"x R % [t,, 1,]—= R

gl RS R g0 R o (1), 1, ]—=R";
Function f(x,, x,, u, 1) is assumed to be affine in u, while g is assumed to be affine
in the first argument. (See (A.4) and (A.5) below).

(A.3) — the map «: [f,, 1,]— R, representing the argument deviation, is increasing
in [#o, ;] and o ()<<t —d for certain d>0 and all z € [t,, t,], and « (¢,) > f,; moreover,
there is an absolutely continuous map y: [ (t,), ® (¢,)]—[#o, #,] such that (3 (1)) =t
and o« (y(1))=t ae. in [« (t), «(t,)] and [z, £;], respectively.

This problem will be solved below following Jacobs and Kao [7]. Before applying
Theorem 2 it is necessary to define the spaces and operators in a suitable way. Set

X=W? (['5"'(’0): 4l; Rﬂ) ‘

W,f' ([& (1g), 1,]; R is a Sobolev space of absolutely continuous functions, having
fiest devlvative square integrable, endowed with the scalar product
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Iy

(P o> =01 (1) P2 )+ [ @1 () pa () dr.

a(to)

This Hilbert space is isometrically isomorphic to L? (-x(rg), tl:R")xR", any
element ¢ e W] ([«(), #;]; R") being in a one-to-one correspondence with the
pair (¢, ¢ (1,)). Therefore in the sequel we shall assume that

X:L2 (d' (tﬂ): r0; R") x Lz (f(h [ STH R-”) x R?

identifying any element x € X with the triple (v, ¥, x) satisfying:

X =X =gy X1=2(t).

Often, we shall write simply x=(x', X, x(;)). Also the elements w of the space
of “terminal conditions”, W;= W7 ([«(1,), 1,]: R") will be identified with the pairs
w= (1, wy)= (W, w(t,)).

The elements of the space Y=L (1o, #;5 R") x L? («(,), 113 R")x R" will be,
however, treated as triples (, w', w,) only, and no *global” meaning will be
assigned to them.

Finally, set U=L? (to, t;; R"), Wo=W} ([« (o), to]; R") and L=L2(x(ty), t,;
RP) x R™.
The operators will be defined as follows:
(@) F: XxU-Y, F(x,u)=(F(x, u),0,0),

where _ :
F(x, u) (=% —f(x @), x («(), u(®), 1), 1€ [to, 1,].
(i) Bo: X—=W,, By x=(x', x(to))..
(1") BI:X_)WD Bl x:(j[[z(r,).rl]’x(!l))‘
(iv) G: Wi—L, G (w)=G ((7, w))=(g (" (), *)» & (w1)).
Clearly, B, € & (X, W}), i=0, 1.
Define the functionals: Q: X x U—=R, Q,: W,—=R

1

0 (x,u)= [ a(x(@. ul®) 1) dt, Q5 (9)=0, (07, w1)) =g, ().

To

We need that F, G,Q,Q, be continuously Frechet differentiable.
(A.4) — f is of the form

f(xls Xa, U, r)ﬂj} (xls Xa, I)+f2 (xiy Xz, f) i,

X1, X2 € R" we R, t e [ty, {,], where functions f; (x,, x,, -} are measurable V x,, x,,
functions £; (+, -, ¢) are of class C' for almost every ¢ and the following is satisfied

[f1(xys X2, DI +1Dy fi (xy, X2, I+ [Ds f1 (x4, X2, D<M, (h1)
| fo (X1, Xau D+ 1Dy fo(xy, X2 OV 1D2 2 (X1, X2, DI M5 ()
Vh>09 vxl! xl € R"s leln Ileé-!?’ Vf = [103 Il} whcre

My (hy )& L* (g, 1)y Ma(h)<+oe YA>0,

P Ml YR wWyrwhree LR

o o e et

(AS) =g is of the form g(x, N=a(t)+b(1) x, where
lal € L? (e (ty), 1,), 16l € L= (a(ty), t;).
£y is of the class C'.

(A.6) — Function g (x, u, +) is measurable V x, i, function ¢ (-, -, #) is of the
class C'!' for almost every f & [ty. t,] and the following holds

JG(-\'.- U, I)J & ‘Dl ([(.X, i, .f)i&;ﬁr{;, (hs F)_I_A/{l’ (h) J“|2
1Ds q(x, u, ) <My (h, 1)+ M2 (h) [u]
Vh=>0,V |x|<h, ¥V uand almost every £ where M5 (h, +) e L' (¢, 1) V/=0. Function
g, is CL.

With these assumptions it can be shown that F, G, Q, Q, are continuously Frechet
differentiable. For the details see [15] and [14]. The very restrictive assumption that
fbe affine in u and g in x cannot be omitted, otherwise F and G would not be Frechet
differentiable at any point, see [16] '). In the sequel, for brevity, we shall not use the
functions f, f,, a, b, but refer to f, g as a whole. Thus, for instance, D, f=/,.

Thus problem (DP) appears to be a special case of (P) with the operators F, G,
etc, defined as above. Now we proceed to checking the hypotheses (H.1) and (H.2).

Note that the equations (6) are equivalent to:

F(x, ) O=x()—f(x(0), x(x (D), u(), 1)=0 ae. in [to, r,]]
xlts)=x° ot (13)
X()=0p() a.e. in [« (fp), IO)J

Assume that there is uyelL? (1o, t,: R") such that the solution x,(-) of (13) that
exists on [7o, 7,]. (13) is equivalent to the following operator equation

o (x, u)=0,

where o7 (x, )=(F (x, 1), By x—(p, x,)). We have that .o/ is Frechet continuously
differentiable, .o (xo, 14,)=0 and the Frechet derivative o/, (=47, (X, tp)) is an
invertible operator (since it is defined by linearized equations (13)). Hence by the
implicit operator theorem there are neighbourhoods V, , ¥, of xg, vy in X, U such

1ty

that (13) defines the Frechet-differentiable map #: V¥, -V,
F(F (u), u)=0, -
F (u) (to)=x°,
Fu) (O=p(t) ae. in [z (1)), t).

Since any solution of (13) is unique, we can consider the map & as being defined
from ¥, into X. Thus we proved that the set of all u, which define by (13) a solution
defined on the whole interval, is open and the map # exists in a neighbourhood of

1) Thus, the results obtained in [7] are correct only under the assumptions given above
and not those 1 [7], which allow nonlinenrity of f in '
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any such wy; hence (H.1) is satisfied, provided there is at least one such u,. Before
considering (H.2) assume that

(A.7) — 7 is essentially bounded on [z (¢), & (£,)].

Let uy e U and x, be a solution to (13). Define the operators D;i: Y- X and
Ty,: Y=W, in the following manner:

Dy w=D] Wy, w)=(0,D] v 0)
a(ry)

VO~ @) T@di— [ (D2 fG@) 7@ F(r(@)

t

Dy w(n)= x dt—yy, to<t<a(t,) (14}

x}(t)—f (D fO) T () de—y' (1) =iy (b)) <t<t;

where

T.tu W:Txu(‘;a vy =W y).

Now let xe€kerBy, ie. x'=0, x(t)=0, and y=, w',w)eY (=Y*).
Then

Iy

Eodoor=[ Fox@T@di=[ (£()=D £ x()—

=D, (1) x(x O)) U () dt = [ O di— ] xX(0) (D1 SO)T (1) di—
% (ry) ) N 1y 2%
~[ 2O/ CON 10T @) de= [ xOF @ de— [ %)

o(ty) a(ty)

« [ Def@) F@dedi— [ 2 [ (DS @) 3@ F (@) dr di+

4 To

4 Ty

- [ sy ®da+ | Oy @ di— [ Xy di+x (1) yy =
a(ty) a(ty) to

ty
= | %)) D, w (@) dit+<By x, Ty, Dy =<x, D, Dy +(By x, T, ¥y .

Thus the Green formula (H.2. (i)) holds.
In order to prove (ii) take x € ker By and note that:

Qe x>=[ %) [ Dy q(xo (D), 110 (2), 7) dlr dlr.

Hence (H.2 (ii)) will be proved, if for any we W, there is a w € Y satisfying:
1y
i ) lj/([)=llj "Dy q(x0 (1), uy (1), 7) dr ace. in [to, 1]
T
y'=w

Y=,

_'mlW‘”"m'm L

This s equivalent to the following pair of equations (compare (14)):

(1) — f, (P f(0)" ¥ (7) de=1 () +w, +4 fl D, q(r)dr (15y
a.e. in (« (1), £1)
—p =D, SO FO+(D2 S GO IO F(r0)+2D1 g(0)  (16)
a.e. in (¢, ;)

and the terminal conditions for (16) are determined by (15) and (14):

| 51

F(a)= [ (DL f®) F(@)+2Dy (1)) di+wy. (17)

@ (ty)

Since (15) is a Volterra equation of second kind, it has a solution ¥ for any
(%, w,) € W,. Similarly, (16) can be solved by the method of steps yielding the
absolutely continuous solution.

Before stating the result of this section, one must find necessary Frechet
derivatives. If wo=(W,, wyo) is fixed in W, and we W, then

<Q“"o’ w>:Dqlwn'w10;

hence
Qlwn“'_"(oa Dqt\\'o) € Wl o
Similarly,

Gl':n :(Dg (' ): Dglwu)

where Dg (t)=Dg (W (1), t) as above.

The attainable subspace at i, of the operator S, defined implicitly by the
constraints in (DP), consists of all points /=(I(-), ;) € L such that there is v M
and x e X satisfying the linearized equations:

(O =Dy f(1) x(0)— D, f(1) x(a(6)) —D3 f@) u(r)=0 ae. in [fo, 1]
x(to)=0 (18)
x(6)=0 a.e. in [a (¢5), o)
D g, x(ty)=1
D=0

The application of Theorem 2 yields the following.

19)

a.e. in [ (¢,), #]

THEOREM 3, Suppose that (A.1)—(A.7) are valid. If 7€ M is a local solution to
problem (DP) and the attainable subspace at & is not a proper subspace dense in
LA (w(ty), 84 R") % R, then:




1 l‘__
(i) There exist a number 4,20, a vector /; € R" and a function le LY (a(t) 1y}
RP), not all equal to zero, and functions y € L? (ty, £,5 R"), y' € LA (e (1), 213 RY),
and a vector w, € R" such that:

Wi =4o Dg,—(Dg )" I, (20)
w' (H=—(Dg(D)" I(n) a.e. in [a (), 1], (21)

1y ty

w (@O~ [ (D@ y (@) di=y' () +yi+io [ Dig (@) dr, (22)
f a.e. in [e(t), .}

(o (1)) =w:+ ’[ (_(Dl FO) w(t)+io Dy Q(f)) di, (23)
x(r)
— i (O=(Dy )T wO+(D2 f ()73 w (7 () +40 D1 q (1),
a.e. in [ty, 2 (1)), (C4)
and the following maximum condition holds:

[ (=70 D2 @)+ @) D f() (1) —u(@®) dr=0  YueM. (25)
Note: all the derivatives here are evaluated along the trajectory £ (+), correspond-
ing to ii(-), so that for example
D, f(t)y=D, f(2(1), £(«(D), #(2), 1)
(i) If, in addition, matrix Dg, has rank m and matrix Dg (f) has rank p for
almost every te [z (7)), 1], then (Lo, w)#(0, 0). | .
(iif) If the system (6), (7) of section 1 with F, By, By, G defined as above s regularl.y
linearized at # (if the state equations and the terminal constraints are affine, this

assumption is always satisfied), the attainable subspace is closed and there exists
an d e int (M—) such that the corresponding solution ¥ of (18) satisfies

Dg,-%(1,)=0
Dg()-£()=0 ae. in [a(t), 4],

then A,#0. o
Points (i) and (iii) are immediate corollaries to Theorem 2, (i), (iii). To prove (ii)

observe that (4o, w)=(0, 0) implies y; =0, w'=0 in virtue of (22) and (23). Hence
if (Lo, w)=(0,0), then (}ug,(w, w', z;/j_))=(0, 0), contrary to Theoren-l 2, point (i)
(since by hypothesis G% is injective, im G; must by dense in L— see (i), Theore@ 0).
The problem when the attainable subspace is closed, will be discussed in Section 3.
Observe first that the pair (y',w,) can be identified with a function
pe W2 (la (2, 11]; RY). Then p=wlpey, 00— A=Va, g~ ¥ € W? ([ (1), t:]; RY)
and equation (22) takes the form

—p(O=D f(t)y()=Ao Dy q(1) a.e. in [o(#)), 1;] (26)

with terminal condition
p(t) =y =4y Dg,—(Dg,)7 I, .

Equations (26), (24) are identical with those obtained by Jacobs and Kao [71,
while (22), (24) are the same as those in [3]. The difference between our result and
that of [7] as far, as adjoint equations are concerned, is due to the fact that the
additional Lagrange multiplier x can be represented by si=w’ and its value either
at 7, or at « (,); this results in minor changes in terminal condition for p. Note
also that g=y’ being an element of L*(« (¢,), 7,; R") is an equivalence class of
functions equal almost everywhere and therefore it has no value i’ () at any point
1€ [o (#,), #,]: 1t can happen, however, that w’ is equivalent to the function right-
continuous at « (7). In this case, also lim w (r)=w («(#,)+0) exists and in virtue

t=a(t)+0
of (22), (23) we have the jump condition:
p (2 (0)+0) =y (2 (1)) =y (2 (1)) = (= (1)) - )

The equation (26) can be easily transformed to contain p and w’ only. Since w'
is given by (21), this would be an ordinary differential equation for p. Solving
numerically this equation is easier than the corresponding integral equation (22).

UM=UL=W,g (w)=w, forw e R, g(W(-), )=w(-)forwelL? (« (1), t,;
R*) and the linearized system (18) is completely controllable, then from (ii) and (iii)
it follows that 4o #0. Thus the result of Jacobs and Kao appears to be a special
case of Theorem 3.

Observe finally that unlike other necessary conditions, Theorem 3 can be applied
to the problems of control to targets in both finite-dimensional, and function space.
If one is interested in controlling x (¢,) only, it suffices to put g (y, 1)=0, 7 € [ (2,), 1,].
Then from (21) we have y'=0, hence v, ,,=p and the equations (26), (27)
imply that y is absolutely continuous in [, #,] and satisfies the well known adjoint
equations [12]

wit1)=2¢ Dg, —(Dg )" I,
~ Y @O=(D1 fO) w(t)—lo Dy q()  ae. in [ (2)), 1]
=Y O=(D. fO) v (O+(Ds SO 3 (D w (D)2 Dy 4 (1),
a.e. in [to, & (1,)).

As mentioned in Section 2, the requirement that int M+ @ is rather restrictive.
The typical example of such a set 4 is given by

M={uel?(ty, t,; Rf}.-f k() lu (O di<K)
to

1
where K =0 and k(f)}(),i(as K, < +00 whenever k& (t)#0.

Theorem 3 does not cover the classical case of the set M being defined by

M= {u: w measurable, v (1)& Q2 ae. in [to, 1,1} (28)




where €2 is a compact subset of R", since this set has no interior in the topology of
L?. In the framework of Theorems | and 2 only one thing can be done — to strengthen
the topology of U([to, t,]). Preferably, one should use L* instead of L?, then if
int Q+# @, the set M defined by (28) would be of nonempty interior. But in that
case also other spaces should be changed, X to L® (a.(to), fo; R") x W ([ta, 1,]; R"),
Wy to W2 ([ (t1), 1:]; R") ete. in order to assure that the attainable subspace would
not be a proper dense subspace of L. However, the proof of assumption (H.2) leans
on many properties of adjoint spaces, X *, ¥* and W . These spaces are isomorphic
to spaces of finitely additive bounded set functions, vanishing on sets of Lebesque
measure zero ([4] Chapt. IV.8.16). The proof of Green formula (H.2 (ii)) would
require many facts known for measures, analogues of theorem of Radon-Nikodym,
Fubini, or similar. We do not know whether these theorems are valid for finitely
additive set functions.

Much more is known about U ([t, #;])=C ([to, t,]; R") and its dual. A rea-
soning similar to the proof of Theorem 3, but more complicated leads to the

following.

Tueorem 4. let Q< R" be closed convex and of nonempty interior, M=
={ue C([ts, t:11; R’): u(t)eQ Vi) and de M be a local solution to the problem
(DP) with U ([to, 61D =C ([te, t:1; R and [, 41,4, 1,8,y satisfying suitable
continuity and differentiability assumptions ?). Suppose that the attainable subspace
of the linearized system (18), (19) is not a proper subspace dense in L=
=C ([« (t;), t;]; RP)x R™. Then there exist a number 1,>0, a vector /;, € R" and
a RP — valued function 7, defined, left continuous and of bounded variation in
[« (#;), #;], not all equal to zero; there exist a vector », € R” and functions y €
€ L (to, a(t,); R"), peL®(a(ty), t;; R") satisfying the following equations:

M =4Ao Dg,—Dgy 1y

p(t)— ] (D f@) p(x)dr=n,+ lf" (D1 (@) di’ (D) + 20 f D, q() dr

t
a.e. in (x (1)), 2] (29)

Ty 2(t)) ty
wO— [ (D f@)T w@di— [ (Dof @) di(r@)=ni+2o [ Dig(@)dr

a.e. in [tg, o (1)]

where
iy

n@=[ (Dig@)"dl(), tela(n) ]

T

2y The assumptions needed here are much weaker than (A.4) and (A.5); f and g may be
nonlinear [14].

LR

R —————. - "
() t=f|
!I
—_[ p (1) de+n' (1) te(a (), 1)
]
ﬁ“)__“' fl
- J p () dr t=u ()
alry)
31 f‘(_’z)
—J pdi— | y@dr 1€ty x(t,))
a(ry) 1

and such that the following maximum principle holds:
1) L5 Ty
[ (@@0-u@) d{za [ Dag@ [ (Dsf(f))rdﬁ(f)}=
Tg T T

= =4 fl D, q () (a(r)—u(r)) dt + _fl (a(D)—u()) (D3 (D))" dij (1)=0

Yue M.

Points (ii) and (iii} of Theorem 3 can be also formulated in this case.

Let us compare briefly the earlier results [3], [7] and Theorems 3 and 4. Banks
and Kent [3] worked in the target space C ([« (t,), #,]; R") in which the attainable
subspace consisting of absolutely continuous functions cannot be closed (unless
it is finite-dimensional). In the case of complete controllability the attainable subspace
is a proper dense subspace of this target space. Lemma 1 explains why it was not
possible to establish the nontriviality of (4o, ); however, w'" was left continuous and
of bounded variation. Jacobs and Kao [7] used smaller target space and the
assumption of complete controllability guaranteed the closedness of the attainable
subspace. But diminishing the target space, one enlarges the space of Lagrange
multipliers; hence both Theorem 4.1 of [7] and Theorem 3 yield the existence of
nonzero multipliers, but " is only square integrable. Taking smaller control space
C ([0, 1:]; R), as in Theorem 4, is connected with enlarging the space multipliers
once again, in view of Lemma 1. The result, is that in Theorem 4 neither p nor
Wieaey are absolutely continuous; the space of terminal conditions is here
C*([=(2:), 1;]; R") and its dual is isomorphic to some space of rather irregular
functions.

The spaces C([«(#)),#,]; R"), Wi([a(t)), t,]; R") and C' ([x (1)), 1,]; R")
are by no means the only. target spaces allowing the solution of problem (DP) in
particular cases. In the next section, an example will be presented showing that
while W7 ([« (#,), 2,]; R") cannot be used (since the only existing multipliers
are zero), some other choice of the target space will result in normal Lagrange

multipliers.

It seems that new results could be obtained under stronger assumptions concerning
the performance index Q and its relation to the subspace im S*%, where S is the
operator us in Theorem 1,
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3, The attainable subspace

Consider the linear system

(=AM x(O)+A4, @O x(z()+C(Hu() ae in [t 1] )
X (to)=0 (30)
x(H)=0 a.e. in [x (t), to)
H, "‘_(fl):{l a1
H(t) x(0)=1(1) a.e. in [a (), 1]

where A4, A, C, H,, H are matrices of suitable dimensions and = is as in Section 2,
u()e Ulto, 1)), (), ) eL(2(t), 1,). The problem is, when the attainable
subspace of the system (36), (37) is closed in L=L([x (1), r,]), that is. when the
operator S: U—L defined by

Su=(H(+) x(+), Hy x(1,))

where x is the solution of (36), has closed range im S. Note that L=LxR"™; it
suffices to investigate the range of the operator §: U-L,

Sy (H=H () x(t) e[zt t],

as the following lemma shows:

LemMa. Let S: U=L, §,: U-R™ be continuous operators, and set S=(§, §;): U—~»
L x R™ Then im S is closed in LxR" if, im § is closed in L.

Proof. By the theorem 0, im S is closed if im S§* is. We have
im S*=im §*+im S\ .

Since im ST is a finite-dimensional subspace, then im S* is closed if im S* is
([5] Lemma 2.6), the latter condition being equivalent to the closednes of im ot
We shall find the operator S. To this purpose denote by Y (s, t) the i x m matrix
function defined for fo<s<t, a(ro)<i<t,, satisfying the following conditions:
Y (1, )=1 (identity)
Y(s, )=0, s>t

¢
Pr Y(s,N=—Y(s, ) A(s), al(t)<s<t .
s

¢ | _
= Y(5,0==Y(5 D AO-Y (O, DT O A (O); foSs<20-

Then

xm=menCmmuﬁk 1€ [to 1]}

L)

N KURCYUNE

TR TRV TR AN AR e -

- ——— . R — . — e . S et . S ————

hence
‘
(=C) u(r)+J 2 Y(5 ) CO)us) ds.

(Y (s, 1) is absolutely continuous with respect to any of the variables in the set
{5, 12 8<1}).
Therefore for 1 e [« (1)), #1]

alty) o, t &
. ] - 0
x(r)= [ *:? Y(s, 1) C(s) u(s) ds+ C(r) u(t)+ f En Y(s, ) C(s)u(s)ds.
fo afty)

Observe that the elements of U([fq, #,]) can be treated as pairs (uy, u,), u, € U; =
=U ([tes @ (t)]), uz € Uy=U ([ (1)), #,]); in the case of continuous controls
uy (o (1)) =us (= (t;)). Then

imS=H (imE+imVoC)
where:
(Hw) (D=H{@® w(1),
S
(Euy) ()= [ 3 Y60 CWu ds,
To

teln(t), 1]

T

¢
VD (O=1(0+ f 7 Y& 016) ds,

ﬁ(l‘ll) ‘
(Cux)()=C () us(1).

Assume first that W, =L, H=I (identity): then

imS=imE+imVoC.

We face considerable difficulties when trying to establish whether im § is closed.
Even if im E and im Vo C are closed, their algebraic sum may be not (see [13]
Chapter 4, § 4). But im E is, in general, not closed [I 4] since E is a Fredholm operator
of the first kind. The investigation of im Vo C is much simpler, because V, being
a Volterra operator of the second kind, is a topolegical isomorphism of L onto itself
in the case L=L* (x(ty), #; R") and L=C([(«(1,), 1, ]: R") [14]. Thus im Vo C is
closed if, and only if, im C is. Thus, while we are not able to give a general answer
to the question when im S is closed, it is possible to give the following, obvious
sufficient condition: )

__If imEcim Vo C and im C is closed, then im S is closed. The inclusion
im Ecim Vo C takes place if, for instance, C (1)=0, 1 € [to, « (,)), or if the operator
C is surjective. In the latter case im C is obviously closed. The necessary and sufficient
condition for C to be surjective in the case U= L?(to, t,; R"), Wy= W ([« (1)), 1 1;R")
is [7] that the matrix C(¢) has rank n ae. in [« (7)), 4] and the function
=l (€ () €7 (1)~ '1* is integrable on [« ()., #]. -
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It is much easier to give a sufficient condition for the operator C to have im €
closed.

To fix ideas, assume that U=L? (to, fy; R), L=L*(a(t)), t,; R"), C(-) is an
essentially bounded zx r matrix function on [«(t,), f,]. Let I'<la(t)), t,] be the
subset of measure zero on which € (+) is not defined, and

Fo=TUfte[u(), t,]: C(H=0}.
Define on [« (#,), ;] the rxr matrix function J(-) in the following way

70 0 tel,
L)y=
matrix of orthogonal projection in R" onto (ker C(O)"tea(ry), 1N 1.

It can be shown that the function J(-) is measurable; it is bounded, since J ()
is a projection matrix for any 7e [ (7)), #,].

The range of the operator C: U,—L is closed if, and only if ([4] Chapt. VL.6.1
and VI.9.15) the following condition is satisfied: (C) — there is a constant k>0
such that to each ue U, there corresponds an iie U, with |, <k [/Cull; and
Cii=Cu. By definition, for each ue U,=L? («(t,), 1,; R") we have

Cu=C()u(-)=C(-)J()u(-)==C(-) i(-)=Ca
where @ (+)=J (+) u(+): clearly,
#(-)=J()u(-)el,.

Therefore the following condition is sufficient for (C) to hold:
— there exists a constant £>0 such that for each v € R (C) and almost every

tefo(t), ] [J(t)yel<k |C(1) .

Condition (C) is satisfied in the case C(f)=C,=const; the existence of the
constant k follows from condition (C) applied to C, as an operator in R". ;
If n=r=1, and there is a constant k& such that

IC () =k

for every ¢ such that C (¢£)#0, then (C) also holds. This condition is also necessary
for im C to be closed in this case.

Similar conditions can be given for the case of continuous controls. Note that
if the system with H, H,=identity is completely controllable, then the attainable
subspace of the same system with H, H, #identity is closed if im H is. The above
considerations apply to the mapping H as well.

4. Examples

The first example shows that the attainable subspace can be a closed proper
subspace of the target space. The other one presents the case of the attainable
subspace being a proper dense subspace of the target space. Nonzero Lagrange

T — e —

multiplers do not exist in this case, but the same problem set in a different target
space becomes normal (4, #0) (compare Lemma 1).

Example |
Ep==x
L =X 32)

X,=x,(t—D+u, tel0,2],

x(1)=0, te[—1,0]. The control space is U=L?(0, 2), the target space L=W,=
=W2(1,2)x W} (1,2). Solving (32) by the method of steps one obtains

4 E .8
X2 ()= [u(s)ds, x, ()= [[u@)drds, O0<t<I,
0 00

t— i t—1s

%z (r)=.j' u(s) ds+u(t), i'l(f)=f u(s) ds+] fu(r)drds,

I 12,
0 0 0 0

According to what was said in the preceding section, it suffices to prove that
the operator o
X
S: u|—>( .l [1!2])
x2|£1,7.]

has the closed range in L? (1, 2)x L? (1, 2). Take the sequence (x}, x3) of solutions
of (32) such that

Xl 2177 W1 (33)
)‘C;|[1!2]Flvz. (34)

t
Since #] (f)=x] (l)+_[' %% (s)ds, 1<t<2, then (33) and (34) imply that the
1

sequence {x" (1)}< R" satisfies the Cauchy condition and is therefore convergent to
w® e R". Hence we conclude that w, is absolutely continuous, #w; (1)=w? and Wy =W,
Take u® e U defined by

9 ((EG A

?

ul ()= "

wy(D—(@—1Dw®, 1<t<2.

Denote by (x%, xJ) the solution of (32) corres-ponding to u°. We have:
1 2
5‘2‘[1. 2] =W,
22 (D=w=w, (1)
';E(l)l[l, 21:"_:'3 =H:}1 s

then
. +0
X, 21 3 1l 21

. R =0
xliu, 2 = JCz'[l, 2]

so that the attainable subspace of (32) is closed. It is different from the whole target
space, since x|, , having the absolutely continuous derivative X[, ,, cannot be
an arbitrary function from W{ (1, 2).
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Example 2.
Xi=u
Xa=x,(t-1), tel0,3],
*»®O=x,0=0, te[-1,0].

(35)

The control ue L? (0, 3) is sought, steering the system (35) to the terminal
condition
Xy (l) =1-1,
x2(1)="1.!'(t_2)2’ IE[Z’ 3]3

and minimizing the functional

i &
O (x, w)=J ()= I (u()=w(n)* dt
T4
where
0, 0<r<3)2
v(f)=
I, 3/2<1<3.
The solution of (35) is
7 r—‘l s
Xift)= f t(s) ds, x5 (1) J 1 wu(rydrds, rel2, 3] (36)
0 0 o

Set U=L?(0,3), W,=W}(2,3)x Wi(2,3); the operator S: U— W, is given
by (36). It is easy to see that if Su; =Su,, then u; (t)=u, (¢), 7 € [1, 3], and that the
control i,
0, 0«1,

u(!)=\ i

1<1<3,

’

is the only optimal control; on the interval [1, 3] it is defined uniquely by the terminal
condition, on [0,1] by the minimization of Q. It can be verified that if
(11, 1) € WY (=W)), then

I11(3)+(3_r)[2(3)_/2(2)s O0<r<l,
S*(?) (I):{l1(3)+(3—f) LB)Y-L(+1), 1si<2, (37)

L3+ (@), 2<1<3.
S* is injective. Indeed, let

s* (‘;) ~o0. (38)

Then :
LBR+G-HL0B)-L(2)=0, 0<z<I, (39)
—LB)-L(+1)=0, 1<t<2, (40)
L)+ (=0, 2<1<3. (41)

T R -

L —

i

Equation (40) was obtained by differentiating (38) for 1<r<2. (39) implies
[ (3)=0, hence from (40) l,=0 and /,=0; this and (39) yields /, (3)=0 and from
(41) it obtains that also [, =0.

Ker §*={0} implies im S is dense in W;; im S# W, since X,[[ 3 has the
derivative absolutely continuous.

Since the set of admisible controls M= U, the Lagrange multipliers Zq, (/1. 2}
should satisfy (compare Theorem 1)

ho Jy —5* (;1) . 2)
, P [ 0 , :

If /,=0, then by injectivity of S* also ( !‘)—(0) . But /o must be zero, otherwise

(42) cannot be satisfied. Indeed, g
0, 0<t<1,

Ji=ua(@)—v ()= 1, V&T<3/2;
0, 3/2<1<3,
and JJ; is not absolutely continuous in [1, 2] unless 1,=0. On the other hand,
the function S* (;L) is always absolutely continuous in [1, 2]. Therefore the only
2
7o, (I, 1) satisfying (42) must be zero.
Take W,=W32(2,3)x W2(2,3); W}(2,3) is the space of functions with second.
derivative square integrable, endowed with the scalar product

3
wy, wad=w; (3) wa (3)+ib; (3w, (3)+ ( o (1) w, (1) di .

The operator S, defined by (36) can be considered as an operator S from Uto Wy3
its adjoint is equal to

LG =D L) +1LG), 0gr<l
(o=l nore-srehoher. <<
‘ L3+, 2<1<3,

Put /, @)=l (3)=?2 (3)=0 and fl 0)=0,

. 1, 2€1<5/2
L ()=

0, 52<1<3.
L—* ("1):0.

Tt is interesting to observe that im S is a proper (closed) subspace of W, it can
be veiified letting 1, 3)=1, L3)=-1, I ®=-1, L(3)=0, 1, (H=0:

- |
B3 <
3 ( [2) =0.

hence im S cannot be dense in W,, by (i) theorem 0.

Then

>
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5. Conclusions

The necessary conditions presented in [3], [7] and in this paper are rather
cumbersome and it seems impossible to apply them to solving analytically more
complicated problems which can arise in an engineer’s practice. It seems therefore
that the problems of control to targets in function spaces should be solved numerically
by the methods using the penalty on the terminal constraints. It is here that the
theorems like Theorem 3 and 4 can be helpful, since they contain information zbout
the adjoint equations and suggest the suitable choice of the target space. Moreover
many convergence theorems concerning the penalty function methods require the
existence of nonzero Lagrange multipliers.

It seems clear, for instance, from the discussion at the end of Section 2 that the
penalty on the terminal constraints should be of the form

Iy
)P+ | 1% @) dr
a ()
rather than
iy
[ 1x P dt
a(ty)
or
max |x(f)].
at))sr<ty

In special cases, some other penalty functions can be used, depending on the
shape of the norm in the space in which the attainable subspace is closed.

These remarks apply to partial differential equations as well. In general the
target space should be chosen to be the largest space in which the attainable subspace
is closed to avoid the singularities (see Lemma 1) and too complicated and irregular
multipliers on the other hand.

ACKNOWLEDGMENT. The author wishes to thank doc. dr hab. A. P. Wierzbicki to whom
he owes an improvement of the basic Theorem 1.

Note added in proof

The following recent papers are relevant to the topics pursued in the paper:
1) H. T. Banks, M. Q. Jacobs, An attainable sets approach to optimal control of functional
differential equations with function space boundary conditions, J. Diff Equat. 13 (1973), 127—149.
2) H. T. Banks, M. Q. Jacobs, C. E. Langenhop — Characterisation of the controlled states in
W of linear hereditary systems, to appear in STAM J. Control.
In the first paper the linear — quadratic case is studied; in the other one, authors obtained
some results concerning the closure of the attainable subspace. The problem, when the attainable
subspace is closed in W71 was recently solved in

3) 8. Kureyusz, A. W. Olbrot -~ On the closure of the attainable subspace of linear time-lag
systems, Lo appear,
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Lokalna zasada maksimum przy ograniczeniach operatoro-
wych i jej zastosowanie do ukladéw z opodznicniem

W czesci pierwszej podano warunki konieczne, jakie musi spelnia¢ rozwiazanie zadania
{ minimalizuj J (u),

(n
przy ograniczeniach ue M= U, S(u)=0¢cL,

gdzie U, L oznaczaja przestrzenie Banacha, J — funkcjonal, S operator. Zadanie takie bylo
rozwazane wielokrotnie od czasu zjawienia si¢ pracy [1]. Przedstawiona w artykule wersja warunkow
koniecznych jest nieco silniejsza niz dotychczasowe. Podstawowy rezultat czesci pierwszej jest naste-
pujacy.

TwierDzENIE 1. Niech M bedzie zbiorem wypukilym, domknigtym i o niepustym wnetrzu, a ope-

ratory J : (=R, S : - L w sposéb ciagly rézniczkowalne wedlug Frecheta na niepustym otwartym

zbiorze < U. Przypusémy, ze @ jest lokalnym rozwiazaniem zadania (1). Wowczas, jezeli im S;

(obraz pochodnej Frecheta operatora S w @) nie jest wlasciwa podprzestrzenia gesta w L, to:
(i) Istniejg A0=0, * e L*, (Lo, I*)#(0, 0) takie, ze

(Ao T2+ 82 1% 4—w>20 YueM @




(il) jezeli im S5 jest domknigty podprzestizenia L, podprzestrzen styezna do zbioru S (0)
w punkcie 4 jest rowna ker Sy orvaz int (M —a) nker 8 # O, to Ag#0 w (2).

Pokazano réwniez, re zalozenie o gestosci im Spw L onie moze by¢ oslabione.

W dalszym ciagu czeSci pierwszej rozwazono problem sterowania optymalnego zapisany ab-
strakeyjnie przy uzyciu rownan operatorowych spelniajacych tzw. formule Greena. Klasa takich
réwnan operatorowych obejmuje rownania réznicowe, rozniczkowe zwyczajne i czastkowe, wreszcie
rozniczkowe z opoznieniem. Dla tej ogolnej klasy rownan wyprowadzono z twierdzenia 1 warunki
optymalnosdci: réwnania sprzezone., warunki transwersalnosci i nierdwnosé wariacyjna, bedace
dosy¢ przejrzystym uogolnieniem relacji znanych w teorii sterowania optymalnego poszczegdlnych
typow uktadow.

W czgsei drugiej artykulu przedstawiono zastosowanie wynikow otrzymanych w czesci pier-
wszej do optymalizacji ukladow z opdzZnieniem przy ograniczeniu rownosciowym na koricowy
stan zupelny. Kwestia istnienia zmiennych sprzezonych (mnoznikow Lagrange’a) byla badana
najpierw w [3]: wyprowadzono tam ogdlne warunki optymalnosei, nie gwarantujace jednak nie-
trywialnosci mnoznikéw Lagrange'a. W pracy [7] dowiedziono niezerowosci zmiennych sprzezo-
nych przy zaloZzeniu zupelnej sterowalnosci i przy braku ograniczen na sterowanie.

W artykule niniejszym podano warunki konieczne optymalnosci, gwarantujgce niezerowosé
zmiennych sprzezonych, dla problemu ogolniciszego. Przeprowadzono tez dyskusje otrzymanych
wynikow. W Swietle zatozen twierdzenia 1 istotny staje si¢ dobor mocy topologii w przestrzeni zu
petnych stanéw konfcowych L oraz zgodnosé¢ miedzy U a L. Przedstawiono dwie wersje slabej (lo
kalnej) zasady maksimum dla dwach roznych ukladow Ui L—U=L?(to, #,: RY, L=W73([t,—h, t];
R") oraz U=C(ty, t1; R*), L=C"(t,—h, t;; R").

W punkcie (i) twierdzenia 1 wystepuje warunek domknietosei podprzestrzeni im S;, ktora
dla ukladéw z opoznieniem roéwna jest podprzestrzeni sterowalnych (osiagalnych) stanow zupet-
nych. Podano wstepna dyskusje tego warunku dla ukladow z opoZnieniem.

Przytoczono rowniez dwa przyklady. Jeden z nich ilustruje zalezno§¢ miedzy istnieniem nie-
zerowych mnoznikoéw Lagrange’a a doborem takiej przestrzeni stanow zupeinych, w ktorej spet-
niony bylby warunek domknictosci im S5

JIoKaILHBIE OPHANNN MaKCHMYMa HDH OHEpaTOPHBIX Orpa-
HIYEUHAX I OPUMEHeHHe ero K CHCTEMAM ¢ 3aias/[LIBaHieM

Cratbs COCTOMT W3 JIBYX 4acTeif.
B repBoif 4acTH TAROTCH HEOBXOAMMLIE VCIOBHA, KOTOPBIE JONHHO VAOBIETEOPATE pemenue
I ¥y
3 1aus,
MusaMmI3anus J (i)
- (1)
npu orpanuderusax # <M< U, S(u)=0¢eL,
rae U, L obo3na4aior GaHaxoBEl npocTpaucrea, J — (hyHkuwonan, 5 — omepatop. DTa 3amava
paccmaTpyuBanack HEOMHOKPATHO ¢ MoMmenTa noseneHus paborsr [1]. TIpeacTaBmeHnas B craThe
BepCHs HEOOXOMMMBIX YCIOBHIL HECKONBKO CHIBHEE NPCAbIAYILIX. (CHOBHOM pe3yILTaT MEPBOI
YacTH ABACTCS CIEOVIOIIHM,

Teopema 1. Tlycte M GyneT BHLIOYKIBIM 3aMKHYTBIM U BHYTPH HENYCTHIM MHOXKECTBOM, &
oneparopst J: —R, S: O->L HerpepeiBHO Juddepentupyemer no Gpemwery B HeMycTOM OTKPEI-
Tom MHOXkecTBe (< U, TIpenmomomiun, YTo /i SBISETCS JIOKATLHBIM pewenuenM 3amaym (1). Torma,
eciu im S}, (obpa3 mnpouseommoii Dpemera oneparopa S B ) Be #BAsIETCH COOGCTBEHHBLIM
NIOTHBIM NOAIpocTpancTeoM b L, To:

(i) CymectByrot 2o=0, I* e L¥, (th,l*)#((?. 0) Takmue, uro

C=doJg +SEI" i—d»0 YueM 2y

. -—
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(1) Bean fon 8 nwmeres SuMEIYTLIM TI0ATIPOCT pmluruu.u‘ L, noanpocTpancTso l({lCll';l'c,"lbIlL]t‘.
% Muomerny &' (0) n 1ouKke i panuo ker S§oa rvakke int (M -irker Sy #£ 0, 1o Lo#0 b (2)

[loKasaNo THKe, 11O NPeANoshiika O INoTHoCTH i Sy B L He MoweT GbiTh ocnaﬁ:"rena.

Manee b reppoil wacty paceMoTpesa npobiema ONTHMAILHOTO yNpapieHus, abCTpaxTHO
AAHCAHHAS € TOMOILBIO ONEPATOPHBIX YPARHEHHIT YIOBICTBOPSIONUIX TAK HA3BIBAEMYIO DOPMYIY
Ipuna. Kmace Takux ONEPaTOPHbIX YPABHCHUH OXBATHLIRACT PA3HOCTHLIC YPABHEHHA, nuepen-
UHAJIBHBIC YPABHEHHS OOLIKHOBEHHBIE M ¢ YACTHBIMU MPOH3BOMHBIME P["HaKOHCIJ, mubfbepeﬂuﬁanbl—
Hible ypaBHeH!s ¢ 3anasapisanuem, [ oToro oduiero kiacca ypasHEHHUI BLIBEICHBE 13 TeopeMbi
YCIIOBHSA ONTHMAIBHOCTH: COMPSIKEHHDIE YPABHEHHUA, YCIOBHS rpancnepcanbuocr.u ¥ BapHaLHOH-
HOS HepABEHCTBO, AB/SIOUINECS AOBOJBHO SICHBIM O0BOOLUEHHEM COOTHOLICHNH, W3BCCTHBIX 113
TEOPHH ONTHMAABHOIO YIPABIECHHS OTHE/ILHLIX THIOB CHCTEM.

Bropasi 4acTh CTATEH NPEICTABISET NPHMCHCHHE Pe3y/bTaTOR MOMYHCHHBIX B MepBoOil YacTH
T8 ONTHMM3ALMH CHCTEM € 3ama3islBAHACM NP OrpPAHHYCHAAX B BH/IC PABEHCTB Ha KOHEHHOC
nomHoe coctosiie. [Ipo6aema CyIIeCTBORAHMS COMPSUKSHELIX TIEPEMEHHBIX (MHOXKHTECH Jlarpa_H-
%a)_Mccienosaiack B Hayale B [3]: Tam Beisexensl obuiue YCA0BHA ONTHMATBHOCTH, HE TaApaHTH-
PYIOLHE OHHAKO HETPUBHAIILHOCTh MHOMKHTEICH Jlarpanxa. B paGote [7] ,[113}‘(31'311!-10 cymecn‘zo-
pamHe HEHY/ICBHIX CONPIKEHHBIX NEPEMEHHLIX APH NPEANOONKCHHH IONHON  YIpaBIseMocTH
o TPH OTCYTCTBMH OTPAHHYEHMH HA YIPaBACHHE.

B faHHOH CTATBE TIPHBEICHBI HEOOXOUMMBIE VCNIOBHS ONTUMAIBHOCTH, G
HEHYNEBbIE 3HAYCHIS CONMPAKENHLIX TECPeMennby, At oOuiei npobnemel, [lpuseneno 1a1<:m
PACCMOTPEHHE TOMYYEHHLIX PE3YAbTATOB. YUUTLIBAA MPEITON0KEHH Teopemsbr | cymec-rzluf-
HEIM CTAHOBMTCH T10160P MOLIHOCTH TOMOMOTHI B TPOCTPAHCTEE NOITHBIX KOHEUHBIX COCTOAHMH L,
a TawKe cornacopanHocTs Mexay U n L. IlpenctasicHil ARe nepein OGHHGJIEFN{OF/% (.noxanw.o;;)
TIPHHLHIA MAKCHMYMA [J1s1 JIBYX pa3sHbIX CHCTEM Uu L—U=L*(to, t1; R, L=W3i{t—h, :]; RY)
a Takme U=C (to, 11 R, L=C" (t;—h, 11: R"). o q

* B myakte (ii) Teopembl 1 uMeeTcs yC/I0BHME 2aMKHYTOCTH NOANPOCTPAHCTRA 11 Sis Koropmf
IS CHCTEM C jana3apiBaHueM IKBHBAJICHTHO TONNPOCT PAHCTBY )’T[pﬂBJ'lﬂeMbl.‘( (EOCTMTHCMH."\)
NOMHBIX 3Havemuil, JaeTcs NpenBapuTe/bHOE PACCMOTPEHHEe 3TOTO YCAOBMA IS CHCTEM C 3i-

TApaHTHUPYICUIHE

TIa3AbIBAHAEM. —
TIpueenene: Takke Osa npuvepa, OINH 13 HUX WUTIOCTPHPYET 3ABHCHMOCTh MEKIY CYLECTD

BaHMEM HeHynenblX MHOMNHTeNel Jlarpamra u noaBoposM TA4KOTO MPOCTPAHCTBA TOMHBIX COCTO-
SHHH B KOTOPOM BBLIMOMHANOCE OLI YCIOBHS 3aMKHYTOCTH imS;.
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