Determination of a generalized inverse of a Boolean relation matrix

by

JUHANI NIEMINEN

Finnish Academy Helsinki, Finland
Department of Technical Sciences

A criterion for the existence of a generalized inverse of a Boolean relation matrix is derived and a way of determining the generalized inverses is given.

1. Introduction and basic concepts

In his papers [3] and [4] Plemmons has motivated the research for generalized inverses of a Boolean relation matrix by applications in network and switching theory [5, 6], in nonnegative generalized inverses of matrices over the reals [4], and in the general theory of graphs [5]. In this paper we shall give a criterion for the existence of a generalized inverse, analogous to that of the existence of a solution for a Boolean matrix equation $A X=B$. Further, a way of determining all the generalized inverses of a Boolean relation matrix is given. The results here are based on the ideas of the paper [2].

By a Boolean relation matrix of order n is meant an $n \times n$ matrix of zeros and ones. The product, join and meet of such matrices are defined as in case of Boolean matrices of zeros and ones, see e.g. [1]. Any solution of the Boolean relation matrix equation

$$
\begin{equation*}
A=A X A \tag{1}
\end{equation*}
$$

is called a generalized inverse of the given matrix A.
Any Boolean relation matrix $B=\left[b_{i j}\right]$ can be mapped onto a bipartite graph $G(B)=\left(V_{B} \cup V_{B}^{\prime}, E_{B}\right)$, where the vertices of V_{B} correspond to the rows of B and those of V_{B}^{\prime} to the columns of B. An undirected edge $\left(x, y^{\prime}\right)$ belongs to $G(B)$ if and only if $b_{i j}=1$ in B, where i corresponds to x and j to y^{\prime}. Conversely, any bipartite, undirected graph, for which the numbers of elements in V_{B} and V_{B}^{\prime} equal, i.e. $\left|V_{B}\right|=$ $=\left|V_{B}^{\prime}\right|$, can be translated into a Boolean relation matrix.

Consider the product $B_{1} B_{2}$ of two Boolean realtion matrices B_{1} and B_{2}. This produet can be mapped onto a chain of bipartite graphs $G\left(B_{1}\right)$ and $G\left(B_{2}\right)$, denoted
by $G\left(B_{1}\right) G\left(B_{2}\right)$, where the vertex sets V_{1}^{\prime} and V_{2} of $G\left(B_{1}\right)$ and $G\left(B_{2}\right)$, respectively, coincide. Let $B_{1} B_{2}=B_{3}=\left[b_{i j}^{3}\right]$. According to the definition of the Boolean matrix product, $b_{i j}^{3}=1$ if and only if there is a path of length two from a vertex $x \in V_{1}$ of $G\left(B_{1}\right)$ to a vertex $y^{\prime} \in V_{2}^{\prime}$ of $G\left(B_{2}\right)$, where i corresponds to x and j to y^{\prime}. As an illustration, see the product $B_{1} B_{2}=B_{3}$ described in Figure 1, when

$$
B_{1}=\left[\begin{array}{ccc}
x^{\prime} & y^{\prime} & z^{\prime} \\
1 & 1 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] x, \quad B_{2}=\left[\begin{array}{ccc}
x^{\prime} y^{\prime} & z^{\prime} & x^{\prime} \\
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \begin{aligned}
& x \\
& y,
\end{aligned} \quad \text { and } B_{3}^{\prime}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] x .
$$

According to the associativity of the Boolean matrix product any product of n Boolean relation matrices, where $n \geqslant 3$ and finite, can be represented as a chain of n bipartite graphs.

2. A criterion

Let A be a given Boolean relation matrix and consider the product $A X A$. For sake of clarity, we shall denote the first matrix of $A X A$ by B_{1}, the second by B_{2}, and the third by B_{3}. Consider the chain graph $G\left(B_{1}\right) G\left(B_{2}\right) G\left(B_{3}\right)$ obtained from

$6\left(B_{1}\right)$

$G\left(B_{2}\right)$

$G\left(B_{1}\right) G\left(B_{2}\right)$

$6\left(B_{3}\right)$
Fig. 1
bipartite graphs $G\left(B_{1}\right), G\left(B_{2}\right)$, and $G\left(B_{3}\right)$ by identifying the vertex sets V_{1}^{\prime} and V_{2}, and the sets V_{2}^{\prime} and V_{3}. The graphical description $G\left(B_{1}\right) G\left(B_{2}\right) G\left(B_{3}\right)$ of the matrix product $A X A$ implies immediately that there is a generalized inverse for A, i.e. there is a solution for the equation (1), if and only if
(i) for any edge $\left(x, y^{\prime}\right) \in E_{A}$ there is at least one path of length three from $x \in V_{1}$ of $G\left(B_{1}\right)$ to $y^{\prime} \in V_{3}^{\prime}$ of $G\left(B_{3}\right)$ in the graph $G\left(B_{1}\right) G\left(B_{2}\right) G\left(B_{3}\right)$, and
(ii) for any edge $\left(z, w^{\prime}\right) \notin E_{A}$ there is no path of length three from $z \in V_{1}$ of $G\left(B_{1}\right)$ to $w^{\prime} \in V_{3}^{\prime}$ of $G\left(B_{3}\right)$ in the graph $G\left(B_{1}\right) G\left(B_{2}\right) G\left(B_{3}\right)$.

As the Boolean matrix product is distributive with respect to the join operation on matrices, there is a solution X_{0} for 1 such that $Y \leqslant X_{0}$ for each solution Y for (1), if any solutions exist. Clearly $G\left(X_{0}\right)$ contains each edge not contradicting the condition (ii). In the following we shall determine a matrix M, or equivalently a bipartite graph $G(M)$ with $\left|V_{M}\right|=\left|V_{M}^{\prime}\right|$, containing each edge not contradicting the condition (ii). According to the maximality of M. A has generalized inverse if and only if of a solution for a Boolean matrix equation $A X=B$, or $X A=B$, see e.g. [1].

Let $\Gamma_{A} x$ denote the set of vertices adjacent to x in the graph $G(A)$. In order that (ii) is valid, a vertex $x \in V_{2}\left(=V_{1}^{\prime}\right)$ can be joined to a vertex $y^{\prime} \in V_{2}^{\prime}\left(=V_{3}\right)$ only if for any $z \in \Gamma_{B_{1}} x$ the re'ation $\Gamma_{B_{1}} z \supseteq \Gamma_{B_{3}} y^{\prime}$ holds. In other cases there would be a path of length three in $G\left(B_{1}\right) G\left(B_{2}\right) G\left(B_{3}\right)$ from a vertex $z_{1} \in V_{1}$ to a vertex $w^{\prime} \in \Gamma_{B_{1}} y^{\prime}$, while $\left(z, w^{\prime}\right) \notin E_{A}$. Consider the translation of this condition, which determines the edges of the graph $G(M)$, into a serie of suitable Boolean matrix operations.

The notation $D^{\prime \prime}$ means the Boolean complement of the Boolean relation matrix D and D^{T} the transpose of D. Let us consider the matrix product $A\left(A^{T}\right)^{\prime \prime}=C=\left[c_{i j}\right]$. In the chain graph $G(A) G\left(\left(A^{T}\right)^{\prime \prime}\right)$ the vertex sets V_{A}^{\prime} of $G(A)$ and V_{A}^{\prime} of $G\left(\left(A^{T}\right)^{\prime \prime}\right)$ coincide. Assume that x corresponds to i and y to j. Then $c_{i j}=1$ if $\Gamma_{A} x \nsubseteq \Gamma_{A} y$, and $c_{i j}=0$, if $\Gamma_{A} x \subseteq \Gamma_{A} y$. Indeed, if $\Gamma_{A} x \subseteq \Gamma_{A} y$, then for any $z^{\prime} \in \Gamma_{A} x$ the edge $\left(z^{\prime}, y\right)$ does not belong to the graph $G\left(\left(A^{T}\right)^{\prime \prime}\right)$ according to the completmentedness, and hence there are in $G(A) G\left(\left(A^{T}\right)^{\prime \prime}\right)$ no path of length two from x to y, which implies $e_{i j}=0$. The proof for $c_{i j}=1$ is similar. Note that $B_{1}=B_{3}=A$, and thus we have found a matrix form to the condition $\Gamma_{B_{1}} z \supseteq \Gamma v_{B_{3}} y^{\prime}$.

Consider now the matrix product $A^{T} C^{T}=A^{T}\left[A\left(A^{T}\right)^{\prime \prime}\right]^{T}=F=\left[f_{i j}\right]$. Let $f_{i j}=0=$ $=\bigcup_{s=1}^{s=n} a_{i s}^{T} c_{s j}^{T}$. Then for any $z \in V_{A}$, if $(x, z) \in E_{A},(z, y) \notin R_{C^{T}}$, i.e. $\Gamma_{A} z \supseteq \Gamma_{A} y$, where i ${ }_{s=1}$
corresponds to x and j to y. If $f_{i j}=1$, then for some $z,(x, z) \in E_{A}$, also $(z, y) \in E_{C} r$, i.e. $\Gamma_{A} z \not \equiv \Gamma_{A} y$. But then, according to the condition for the edge in $G(M)$, an edge $(x, y) \in E_{M}$ exactly then, when $f_{i j}=0$, and thus we have found the expression $\left(A^{T}\left[A\left(A^{T}\right)^{\prime}\right]^{T}\right)^{\prime \prime}$ for M. The criterion written formerly in terms of M gives now the theorem

Theorem 1. A Boolean relation matrix A has a generalized inverse if and only if $A=A\left(A^{T}\left[A\left(A^{T}\right)^{\prime \prime}\right]^{T}\right)^{\prime \prime} A$.

3. A determination method

In this section we shall follow the lines of the paper [2] without trying to find solution algorithms analogues to those proposed by Rudeanu in [7] and Ledley in [1] for the Boolean matrix equations $A X=B$ and $X A=B$. The way of this paper is appropriate for moderate values of n.

In the following we shall construct the graph $G\left(M^{\prime \prime}\right)$ by a graphical way; note that $B_{1}=B_{3}=A$ and $B_{2}=M^{\prime \prime}$. Consider a vertex $x \in V_{1}$. We can immediately determine the vertices in the sets $\left\{V_{1}^{\prime}-\Gamma_{B_{1}} x\right\}$ and $\left\{w \mid \Gamma_{B_{3}} w \cap\left\{V_{3}^{\prime}-\Gamma_{B_{3}} x\right\} \neq \varnothing\right\}$. Join any vertex $u \in \Gamma_{B_{1}} x$ to any vertex w and repeat this process for any x of V_{1}. The bipartite graph $G\left(B_{2}\right)$ of the chain graph $G\left(B_{1}\right) G\left(B_{2}\right) G\left(B_{3}\right)$ is $G\left(M^{\prime \prime}\right)$, since we have constructed all the edges contradicting the condition (ii) of the previous section and only those, as the construction immediately shows. From Theorem 1 it follows that one cannot from the graph $G\left(M^{\prime \prime}\right)$ conclude the existence of a generalized inverse for A.

The existence of a generalized inverse for A will be tested by verifying the validity of the condition (i) for any edge $\left(x, y^{\prime}\right) \in E_{A}$. This can be performed as follows: Join any vertex $u \in V_{3}\left(=V_{2}^{\prime}\right)$, for which $y^{\prime} \in \Gamma_{B_{3}} u$, to each vertex $z^{\prime} \in \Gamma_{B_{1}} x \subset$ $\subset V_{2}\left(=V_{1}^{\prime}\right)$ and remove all the edges contained in $G\left(M^{\prime \prime}\right)$. If the edge set E_{B} of the graph $G\left(B_{2}\right)$ in the graph $G\left(B_{1}\right) G\left(B_{2}\right) G\left(B_{3}\right)$ constructed by this manner is non-empty for aby edge $\left(x, y^{\prime}\right) \in E_{A}$, (i) and (ii) are valid (cf. the removal of the edges in $G\left(M^{\prime \prime}\right)$), and hence a generalized inverse exists. We shall formulate the observations above in a theorem giving a criterion for the generalized inverse for A.

Denote by $Z\left(x, y^{\prime}\right)$ the Boolean relation matrix of the edge $\left(x, y^{\prime}\right) \in E_{A}$ determined by the manner reported above.

Theorem 2. Let A be a given Boolean relation matrix. A has a generalized inverse if and only if the matrix $Z\left(x, y^{\prime}\right)$ is non-zero for any edge $\left(x, y^{\prime}\right) \in E_{A}$. Furthermore, if there is a generalized inverse for A^{\prime}, then any Boolean relation matrix $Q \leqslant \bigcup Z\left(x, y^{\prime}\right)$, where $\left(x, y^{\prime \prime}\right) \in E_{A}$, is a generalized inverse for A, if $Q \cap Z\left(x, y^{\prime}\right)$ is non-zero for any edge $\left(x, y^{\prime}\right) \in E_{A}$.

Proof. The validity of the first part of the theorem was shown previously. According to the construction rules of the graphs $G\left(Z\left(x, y^{\prime}\right)\right), G\left(\cup Z\left(x, y^{\prime}\right)\right)$ does not contain edges contradicting the condition (ii). Since $Q \leqslant \bigcup_{\left(x, y^{\prime}\right)}^{\left(x, y^{\prime}\right)} Z\left(x, y^{\prime}\right)$, $G(Q)$ has this property as well. As for any $\left(x, y^{\prime}\right) \in E_{A}$ the meet $Q \stackrel{\left(x, y^{\prime}\right)}{\cap} Z\left(x, y^{\prime}\right)$ is a non-zero matrix, $G(Q)$ is a graph for which the condition (i) hold, and hence Q is a generalized inverse for A. This completes the proof.

Note that $\bigcup Z\left(x, y^{\prime}\right)=M$, since only those edges contained in $G\left(M^{\prime \prime}\right)$ were
removed by the construction of $G\left(Z\left(x, y^{\prime}\right)\right)$. Further, if there is a generalized inverse for A. Theorem 2 offers a way of enumerating all the generalized inverses for A.

$G\left(B_{1}\right) G\left(B_{2}\right) G\left(B_{3}\right)$
Fig. 2

$G\left(B_{1}\right) G\left(B_{2}\right) G\left(B_{3}\right)$
Fig. 3

Finally, consider an example. Let A be a given Boolean relation matrix,

$$
A=\left[\begin{array}{cccc}
x^{\prime} & y^{\prime} & z^{\prime} & v^{\prime} \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right] \begin{aligned}
& x \\
& y \\
& z \\
& v
\end{aligned} . \text { Then } M=\left(A^{T}\left[A\left(A^{T}\right)^{\prime}\right]^{T}\right)^{\prime \prime}=\left[\begin{array}{cccc}
x^{\prime} & y^{\prime} & z^{\prime} & v^{\prime} \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1
\end{array}\right] \begin{aligned}
& x \\
& y \\
& z \\
& v
\end{aligned}
$$

which is a generalized inverse for A, as one can readily verify. Figure 2 shows the construction of the graph and let us consider nearer the vertex x. Now $\Gamma_{B_{1}} x=$ $=\Gamma_{B_{3}} x=\left\{x^{\prime}, z^{\prime}, v^{\prime}\right\},\left\{V_{1}^{\prime}-\Gamma_{B_{1}} x\right\}=\left\{y^{\prime}\right\}=\left\{V_{3}^{\prime}-\Gamma_{B_{3}} x\right\}$, and $\left\{w \mid \Gamma_{B_{3}} w \cap\left\{y^{\prime}\right\} \neq \emptyset\right\}=$ $=\{z\}$, which can be easily seen from the figure. According to the construction rule of $G\left(M^{\prime \prime}\right),\left(x, z^{\prime}\right),\left(z, z^{\prime}\right)$, and $\left(v, z^{\prime}\right)$ belong to the edge set $E_{M^{\prime \prime}}$.

$G\left(2\left(z, y^{\prime}\right)\right)$

$6\left(z\left(x, v^{\prime}\right)\right)$

$6\left(z\left(z, z^{\prime}\right)\right)$

$G\left(z\left(y, x^{\prime}\right)\right)$

$G\left(Z\left(v, x^{\prime}\right)\right)$

$G\left(z\left(y, z^{\prime}\right)\right)$

Fig. 4
In Figure 4 all the graphs $G\left(Z\left(x, y^{\prime}\right)\right)$ are given, and Figure 3 shows the construction of $G\left(Z\left(x, x^{\prime}\right)\right)$. Now $\Gamma_{B_{1}} x=\left\{x^{\prime}, z^{\prime}, v^{\prime}\right\}$ and for each vertex t of the set $\{x, y, z, v\}, x^{\prime} \in \Gamma_{B_{3}} t$. Hence, in $G\left(B_{2}\right)$ any $t \in\left\{x^{\prime}, y^{\prime}, z^{\prime}, v^{\prime}\right\}$ is joined by an edge o any $q \in\{x, y, v\}$. The dotted edges correspond to the edges of $G\left(M^{\prime \prime}\right)$. All the generalized inverse can now be formed according to Theorem 2 .

References

1. Ledley R. S., Programming and utilizing digital computers. New York 1962
2. Nieminen J., A graphical way to solve the Boolean matrix equations $A X=B$ and $X A=B$. Kybernetika 10, 1 (1974).
3. Plemmons R. J., Generalized inverses of Boolean relation matrices SIAM J. Appl. Math. 20 (1971) 426-433
4. Plemmons R. J., Graphs and nonnegative matrices. Linear Alg. Appl. 5 (1972) 283-292.
5. Ponstein J., Matrices in graph and network theory, van Gorcum, Assen, Holland (1966) Thesis, Univ. of Utrecht.
6. Rosenblatt D., On the graphs and asymptotic forms of finite Boolean relation matrices. Naval Res. Logist. Quart. 4 (1957) 151-167.
7. Rudeanu S., On Boolean matrix equations. Rev. Roum. Math. Pures et Appl. 17 (1972) 1075-1090.

Wyznaczanie uogólnionej macierzy odwrotnej względen

(boolowskiej) macierzy relacji

W pracy podano kryterium istnienia uogólnionej macierzy odwrotnej względem (boolowskiej) macierzy relacji oraz przedstawiono metodę jej wyznaczania.

Определение обобщенной матрицы обратной по отношенню к булевой матрице соотношений

В работе дан критерий существования обобщенной матрицы обратной по отношению к булевой матрице соотношений а также представлен метод ее определения.

Whkazówki dla Autorów

W wydawnictwie "Control and Cybernetics" drukuje się prace orygınalne nie publikowane W innych czasopismach. Zalecane jest nadsylanie artykułów w języku angielskim. W przypadku nadehlanla artykułu w języku polskim, Redakcja może zalecić przetłumaczenie na język angielski. Objefolé artykulu nie powinna przekraczać 1 arkusza wydawniczegi, czyli ok. 20 stron maszynopisu formatu 14 z zachowaniem interlinii i marginesu szerokości 5 cm z lewej strony. Prace należy Mhladad ww 2 egzemplarzach. Uklad pracy i forma powinny być dostosowane do niżej podanych wakazówek.

1. W naglówku należy podać tytul pracy, następnie imiẹ (imiona) i nazwisko (nazwiska) autora (autorow) w porządku alfabetycznym oraz nazwę reprezentowanej instytucji i nazwę miasta. Po ytule należy umieścić krótkie streszczenie pracy (do 15 wierszy maszynopisu).
2. Material ilustracyjny powinien być dołaczony na oddzielnych stronach. Podpisy pod rysunki naloł̀y podać oddzielnie.
3. Wzory i symbole powinny być wpisane na maszynie bardzo starannie.

Szczogólną uwagę należy zwrócić na wyraźne zróżnicowanie malych i dużych liter. Litery greckie nowinny być objaśnione na marginesie. Szczególnie dokładnie powinny być pisane indeksy (wskaźniki) | oznaczenia potegowe. Należy stosować nawiasy okrągle
4. Spis literatury powinien być podany na końcu artykułu. Numery pozycji literatury w tekście
 aopatruje sié w nawiasy kwadratowe. Pozycje literatury powinny zawierac nazwisko auto

przy
.
Pozycje literatury radzieckiej należy pisać alfabetem oryginalnym, czyli tzw. grażdanka

