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There are considered the basic assumption of a so called time-interval logic being a modification 
of a tense-logic introduced by A. N. Prior. The time-interval logic makes it possible to formalize 
the description of the basic time-relations between the technological operations considered as the 
elements of an operational net being planned. The proving of the internal consistency of the assump­
tions concerning the causal relations between the operations is thus possible on the basis of some 
time-interval logic inference rules. Some formal logical properties making it possible to prove the 
consistency of assumptions of a plan have been derived. The paper contributes to the -theory of 
problem-oriented formal languages for the solution of formal planning tasks using digital computers. 

1. Genera emarks 

The role of modern mathematical tools in economy and in technology is still 
increasing. Formal models can not describe the reality perfectly, however, the gap 
between the reality and its formal description can be diminished by an iterative 
process of specialization of the mathematical concepts. 

Our attention will be paid to the problems of formal planning of composite 
operational nets in technology and in economy. A formal plan is an approximating 
model of a real process that consists of a set of mutually related actions or operations 
located in time. It will be here supposed that an ordered triple 

P = [A,R, T] (1) 

where A is a finite set of "actions" a;, i E [1, /], R is a formal relation described 
on the set A and corresponding to the causal relationships between actions and T 
is a time-order introduced into the set A, is the most simplified example of a formal 
plan under consideration. 

* Presented at Polish-Italian Meeting on "Modern applications of mathematical systems and 
control theory, in particular to economic and production systems", Cracow, Poland, 14-20 Sept. 
1972. 
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It will be also supposed that R is a quasi-ordering (reciprocal and transitive} 
relation. Thus, for any two elements a;, ai E A one and only one of the following 
situations is possible: 

- a; and ai are mutually irrelative, 
- a; and ai are relative, that means that at least one of the following situations. 

holds: 
R R 

a; ---+ ai (read : "a; causes a/') or ai---+ a;. 
. R R 

It IS also possible that both a; ---+ ai and ai ---+ a; are true. 
More rigorous restrictions will be imposed on the time-ordering relation T: 

this will be in addition supposed to be antisymmetrical, that is in the case if both 
T T 

a; ---+ ai and ai---+ a; hold, the actions a; and ai will be supposed to go simultaneously, 
this will be denoted by 

T 
a; f--+ ai. 

However, the time-irrelativeness of two or more actions is also admissible. 
Thus, T is a specific semi-ordering relations imposed on the set A. 

The relations R and T will be called mutually consistent if for any a;, ai EA 

R T 
(a; ---+ ai) => (a; ---+ a;), (2) 

where => denotes a logical implication. 
The formal plan P will be called admissible if the relations R and Tare mutually 

consistent. So as the relation R is usually given in the form of a set of technological 
or organizational restrictions imposed on the real problem being considered, the· 
problem arises of choising a time-ordering relation T consistent with the given R 
and satisfying to some criteria of optimality. The criterion of the minimum time­
duration of the plan is one of the most important in practice. 

Our aim is to propose a formal tool for proving the consistency of plans as well 
as for generating the plans consistent with any given relation R, more convenient 
than a point-by-point proving of consistency. The aim can be reached, in particular, 
if the commonly used terms like "during", "after", "before", "not later than" and 
so on are formalized up to forming an algebraical system of time-relations. This 
general idea was firstly proposed in 1929 by R. Carnap and then developped by 
A. N. Prior and others, who investigated the so called tense-logic systems. We shall 
start with a very brief description of the Prior's system, before going to more detailed 
considerations on the application of tense-logics in formal planning. 

2. Introduction to tense-logic systems 

Let X; denote a proposition; for the sake of concreteness the proposition "the 
action a; is performed" will be here meant. A logical value 1 can be prescribed to the 
proposition if it is true and the logical value 0 otherwise. The fact that the logical 
values are time-invariant is a source of some disadvantages if the classical propos-
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itional calculus is to be used for the description of changing states of a dynamical 
system. This difficulty can be passed by introducing a so called date-operator 
(A. N. Prior [2], see also A. A. Ivin [1]): D 1x for t E ff; §" being a real time-axis, 
satisfying to the following assumptions: 

DrCl x) =;. I Drx, 

the symbol I being used for the logical negation, 

D 1(x' =;. x") =;. (D 1x' =;. D 1x"), 

['v'(t)D1x] =;. x, 

D,":':(D,,x) =;. Dt'+t"x. 

(3a) 

(3b) 

(3c) 

(3d) 

The operator D 1 transforms any proposition x into a time-variant one read as 
"x at the time t" and having the logical value 1 if and only if x is true at the time t. 
Let us remark, that D 1x does not change its logical value in the time. 

Using the general quantifier V' some new logical operators can be defined on 
the basis of the date-operator as follows: 

G1x = V' (t' < t)D1,x for t', t E fl (4) 

can be interpreted as a "strong-past operator" changing a proposition x into a one 
having value 1 if and only if D 1,x is true for all t' < t. In a similar way, 

H 1x = V' (t' > t)D,,x for t, t' E §" (5) 

can be interpreted as a "strong-future operator". 
Similarly, the "weak-past" and "weak-future" operators can be defined using 

the particular quantifier: 

P1x = 3 (t' < t)D1,x for t' , t E ff, (6) 

transforms the proposition x into a one being true if and only if there exists such 
a t' < t that D,, xis true. Similarly,~ 

F1x = 3 (t' > t)D1x for t', t Eff (7) 

acts in the same way on x if and only if there exists such a t' > t that D,,x is true. 
It is clear that the expressions Grx, Hrx, PrX and FrX can be read as "it was always 
x before t", "it will be always x after t", "it was sometimes x before t" and "it will 
be sometimes x after t", correspondingly. 

The past-tense and the future-tense logics are in formal sense mutually symme­
trical. According to A. N. Prior, the future-tense logic is based on the following 
assumptions: 

(a) on the axioms of the classical propositional calculus, 
(b) on the definition (7) of the "weak-future" operator, 
(c) on the following additional assumptions: 

F,F1X =;. F1x, 

[~ U] =;. [~ (H1U)], · 

[~ (U = V)]:::::;=;.~ (F1U = F1V), 

(8a) 

(8b) 

(8c) 

(8d) 



...--

46 J. L. KULIKOWSKI 

where v, = stand for the logical alternative and equivalence, correspondingly, and 
--+ U denotes any logically deducible expression U. 

By changing the operators Fr by Pr and H1 by G1 the "past-tense logic" can be 
transformed into a "future-tense" one. However, a general "tense logic" in addition 
·to the rules govering in the "past-tense" and in the "future-tense" logics, according 
to A. N. Prior, should satisfy to a.set of reduction formulae: 

HrGr PrGr Gr FrGr Fr HrFr PrFr GrFr 

Pr HrGr HrGr PrGr F,Gr P,F1 P,F, PrFr G1F1 

H, HrGr HrGr HrGr FrGr HrFr H 1F1 PrFr G1 Fr 
F, HrGr FrGr F1G1 F1G1 Fr F, P1F1 GrFr 
G, H1G1 G, Gr F1Gr GrFr GtFr P1F1 GrFr 

Thus, for example, an expression 
P1H 1G1G1x = "it was sometimes before t that it was always before t that it will 

be always after t that it will be always after t that x" can be reduced as follows: 

P,(H,(G,(G,x))) = P,(H,(GrG,x)) = Pr(H,(G,x)) = P1(H1G1x) = H 1G1x 

and finally we obtain a proposition: "it was always before t that it will be always 
after t that x". 

We shall not go into more detailed considerations of the Prior's tense logic, 
because it is no more but a starting point for our purposes. 

3. Time-interval logic 

It is desirable for the description of operational nets to have a logical system that 
prescribes to the propositions some logical values during finite time-intervals. 

For any t', t" E :Y, t' < t", we shall define the logical operators: 
d1,, ,, x- a "weak time-interval operator" that transforms any proposition 

x into a one being true if and only if there is such atE :Y, t' ~ t ~ t", that x is true 
at the time t and it is false for all t < t' and for all t > t"; D,,,1 , x- a "strong 
time-interval operator" transforming any proposition x into a one being true if 
and only if for all t E :Y, t' ~ t ~ t", xis true at the time t and is false for t < t' 
and fort > t". 

It is clear that the Prior's operators can be derived in particular cases: 

and in general 

dr,rX = Dr,rX = D,x, 

D_ 00 , 1X = G1x, 

Dt,+oox = H 1x, 

d_ 00 , 1X = P1x, 

dr,+ooX = F1x 

D_ 00 ,+ 00 X =>X=> d_ 00 ,+ 00 X. 

(9a) 

(9b) 

(9c) 

(9d) 

(9e) 

(9f) 
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D~~(x,y) for r';;:: r 
0~~ ( x, y) for r',; r 

Di~ (x,y) for T 1 ;.r 
Of~ (x, IJ) for r' 6; r 

I .. 
r} (<0) 

Possible mutual positions of two time-intervals 

The following assumptions concerning the "time-interval operators" will be 
made: 

. (a) the axioms of the classical propositional calculus; 

(b) the rules of the classical logical inference; 

(c) for any t' ~ t" and for any propositions x, y 

where 
t' = max(t~, t~). 
t" = min(t~', t~'), 

where 

t' = min(t~, t2), 
t" = max(t~', t~); 

(d) for any A E {D, d} and for any BE {D, d} 

---------- -

(lOa) 

(lOb) 

(IOc) 

(IOd) 

(IOe) 
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The "time-interval operators" make it possible to consider the operations located 
in an absolute time. A lot of practical problems lead us to the relative time-allocations 
of the operations. The main mutual P?Sitions of two time-intervals are illustrated 
in the Figure. According to this, if two propositions x and y are given, the following 
eight "relative-time operators" can be defined: 

D~!(X,,Ji) = 3 (r' ?= r) 3 (t 1 , t2 , t3 )(Dr,t
2
XADt,,t,wY), (lla) 

D~~(x,y) = 3 (r' ~ r) 3 (t 1 , ! 2 , t 3 )(Dt,,t
2
XADt,,t

1
wY), (llb) 

D~~(x,y) = 3 (r' ?= r) 3 (i1 , ! 2 , t 3 )(Dt
1

,
12

XADt,w,t
3
Y), (llc) 

D~~(x,y) = 3 (r' ~ r) 3 (t 1 , t2 , t 3 )(Dt,,t
2
XADt,+<·,t,Y), (lld) 

D~~(x,y) = 3 (r' ;2:: r) 3 (t 1 , ! 2 , t3 )(Dt.,t
2
XADt

2
w,r,Y), (lle) 

D~~(x, ;J!) = 3 (r' ~ r) 3 (t 1 , ! 2 , t3 )(Dt,t
2
XADt

2
+<',t,Y), (llf) 

D~i(x,y) = 3 (r' ?= r) 3 (1 1 , ! 2 , t 3 )(Dr,t
2
XADt,,t

2
wY), (llg) 

D~~(x, y) = 3 (r' ~ r) 3 (t 1 , lz, t 3 )(D,,,12XADt,,t
2
+r'Y), (llh) 

i 

The operator D~!(x, y) transforms the propositions x, y into a one being true 
if and only if xis true inside a time-interval [t 1 , t 2 ] and y is true inside a time-interval 
[t3 , t4 ] where 

t4 ?= t1 + T. (12) 

Thus, D~!(x, y) can be read as "the beginning of the time-interval of x is at least r 
earlier than the end of the time-interval of y". Similarly, the operator D~~(x, y) 
can be read as "the beginning of the time-interval of x is at most r earlier than the 
end of the time-interval of y". The meaning of the others operators can be explained 
in a similar way. 

The more complicated situations can be described using the above-given "relative­
time operators". For example, an expression 

• Dr,r,Cx,y) = D~%(x,y)AD~i(x,y) (13) 

for some r 1 > 0, r 2 < 0, describ~ a logical operator that transforms the propositions 
x, y into a one which is true if and only if x is true inside a time~interval whose 
beginning is at least r 1 earlier than the beginning of the time-interval of y and whose 
end is at least r 2 later than the end of the time-interval of y. 

The stronger forms of the "relative-time operators" can be also defined: 

D~e(x, y) = D~!(x, y)Am~(x, y), 

mb(x,y) = D~~(x,y)AD~~(x,y), 

D~b(x, y) = D~~(x, y)AD~~(x, y), 

D~e(x,y) = D~!(x,y)AD~~(x,y). 

(14a) 

(14b) 

(14c) 

(14d) 

The weak analogues of the "relative-time operators" based on the "weak time­
interval operator" d1,,1,, probably, would be of less practical importance. 
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The following properties of the "relative-time operators" can be easily proven: 

D~!(x, y) = D':.-~-(y, x), (15a) 

m~(x, y) = D':.-br+(Y, x), (15b) 

m~(x, y) = D~br-(y, x), (15c) 

D;~(x, y) = D':.-er-(Y, x). (15d) 

There will be also useful the following "time-interval duration" operators: 
for any r > 0 

f}tx = 3 (t',t")[d1,rXA(t"-t') > r], 

f}:;x = 3 (t', t")[d,,,,,,xl\ (t" -t') < r], 

8ix = 3 (t', t")[D1,,,,xA(t"-t') > r], 

B:;x = 3 (t', t")[D1,,1,,xl\(t"-t') < r]. 

(16a) 

(16b) 

(16c) 

(16d) 

For proving the consistency of the formal plans the following semi-group pro­
perties of the above-defined operators will be available: 

4 Control and Cybereticc 3-4/73 

[D~f(x, y)AD~~(y, z)] ~ m~+r1(x, z), 

[D~~(x, y)AD~~(y, z)] ~ D~~+r2 (x, z), 

[D;f(x, y)AD;f(y, z)] ~ D~~+r2(x, z), 

[D~;'(x, y) 1\ D~HY, z)] ~ D;~ +r2(x, z), 

[D~!(x, y) A D;~(y, z)] ~ D~~ +ri(x, z), 

[D~;'(x, y) 1\ D;~(y, z)] ~ D~~ +r2(x, z), 

[D~f(x, y) 1\ D~~(y, z)] ~ D~~ +ri(X, z), 

[D;~(x , y)AD~~(y, z)] ~ D;~+rz(x, z), 

[D~f(x, y)AD~~(y, z)] ~ D~~+ri(x, z), 

[m~(x, y) A D~i(Y, z)] ~ D~~ +r2(x, z), 

[D~f(x, y)AD;~(y, z)] ~ m~+r 2(x, z), 

[D;i(x, y) 1\ D~~(y, z)] ~ D~~ +r2(x, z), 

[D;f(x, y) A mFY, z)] ~ D~~ +•i(x, z), 

[D;~(x, y) 1\ D~i(Y, z)] ~ D;: +r2(x, z), 

[D;!(x, y) A D;~(y, z)] ~ D;~ +ri(x, z), 

[D;i(x, y)A D~~(y, z)] ~ D~~+r2 (x, z), 

[D~~(x, y)A B;;(y)] ~ D~~+r2(Y, x), 

[D~~(x, y) A B;,(y) ~ m~+r2(x, y), 

[D;t(x, y)AB;,(y)] ~ D;~-ri(x, y), 

[D;f(x, y)A e;;(y)] ~ D;~-r2(x, y), 

(17a) 

(17b) 

(18a) 

(18b) 

(19a) 

(19b) 

(20a) 

(20b) 

(21a) 

(2lb) 

(22a) 

(22b) 

(23a) 

(23b) 

(24a) 

(24b) 

(25a) 

(25b) 

(26a) 

(26b) 



50 

[D~!(x, y) A fJ~(y)] => D~~ -•i(x, y), 

[D~i'(x' y) t\ et,(y)] => D~~ -Tz(x ' y), 

[D~~(x,y)AfJ,2 (y)] => D~~+•i(x,y), 

[D~~(x, y) t\ fJ,2(y)] => D~~ +•;(x, y); 

in addition, if we put in (13) 

D,",2(x, y) = D_,
3
,_,.(y, x), -r 1 > 0, -r 2 < 0, 

we also obtain 

D,.,,,(x, y) t\ D, 1 ,,2(y, z) => D,1+,3,,2 +<
4
(x, z). 

4. The application to formal planning 

J. L. KULIKOWSKI 

(27a) 

(27b) 

(28a) 

(28b) 

(29) 

(30) 

The possible applications of the time-interval logic to the formal planning are 
based on several rules of logical inference in the time-relations domain. In particular, 
the transitive property of the implication: 

(x => y) t\ (y => z) => (x => z) (31) 

will be used. 
Let us remark that on the basis of the formulae (15 a-d) and (25)-(28) the 

complementary relations can be derived, as for example, from (25b), (15a) and (15c) 
we obtain: 

and 

D~Hx' y) t\ e~(y) => m~ +•2(x' y), 

D"!!,1(y, x)AfJ~(y) => D"!,,_,~ (y, x), 

fJ;2 (x) A D~~(x, y) => D~~-·~(x, y) 

which is a formula complementary to the (25b). 

(32) 

Let us take into account a homogeneous chain of pairwise adjusted logical alter­
natives 

Q = n:~(x, u)AD"~(u, v)t\ .. . t\De~(w, y) 
'{3 'r 

where 

a, r:x,(J, ... ,(?,rE {e,b}, 

* E { +'- }, 

(33) 

(33a) 

(33b) 

x, u, v, ... , w, y being some propositions. Using the formulae (17)-(24) we get 

Q => n::+•p+ ... +•:(x' y) (34) 

In a more general case the non-homogenous chains containing the operators. 
D," , 2 (X, y) or e;(x) besides the D~~ (x, y) ones can occur when the time-relations 
in a set of technological actions are considered. The non-homogenous chains 
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will be called pairwise adjusted if they can be transformed into the pairwise adjusted 
homJgenous ch:tins using the formulae (13), (15a-d), (29) or other logical identities 

For example, a chain 

Q = D~~(u, x)AD,
2
,,,{u, v)/\D~!(v, y) 

can be transformed as follows: 

and thus 

Now, the practical importance of the time-interval logic for the formal plannig 
can be explained. When a set of time-relations is given in the form of some time­
interval logic expressions and some of them can be joined into pairwise adjusted 
chains, the rules of logical inference can be used in order to prove the consistency 
of the set of relations. The conclusions can not contradict to each other. On the 
other hand, for some pairs of actions no time-relation can be deducible on the basis 
of the time-interval logic rules. Such pairs of actions will be characterized by some 
degrees of freedom of their mutual allocation in time. 

The time-interval logic can be also considered as a formal tool for proving the 
semantical correctness of the expressions of a language of time-relations description. 
Therefore, the time-interval logic investigations can be considered as a part of a more 
general problem of problem-oriented languages for operations planning. 
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Zastosowanie Iogiki nast~pstw czasowych w formalnym 
planowaniu operacji 

Przedstawiono podstawowe zaloi:enia tzw. logiki przedzial6w czasowych b~;;dl!cej modyfikacjl! 
logiki m.st~;;pstw czasowych wprowadzonej przez A. N. Priora. Logika przedzial6w czasowych 
umoi:liwia sformalizowanie zapisu podstawowych relacji czasowych zachodzl!cych mi~;;dzy operacjami 
technologicznymi stanowillcymi elementy planowanej sieci opei:acji. Na podstawie regul wniosko­
wania logicznego s(aje si~;; w6wczas moi:liwe formalne sprawdzenie wewn~;;trznej niesprzecznosci 
ukladu za!oi:en dotycz<tcych nast~;;pstw przyczynowo-skutkowych operacji przez sprawdzenie nie­
sprzeczno:ki ukladu odpowiednich relacji czasowych zachodzl!cych mi~;;dzy operacjami. Wyprowa­
dzono cillg formalnych zalei:nosci logicznych mog<tcych ulatwic dokonanie podobnej analizy 
niesprzeczno:ki wewn~;;trznej zaloi:en. Praca stanowi przyczynek do teorii sformalizowanych j~;;zyk6w 
zorientowanych problemowo na rozwil!zywanie zadan z dziedziny planowania operacji przy ui:yciu 
maszyn cyfrowych. 

4* 
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llpHMCHCHHe JIOrHKH H3CJICACTB3 BpeMeHH K<l>opMaJIL• 

HOMY nnaHHpoBaHHID onepa~HH 

J. L. KULIKOWSKI 

PaccMaTpHBaiOTCJI ocHOBHhre rrperoronomeHHJI T. H. nonnm BpeMeHH BBegeHoil: A. H. IIpuo­

poM. JioruKa HHTepBaJIOB BpeMeHH genaeT B03MOlliHOH <j:JOpMaJ!H3aiiHIO 3aiiHCH OCHOBHbiX Bpe­

MeHHbiX COOTHOIIIeHHH Melli):ly TeXHOJIOrH"l!eCKl!Ml! orrepai\HJIMH JIBJIJIIO!IIHMHCJI 3JieMeHTaMH IIJ!a­

HHpOBaHHOH CeTH onepai\HH. Ha OCHOBaHHH npaBHJ! norH"l!eCKOrO Bb!BO,[Ia CTaHOBHTCJI B03MOlliHOH 

<J;lopMaJ!bHaJI ITpOBepKa BHyTpeHHeif HeiipOTHBOpel.ll!BOCTH Cl!CTeMbi rrpe):IIIOJIOllieHHH OTHOCJI!IIl!X­

CJI K IIpH"lll!HHO-CJ!e,[ICTBeHHb!M COOTHOIIIeHHJIM Me»<,[ly OIIepai\HHMH, nyTeM IIpOBepKH COOTBeT­

CTBYIOIIIHX BpeMeHHb!X COOTHOIIIeHHH. BbiBe):\eH pH):{ <j:JopMaJibHhiX JIOrH"l!eCKHX rrpaBHJI o6nerra­

lO!I1HX BhiiiieyKa3aHHblll aHaJIH3 BHyTpeHHHX HeiipOTHBOpet!l!MOCTeif. Pa60Ta OTHOCHTCH K TeOpHH 

<j:JopMaJIH30BaHHbiX JI3b!KOB Opl!eHTllpOBaHHb!X Ha peiiieHue 3a):la"l! ll3 06JiaCTH pnaHHpOBaHHH 

orrepai\HH C IIOMO!IIhlO 3BM. 
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