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There are considered the basic assumption of a so called time-interval logic being a modification
of a tense-logic introduced by A. N. Prior. The time-interval logic makes it possible to formalize
the description of the basic time-relations between the technological operations considered as the
elements of an operational net being planned. The proving of the internal consistency of the assump-
tions concerning the causal relations between the operations is thus possible on the basis of some
time-interval logic inference rules. Some formal logical properties making it possible to prove the
consistency of assumptions of a plan have been derived. The paper contributes to the theory of
problem-oriented formal languages for the solution of formal planning tasks using digital computers.

1. Genera emarks

The role of modern mathematical tools in economy and in technology is still
increasing. Formal models can not describe the reality perfectly, however, the gap
between the reality and its formal description can be diminished by an iterative
process of specialization of the mathematical concepts.

Our attention will be paid to the problems of formal planning of composite
operational nets in technology and in economy. A formal plan is an approximating
model of a real process that consists of a set of mutually related actions or operations
located in time. It will be here supposed that an ordered triple

P =[A4,R,T] )

where A is a finite set of “actions” a;, i€ [1, ], R is a formal relation described
on the set 4 and corresponding to the causal relationships between actions and T'
is a time-order introduced into the set 4, is the most simplified example of a formal
plan under consideration.

* Presented at Polish-Italian Meeting on “Modern applications of mathematical systems and
control theory, in particular to economic and production systems”, Cracow, Poland, 14-20 Sept.
1972.
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It will be also supposed that R is a quasi-ordering (reciprocal and transitive)
relation. Thus, for any two elements a;, a; € A one and only one of the following
situations is possible:

— a; and g; are mutually irrelative,

— a; and g; are relative, that means that at least one of the following situations
holds:

R R
. 29
a; — a; (read: “aq; causes g;”) or a; — a;.

. ; R R

It is also possible that both @; — g; and a; — a; are true.
More rigorous restrictions will be imposed on the time-ordering relation T':
this will be in addition supposed to be antisymmetrical, that is in the case if both

T T ) . :
a; — a; and @; — a; hold, the actions a; and a; will be supposed to go simultaneously,

this will be denoted by
T

a; <> aj.
However, the time-irrelativeness of two or more actions is also admissible.
Thus, T is a specific semi-ordering relations imposed on the set A.
The relations R and 7 will be called mutually consistent if for any a;, a;€ 4

@S a) = (@ > a), ©)

where = denotes a logical implication.

The formal plan P will be called admissible if the relations R and T are mutually
consistent. So as the relation R is usually given in the form of a set of technological
or organizational restrictions imposed on the real problem being considered, the
problem arises of choising a time-ordering relation T consistent with the given R
and satisfying to some criteria of optimality. The criterion of the minimum time-
duration of the plan is one of the most important in practice.

Our aim is to propose a formal tool for proving the consistency of plans as well
as for generating the plans consistent with any given relation R, more convenient
than a point-by-point proving of consistency. The aim can be reached, in particular,
if the commonly used terms like “during”, “after”, “before”, “not later than” and
so on are formalized up to forming an algebraical system of time-relations. This
general idea was firstly proposed in 1929 by R. Carnap and then developped by
A. N. Prior and others, who investigated the so called tense-logic systems. We shall
start with a very brief description of the Prior’s system, before going to more detailed
considerations on the application of tense-logics in formal planning.

2. Introduction to tense-logic systems

Let x; denote a proposition; for the sake of concreteness the proposition “the
action g; is performed” will be here meant. A logical value 1 can be prescribed to the
proposition if it is true and the logical value 0 otherwise. The fact that the logical
values are time-invariant is a source of some disadvantages if the classical propos-
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itional calculus is to be used for the description of changing states of a dynamical
system. This difficulty can be passed by introducing a so called date-operator
(A. N. Prior [2], see also A. A. Ivin [1]): D,x for t €7 ; J being a real time-axis,
satisfying to the following assumptions:

D,(7] x)= 7] Dix, (3a)
the symbol ] being used for the logical negation,
D(x" = x") = (D;x" = Dx""), (3b)
[V(¢)Dx] = x, (3¢)
DDy = Dy g (3d)

The operator D, transforms any proposition x into a time-variant one read as
“x at the time ¢” and having the logical value 1 if and only if x is true at the time ¢.
Let us remark, that D,x does not change its logical value in the time.

Using the general quantifier V some new logical operators can be defined on
the basis of the date-operator as follows:

Gx=V({' <t)Dux for t',teT “)

can be interpreted as a “strong-past operator” changing a proposition x into a one
having value 1 if and only if D,.x is true for all ¢’ < 7. In a similar way,

Hx =V (' >t)D.x for t,t'eT %)

can be interpreted as a “strong-future operator”.

Similarly, the “weak-past” and “weak-future” operators can be defined using
the particular quantifier:

Px=3("<t)Dux for ¢,ted, (6)

transforms the proposition x into a one being true if and only if there exists such
at’ < tthat D, x is true. Similarly,?

Fx=3@">1t)Dx for t',ted )

acts in the same way on x if and only if there exists such a ¢’ > ¢ that D,.x is true.
It is clear that the expressions G;x, H;x, P,x and F;x can be read as “it was always
x before ¢, “it will be always x after ”, “it was sometimes x before ¢ and “it will
be sometimes x after #”, correspondingly.

The past-tense and the future-tense logics are in formal sense mutually symme-
trical. According to A. N. Prior, the future-tense logic is based on the following
assumptions:

(a) on the axioms of the classical propositional calculus,

(b) on the definition (7) of the “weak-future” operator,

(c) on the following additional assumptions:

F,F,x = Fx, (8a)
F,(x' v xll) = thl v thll, (8b)
[- Ul= [~ (H.U)], (8¢)

[»(U=Wl~ = FU=FP), (8d)
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where v, = stand for the logical alternative and equivalence, correspondingly, and
— U denotes any logically deducible expression U.

By changing the operators F; by P; and H, by G, the “past-tense logic” can be
transformed into a “future-tense” one. However, a general “tense logic” in addition
to the rules govering in the “past-tense” and in the “future-tense” logics, according
to A. N. Prior, should satisfy to a.set of reduction formulae:

H:G; PGy G F1G; F; H F, P Fy G, Fy
Py H:G; H,G, PGy F,G; PiF; P F; P F, G Fy
H; H;G; H,G; H,; G, F;G; H,F; H F; P F; G Fy
F | H:G; F; Gy F; Gy F: Gy F F; P Fy G Fy
G: | H:G: G: G, F; Gy G Fy G F P Fy G Fy

Thus, for example, an expression
P.H,G,G,x = “it was sometimes before ¢ that it was always before ¢ that it will
be always after ¢ that it will be always after ¢ that x” can be reduced as follows:

Pt(Ht(Gt(Gtx))) = Pt(Ht(Gthx)) = Pt(Ht(Gtx)) = P(H,Gx) = HGx

and finally we obtain a proposition: “it was always before ¢ that it will be always
after ¢ that x”’.

We shall not go into more detailed considerations of the Prior’s tense logic,
because it is no more but a starting point for our purposes.

3. Time-interval logic

It is desirable for the description of operational nets to have a logical system that
prescribes to the propositions some logical values during finite time-intervals.

Forany t',t" €7, t' < t”, we shall define the logical operators:

dy.,» x —a “weak time-interval operator” that transforms any proposition
x into a one being true if and only if there issuchat €7, t’ < t < t", that x is true
at the time 7 and it is false for all # < ¢’ and for all ¢ > ¢; D,,;.. x —a “strong
time-interval operator” transforming any proposition x into a one being true if
and only if for all teJ, t' < t < t”, x is true at the time ¢ and is false for ¢ < ¢’
and for ¢ > ¢"'.

It is clear that the Prior’s operators can be derived in particular cases:

diyx = Dyyx = Dyx, (%9a)
B e, (©b)
D; ,ox = Hx, (9¢c)
d_ o = Pix; (9d)
0% = Fyx (%)

and in general
Dy X2 X555 0% (D)
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Possible mutual positions of two time-intervals

made:
- (a) the axioms of the classical propositional calculus;
(b) the rules of the classical logical inference;

() for any #' < ¢ and for any propositions x, y

* Dy grox = dys 400X,
—]dtl,t//x = _[ Dt;’tux,

[Dijyx ADyy 4¥]1 = Dy (X A ),
where
¢ = max(ry, t3),
" = min(t7, 13),
[dti’t’l’x thi,té’}’] = dtl’tn(x Vy)
where
' = min(t1, t5),
t = max(h » tz )
(d) for any 4 € {D, d} and for any Be {D, d}

Asi,1y By, 45X = By yx.

The following assumptions concerning the “time-interval operators”
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will be

(10a)
(10b)
(10c)

(10d)

(10e)
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et e Bl

The “time-interval operators” make it possible to consider the operations located

in an absolute time. A lot of practical problems lead us to the relative time-allocations

of the operations. The main mutual positions of two time-intervals are illustrated

in the Figure. According to this, if two propositions x and y are given, the following
eight “relative-time operators” can be defined:

D(x,») =3 (z' = v (1, t2; t3)(D1, 0, XA Dy s o)), (11a)
De(x, »=3E<1713 (tis.ta, 13)(Dy, 0, X A Dyt 4109, (11b)
DR(x,») =3 (' =)y, t,, 23)(Dy0,% A Dy 0.7, (11c)
D(x,y) =3 (v < 7) 3 (2, 15, 13)(Dt,,e, X A Dy v . 7), (11d)
DR, ») =3 (" = 03 (1, 1, 13)(Dy 0, X A Dy yr 1. 3), (11e)
DE(x,y) =3(x' < 7)1 (st 13)(Dt,,t, X A Dy, 40 0. 7), (11£)
Di(x,») =3 (7 = v (1y, t,, 13)(Diyt,X A Dy s, y), (11g)
DE(x,y) =3(7 < 7)1 (11, 12, t3)(Dy, 1, x A Dy, s, 109), (11h)

The operator D% (x, y) transforms the propositions x, y into a one being true
if and only if x is true inside time-interval [¢,, ¢,] and yis true inside a time-interval
[, t,] where '

by 2= fy r (12)

Thus, D% (x, y) can be read as “the beginning of the time-interval of x is at least =
earlier than the end of the time-interval of y”. Similarly, the operator D%(x, y)
can be read as “the beginning of the time-interval of x is at most 7 earlier than the
end of the time-interval of »”. The meaning of the others operators can be explained
in a similar way.

The more complicated situations can be described using the above-given “relative-
time operators”. For example, an expression

Diyoy(x, ) = DY(x, ) A DE(x, y) (13)

for some 7, > 0, 7, < 0, describe a logical operator that transforms the propositions
X, y into a one which is true if and only if x is true inside a time-interval whose
beginning is at least 7, earlier than the beginning of the time-interval of y and whose
end is at least 7, later than the end of the time-interval of y.

The stronger forms of the “relative-time operators” can be also defined:

DG, 3) = D(x, y) A D¥(x, y), (14a)
D2(x, p) = D¥(x, y) A D¥(x, y), (14b)
D(x, y) = Dgb(x, y) A DEb(x, y), (14c)
Di*(x, y) = Dg(x, y) A DE(x, y). (144)

The weak analogues of the “relative-time operators” based on the “weak time-
interval operator” dys,1+, Probably, would be of legs practical importance.
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The following properties of the “relative-time operators” can be easily proven:

D'I;f(x5 y) = D-e—I::—(y:x)> (15&)
Di(x, y) = D%.(, x), (15b)
D¥%(x,y) = D¥%_(p, x), (15¢)
D7i(x,y) = D-(p, x). (15d)

There will be also useful the following “time-interval duration” operators:
forany 7 > 0

Hfx =3 (") dygex A" — 1) > 7], (16a)
Drx =3, t")dypxn(t"—1") < 7], (16b)
Ofx = 3(t', t")[Dy,x A "=t > 1, (16¢)
O7x =3 (', t')[Dypoxn(t"—1") < 7. (16d)

For proving the consistency of the formal plans the following semi-group pro-
perties of the above-defined operators will be available:

[D%(x, y)ADY(y, 2)] = D%, .s(x, 2), (172)
[D%(x, y) AD%(y, 2)] = DY, 5(x, 2), (17b)
[DE(x, »)ADH(y, 2)] = D8, 5(x, z), (18a)
[D(x, ) ADZE(y, 2)] = D, 5(x, 2), (18b)
[D%(x, ) ADH(p, 2)] = Db, s(x, 2), (19a)
[D¥(x, YA DE(y, 2)] = DY, .o(x, ), (19b)
[D¥%(x, ») A D2(y, 2)] = D, 5(x, 2), (20a)
[DE(x, ») A DYy, 2)] = D -(x, 2), (20b)
[D2(x, y) A D¥(p, 2)] = D%, o4(x, 2), (21a)
[D22(x, y) A Dy, 2)] = D22, o(x, 2), (21b)
[D5(x, Y)ADE(y, 2)] = D2, . (x, 2), (22a)
[D5(x, ¥) A DE(y, 2)] = DY, (x, z), (22b)
[DZ(x, Y)ADX(y, 2)] = D2, s(x, 2), - (23a)
[DF(x, p)ADE(y, 2)] = D% .<(x, 2), (23b)
[DZ(x, Y)ADE(y, 2)] = D, 4(x, 2), (24a)
[DZ(x, »)A Dy, 2)] = D, (x, z), (24b)
[D2(x, »)AOL()] = D2, ~(y, x), (252)
[D2(x, ) AOL()) = D x(x, ), (25b)
[D(x, »)AOZ ()] = D _s(x, y), (262)
[DF(x, ) AOE(M] = DL _.(x, ), (26b)

4 Control and Cybereticc 3-4/73
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[D%(x, Y) AOZ (] = DY _o5(x, ), (272)
[DYs(x, WAOLO = DY _s(x,3), (27b)
[Dg(x, ») A O (1] = DE1os(x, ), (28a)
[DZ(x, ) AO5(N] = DE45(x, 3); (28b)

in addition, if we put in (13)
D, (x,y) =D_., . (y,%), .>0, 1,<0, (29)

we also obtain

Dy, (%, P) A Dz 5,(¥5 2) = Drpiayyry 40, (X, 2)- (30)

4. The application to formal planning

The possible applications of the time-interval logic to the formal planning are
based on several rules of logical inference in the time-relations domain. In particular,
the transitive property of the implication:

=A@ =>2)=(x=2) (31
will be used.

Let us remark that on the basis of the formulae (15 a-d) and (25)-(28) the
complementary relations can be derived, as for example, from (25b), (15a) and (15¢)
we obtain:

Di2(x, ) AOZ(3) = DEyux(x, 3),

Dll!]‘f‘]’(y’ x)/\ @'E_z(y) = Dﬂ’n—r’i(ya x)’
and

O5()ADE(x,y) = DE_5(x, ) (32)
which is a formula complementary to the (25b).

Let us take into account a homogeneous chain of pairwise adjusted logical alter-
natives

Q = DI(x, u)/\ng(u, DA ... ADf;'k(w, ») (33)

where
a, o, B, ...,0,r e {e, b}, (33a)
w81t — 1 (33b)
X,u,?,...,w,y being some propositions. Using the formulae (17)-(24) we get
g DZ;+rﬁ+ +r;"(x’ y) (G4

In a more general case the non-homogenous chains containing the operators.
D,,,.,(x,y) or OF(x) besides the D% (x, y) ones can occur when the time-relations
in a set of technological actions are considered. The non-homogenous chains



An application of a tense-logic system 51

will be called pairwise adjusted if they can be transformed into the pairwise adjusted
hombgenous chains using the formulae (13), (15a—-d), (29) or other logical identities
For example, a chain

Q = D%(u, X)A Dy, -, (u, ) A D%(0, y)
can be transformed as follows:
Q = D%*;(x, ) AD¥E(u, v) A DY (u, v)A Di(v, y)
and thus
Q = D—e‘f1+‘fz+13+ri('x> y)

Now, the practical importance of the time-interval logic for the formal plannig
can be explained. When a set of time-relations is given in the form of some time-
interval logic expressions and some of them can be joined into pairwise adjusted
chains, the rules of logical inference can be used in order to prove the consistency
of the set of relations. The conclusions can not contradict to each other. On the
other hand, for some pairs of actions no time-relation can be deducible on the basis
of the time-interval logic rules. Such pairs of actions will be characterized by some
degrees of freedom of their mutual allocation in time.

The time-interval logic can be also considered as a formal tool for proving the
semantical correctness of the expressions of a language of time-relations description.
Therefore, the time-interval logic investigations can be considered as a part of a more
general problem of problem-oriented languages for operations planning.
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Zastosowanie logiki nastepstw czasowych w formalnym
planowaniu operacji

Przedstawiono podstawowe zaloZenia tzw. logiki przedziatéw czasowych bedacej modyfikacja
logiki nastepstw czasowych wprowadzonej przez A. N. Priora. Logika przedzialéw czasowych
umozliwia sformalizowanie zapisu podstawowych relacji czasowych zachodzacych miedzy operacjami
technologicznymi stanowiacymi elementy planowanej sieci operacji. Na podstawie regut wniosko-
wania logicznego staje sie wowezas mozliwe formalne sprawdzenie wewnetrznej niesprzecznos$ci
uktadu zatozen dotyczacych nastepstw przyczynowo-skutkowych operacji przez sprawdzenie nie-
sprzeczno$ci uktadu odpowiednich relacji czasowych zachodzacych miedzy operacjami. Wyprowa-
dzono ciag formalnych zaleznoSci logicznych mogacych ulatwié dokonanie podobnej analizy
niesprzecznosci wewngtrznej zatozen. Praca stanowi przyczynek do teorii sformalizowanych jezykow
zorientowanych problemowo na rozwiazywanie zadan z dziedziny planowania operacji przy uzyciu
maszyn cyfrowych.

4*
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IIpuMeHeHNE TOTHKH HACIEACTBA BPeMeHH K GopManb-
HOMY IUIAHHPOBAHHIO oIepamuii

PaccmaTpUBaroTCs OCHOBHBIE IIPEANIONIOKEHNA T. H. JIOTHKK BpemeHu BBepeHoi A. H. ITpuo-
pom. JIOTHKA HHTEPBAJOB BPEMEHH MEJIAeT BO3MOYKHONW (HOPMATM3AIMIO 3aIUCH OCHOBHBIX Bpe-
MEHHBIX COOTHOIIEHMI MEXKIY TEXHOJIOTHMUYECKHME ONEPALUAME SIBJIAIOLIMMECA 9JICMEHTaMH IlIa-
HUPOBAHHOM’ ceTH oneparuii. Ha ocHOBaHMM PaBUII JIOTHYECKOTO BBIBOAA CTAHOBUTCS BO3MOXKHOM
bopmansHas NpoBepKa BHYTPEHHEH HEMPOTHBOPEUUBOCTH CUCTEMBI TIPEIIIONIOKEHNH OTHOCAIIINX-
CA K IPUYMHHO-CJIE/ICTBEHHBIM COOTHOIICHUAM MEXKIY OlepalusiMH, IIyTeM IIPOBEPKH COOTBET-
CTBYIOIIUX BPEMEHHBIX COOTHOINEHUH. BhiBeneH psi OpMaIbHBIX JIOTHUYECKUX IIPaBHII 00JIerra-
JOIIMX BBINIEYKa3aHHbIA aHAIN3 BHYTPEHHUX HEIPOTHBOpeuynmocTeii. PaboTa OTHOCUTCA K TeOpUHU
(bopman3oBaHHBIX SSHPIKOB OPHCHTUPOBAHHBLIX Ha DEIICHME 3aJadu M3 O0JACTH IUIAHHPOBAHHSA
omepanyif C IIOMOIIBIO OBM.
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