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In this paper the concept of controlled invariance and its dual, that of conditioned invariance,
are employed in order to derive a general and systematic procedure for the synthesis of devices which
reproduce the state or the unknown input of linear time-invariant dynamic systems. The main feati-
res which distinguish this approach from previous ones are the simple and unitary geometric treat-
ment and the possibility of taking into account stability constraints on the devices to be synthesized.

Introduction

Controlled and conditioned invariance have been introduced in 1969 by G. Basile,
R. Laschi and the author [I, 2] and have been applied for an unified state space
approach to several structural problems of linear system theory, such as obser-
vability with lack of input knowledge [3, 4], decoupling and constrained reproducib-
ility of output trajectories [5, 6], parametric intensitivity [7]. In 1970 independently
Wonham and Morse developed an algorithm similar to that of controlled invariance
and applied it to the synthesis of algebraic and dynamic decoupling controllers
[8, 91.

In the present paper all the most important properties of controlled invariance
are reviewed and for the first time their dual properties, concerning conditioned
invariance, are derived and discussed. It is shown that, as controlled invariance is
a very efficient tool for the synthesis of special purpose controllers, conditioned
invariance can be similarly used for the synthesis of unknown-input observers and
inverse systems. '

The inversion of dynamical systems, that is the derivation of the inputs when
only the outputs are accessible, has been treated by Brockett [10], who first gave
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a recirsive algorithm for the synthesis of inverses of single input-single output dyna-
mical systems and an invertibility condition expressed in terms of the system matri-
ces. Sain and Massey [11] derived a slight different invertibility condition, while
Dorato [12] and Silverman [13] presented recursive algorithms for checking the
invertibility of a system which can be viewed as extensions to multivariable systems
. of the Brockett’s one.

The invertibility criteria developed by Sain and Massey and Silverman have
been further investigated and discussed by Pal Singh [14], Panda [15] and their
authors [16].

The geometric approach to the synthesis of inverse systems herein developed,
based on the concepts of controlled and conditioned invariance, is completely diffe-
rent from those presented in the above mentioned literature. Its most important
feature is the possibility of synthesizing the observer or the inverse system whose
state has the maximal dimension and which satisfies the requirement of being asymp-
totically stable.

The paper is organized as follows. In Section 2 few general definitions and nota-
tions concerning stability properties of invariant subspaces state space are presented,
in Section 3 the most important properties of controlled and conditioned invariants
are reviewed and discussed, while in Section 4 some results on stability problems
connected with the structural changes which can be obtained by means of state to
input feedback and output to state feedbackare pointed out. In Section 5 unknown-
input state observers for purely dynamical systems are presented as the dual of
decoupling controllers and finally in Section 6 the derived results are extended to
the case of non purely dynamical linear plants and to the synthesis of inverse systems.

The following notations are used through the paper. Vectors are denoted by
lowercase boldface letters (a, b), linear transformations or matrices by capital bold-
face letters (A, B). By x eR" is meant that x is an #-vector. Subspaces or, more gene-
rally, sets of vectors, are denoted by capital script letters (o7, ). As particular
cases, Z(A), A (A) denote the range and the null-space of the linear transformation A.
The dimension of a subspace X is denoted by dim (%). A% represents the image
of the set Z under the linear transformation A, A~**% the inverse image of % under
the linear transformation A, i.e. the locus of vectors which are mapped into % by A.
%* is the orthogonal complement of X, AT the transpose of A.

2. Stability properties of invariant subspaces

Consider the purely dynamical plant described by the equations
X = Ax+Bu, (1a)
y = Cx, (1b)

where the vectors x € R”, u € R™, y €R°® represent the state, the input and the output
respectively.
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The plant (1) can be represented by the block diagram shown in Fig. 1, in which
the algebraic operators B and C which relate the input to the forcing actions f € R”
and the state to the output are distinguished from the strictly dynamic part of the
system.

LI k= Axsf ~ ¢ |~

Fig. 1. The plant considered

It is well-known that the input-output structure of the system depends on the
relative positions of some characteristic subspaces of the state space, as the subspaces
which are invariants under the linear transformation A, the subspace of the forcing
actions %(B) and that of the inaccessible states A"(C).

In the following few definitions concerning stability properties of A-invariant
subspaces, of primary importance for the approaches to synthesis problems which
will be derived in next sections, are briefly reported.

Given any A-invariant & € R", i.e. any subspace & such that AZ = %, let k
= dim(%) and express the state coordinates with respect to a basis whose first k
element belong to %, so that the matrix A assumes the from

[Au A,

0 A22 (2)

The cigenvalues of A are partitioned into two sets: k eigenvalues associated to
Z or internal with respect to %, those of A, which characterize the free trajectories
of (1) ranging over &, and n—k eigenvalues external with respect to %, those of A,,,
which characterize the free evolution of the projection of the state along & on any
complement of &, as, for instance, the orthogonal projection of the state on Z*.

Property 1. The set of the eigenvalues internal with respect to the sum
Zi+%, of two A-invariants (which also is a A-invariant) is the union of the sets
of the eigenvalues internal with respect to &', and &, respectively.

Property 2. The set of the eigenvalues external with respect to the inter-
section Z';(\%, of two A-invariants (which also an A-invariant)is the union of the
sets of the eigenvalues external with respect to &, and %, respectively.

DermnitioN 1. An A-invariant & < R" is said internally stable if the real parts
of all eigenvalues internal with respect to 4 are negative. If not, it is said internally
unstable.

DEerFINITION 2. An A-invariant 2 < R" is said externally stable if the real parts
of all eigenvalues external with respect to & are negative. If not, it is said externally
unstable.

Clearly the sum of two A-invariants internally stable is an A-invariant internally
stable, the intersection of two A-invariants externally stable is an A-invariant exter-
nally stable.

6%
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DerINITION 3. The subspace of the stable modes of A, which will be denoted
by &_(A), is the sum of all A-invariants internally stable.

DEerFINITION 4. The subspace of the unstable modes of A, which will be denoted
by &, (A), is the intersection of all A-invariants externally stable.

The computation of & _(A) and &, (A) is easily performed by putting the matrix
A in the Jordan canonical form. In fact, if A = T~AT, where

0 A,

is the Jordan canonical form with rows and columns ordered in such a way that the k
eigenvalues with negative real parts are the first k elements of the main diagonal, the
subspaces of stable und unstable modes are given by

F_(A) = Z(T7'Ry), Z.A) = 2Z(T'Ry),

I, 0
R1 = s R, = 5
0 In—k

where I, I,_; are identity matrices having the subscripted dimensions.

The following Properties 3 and 4 are easily derivable consequences of the previous
definitions.

Property 3. An A-invariant & < R" is internally stable if and only if
T = S_(A).

Property 4. An A-invariant Z < R" is externally stable if and only if
Z =2 Z.(A).

Now refer again to the block diagram shown in Fig. 1. Obviously this decompo-
sition of the plant into three blocks is fictitious, because the forcing actions f are not
directly accessible for intervention and the state x is not directly accessible for

with

Fig. 3. Output to forcing action feedback
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measurement. Many recent results in linear system theory are based on the so-called
“state feedback” (or more precisely, “state to input feedback”) and are derived
under the hypothesis that the state is directly accessible, so that the plant can be
controlled as shown in Fig. 2, that is by feeding back to the input a linear function
of the state. The dual of the state feedback is the “output to forcing action feedback™
shown in Fig. 3. Of course, both the feedback connections represented in Fig. 2
and in Fig. 3 are not realizable in the practice, but represent very useful schemes
for studying controllers and observers. It is well-known that the feedback from the
state to the input can be obtained by means of an observer of the luenberger’s type

17-19].
: Thg feedback system shown in Fig. 2 is described by the equations
x = (A+BH)x+Bv 3
y =Cx (3b)
and that shown in Fig. 3 by the equations
x = (A+KC)x+Bv (4a)
y = Cx. (4b)

The dynamic behaviour and the structure of the controlled plant can be changed
by means of the feedback connection because in general the matrices A-+BHand
A +KC have eigenvalues and invariant subspaces different from those of A. As far
as the assignment of the eigenvalues is concerned, the following Theorems 1 and 2,
dual each other, are easily derived as a slight extension of a well-known result of
Langenhop [20] and Wonham [21].

TureorEM 1. The subspace
mi(A, ZB)+F_(A)* )
can be made a (A +BH)-invariant internally stable by a proper choice of the matrix H.
Conversely any subspace which, by a proper choice of H, can be made a (A+BH)-
invariant internally stable is contained in it.

Proof. The subspace mi(A, Z(B)) is known to be the locus of the reachable
states of the system (1). Express the state coordinates with respect to a basis chosen
in the following way: a first set of vectors spanning the subspace mi(A, Z(B)) M
M &_(A), a second and a third set completing the span of mi (A, #Z(B)) and F_(A)
respectively and a fourth set arbitrary to complete the state space, so that the ma-
trices A and B assume the form

A, A, Az A | B
0 A, 0 Ay llB;
0 0 As; Ay ]O
0 0 0 A, jlo

(6)

1 The notation mi(A, &) refers to the minimum A-invarjant containing the subspace &', which
can be computed by the sequence of subspaces o = X, % =F+AZ;, i=1,2,.., which
converges at most in (#—1) steps.



86 G. MARRO

where, by definition, the eigenvalues if A;; have negative real parts and those
of A,, have non-negative real parts. Denoting by

[H,H,H;H,] (@)

the feedback matrix similarly partitioned, the A+BH matrix of the system with
state to input feedback assumes the form

A +B H, A12+B1H2'| A;+BH; A,+BH,”
B, H, Ay, +B,H,! B, H; A, +B,H,

0 0 As, Aj,
0 0 0 Ay B

It has been shown [21] that the eigenvalues of the matrix shown wit dotted lines
in (8) can be arbitrarily assigned by means of a proper choice of the matrices H,
and H, so that the subspace (5), which is a (A +BH)-invariant, can be made internally
stable. On the other hand, the maximum (with respect to the choice of H) subspace
of the stable modes of A +BH is clearly the subspace (5). Hence because of Property 3,
any internally stable (A +BH)-invariant must be contained in it. Q.E.D.

®

THEOREM 2. The subspace
MIA, #(C) n & .(A) ©)

can be made a (A +KC)-invariant externally stable by a proper choice of the matrix K.
Conversely, any subspace which, by a proper choice of K, can be made a (A +KC)-
invariant externally stable contains it.

Proof. Theorem 2 is the dual of Theorem 1. Consider the subspace

mi (AT, Z(CT))+%_(A), ? (10)

which is clearly the orthogonal complement of (9). In force of Theorem 1 it can be
made a (AT +CTKT)-invariant internally stable by means of a proper choice of K.
But the orthogonal complement of a (AT +CTKT)-invariant internally stable is
a (A +KC)-invariant externally stable. Furthermore, the orthogonal complement of
any (A +KC)-invariant externally stable, whichis a (AT +CTKT)-invariant internally
stable, therefore contained in (10) in force of Theorem 1, must clearly contain the
subspace (9). ) Q.E.D.

3. Definitions and properties of centrolled and conditioned
invariance )

Note that in the statements of Theorems 1 and 2 of the previous section the
subspaces mi (A, £(B)) and MI(A, 47 (C)) appear. They are known to be the sub-
space of controllability (i.e. the locus of the states reachable from the origin) and

2 The notation MI(A, &) refers to the maximum A-invariant contained in the subspace %,
which can be computed by the sequence of subspaces
Zo=2,Z;=FNA-"™Z;_y,i=1,2, ..., which converges at most in (n—1) steps.
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the subspace of unobservability (i.e. the locus of the initial states not detectable from
any input-output record of finite lengtht) respectively. Many authors have pointed
out the duality of the concepts of controllability and observability, a duality which
appears clearly also from the proofs of Theorems 1 and 2. This duality can further
extend by considering and solving the following problems, which are cornerstones
in the geometrical development of the synthesis of controllers and observers:

(i) determine under what conditions there exists at least one matrix H such that
a given subspace # < R" is a (A+BH)-invariant;

(ii) determine under what conditions there exists at least one matrix K such that
a given subspaces . < R"is a (A+KC)-invariant.

These problems are related to the structural changes obtained by the feedback
connections shown in Fig. 2 and in Fig. 3.

For the sake of notational compactness, according [1, 2] it is convenient to
extend the concept of invariance of a subspace under a linear transformation by
means of the following definitions.

DEeFINITION 5. Any subspace ¢ < R* such that AfZ < #Z+%(B) is called
a (A, Z(B))-controlled invariant.

The sum of two (A, Z(B))-controlled invariants being a (A, #(B))-controlled
invariant, the maximum (A, £(B))-controlled invariant contained in a given sub-
space & < R" is univocally defined. It will be referred to by the notation
MCI (A, 2(B), %)°.

DEFINITION 3. Any subspace # S R" such that A(ZnA(C)) < £ is called
a (A, & (C))-conditioned invariant.

The intersection of two (A, 47(C))-conditioned invariants being a (A, #°(C))-
conditioned invariant, the minimum (A, 4 (©))-conditioned invariant containing
a given subspace & < R" is univocally defined. It will be referred to by the notation
mci (A, 4 (C), Z)*

The solutions of the problems (1) and (ii) previously stated are provided by the
following Theorems 3 and 4.

TueorEM 3. A subspace £ < R" is a (A, #(B))-controlled invariant if and
only if there exists at least one matrix H such that (A+BH) ¢ < 7.
Proof. If #isa (A, 2(B))-controlled invariant, i.e. such that

AgZ S 7+%(B), (€8Y)

and X;,X,, ..., X, © R* (h = dim(#)) are linearly independent vectors belonging

3 The subspace MCI (A, Z(B), Z) can be computed as the limit of the sequence &y = %,
& =X NAH(Z_+Z®B)), i = 1,2, ..., which converges at most in (n—1) steps. This algo-
rithm has been stated for the first time in [22].

4 The subspace mci (A, 4 (C), Z) can be computed as the limit of the sequence £y = Z,
Z; = A&Z;-1nN(C)), i=1,2, ..., which converges at most in (#—1) steps. This algorithm
has been stated and proved for the first time in [1].
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to 7, which can be regarded as columns of a 7 x matrix X, there exists vectors
X; € R" and u; € R™ such that

AX; — x{+Bu;, i = 1,2, ..., n, (12)
or, in matrix form,
AX = X'+BU. 13
Assume
H=-UXTX"HXT. (14)

‘A general vector x € ¢ can be expressed as Xh, where h € R". It is easily verified
that (A+BH)Xh = X'he #.

On the other hand, if relationship (11) does not hold, there exists at least one
vector X, € # such that Ax, cannot be expressed as the sum of two vectors x4 € ¢
and Bu, € Z(B), hence no X exists such that (A+BH)x, € ¢. Q.E.D.

THEOREM 4. A subspace ¢ = R" is a A, (C))—conditioned invariant if and
only if there exists at least one matrix K such that (A+KQO) ¢ < 7.
Proof. Theorem 4 is derived by duality from Theorem 3. In fact, the rela-

tionship
AJnN(©))c g (15)

AT gL c gLygcCT). (16)

But (16), because of Theorem 3, is a necessary and sufficient condition for
the existence of a matrix K such that (AT+CTKT) gL < 7+ or, equivalently,
(A+KQO) ¢ c ¢. Q.E.D.

It is remarkable, that, in order to transform a (A, 2(B))-controlled invariant
into a (A+BH)-invariant a complete knowledge of the state is not required. In
fact in order to implement the proper state feedback only the konowledge of a pro-
jection of the state on the controlled invariant is sufficient. Likewise, in order to
transform a (A, 4 (C))-conditioned invariant into a (A+KC)-invariant it is suffi-
cient to intervent only on forcing actions belonging to a complement of it. That is
stated in more precise terms in the following corollaries of Theorem 3 and 4.

is equivalent to

CoroLLARY 1. Given a (A, Z(B))-controlled invariant F S R" and a linear
map P from R" such that /" (P)n ¢ = 0, there exists at least one matrix H of proper
dimensions such that (A +BHP) Z = ¢.

COROLLARY 2. Givena (A, 4 (C))-conditioned invariant # = R" and a linear
map Q to R" such that Z(Q)+,# = R", there exists at least one matrix K of proper
dimensions such that (A +0KC) ¢ c ¢. .

4. Reachability and stability properties related to feedback
connections

Referring again to the system shown in Fig. 2, let F be a (A, %(B))-controlled
invariant, so that the relationship (A+BH) ¢ <= ¢ holds for a proper choice of H.
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In the forcing actions are restricted to belong to ,# by means of an algebraic block
connected to the system as shown in Fig. 4 and characterized by a matrix which
satisfies the condition

#(BF) = 2(B)n 7, 17y
all state trajectories which leave the origin range necessarily on ¢#.
2 F X system 1 g

Fig. 4. Restricting the forcing action

The following Theorem 5 provides the maximum set of states reachable from
the origin by means of trajectories restricted to range over Z. Because of linearity
such a set is clearly a subspace and will be called the maximum reachable subspace
constrained by ¢ and denoted by MRS (A, 2B), ¥ ). Theorem 5 has been already
stated in [1] and [8], but the proof given here is more intuitive and direct.

THEOREM 5. Given a (A, 2(B))-controlled invariant #, the maximum reachable
subspace constrained by # is defined by the relationship
MRS (A, 2(B), #) = mi(A+BH, 2(B) n 7). (18)
where H is any matrix such that (A+BH) ¢ < g.
Proof. Consider another H, say H', such that (A+BH) ¢ < ¢. For every
Xy € 7, clearly (A +BH)x,— (A +BH")x, ¢ #, so that BH~H')¢ < F and the
sequence Z; = ¢ which defines mi (A +BH', Z(B) ~ ¢ ), i.e.
Zi=RB)A g (19)
g = ,%’(B)r\j+(A+BH+B(H'—H))£f§_1, i=1,2,.. (20)
is equal to the analogous sequence 2 i S/ which defines mi(A+BH, #(B)~_# )-
In fact, by induction assume % iw1 = Z;_,, 50 that
Zi=RB)n g+ (A+BH+B(H’—H))ZZ’,-_1 <
S ZB)nJ+A+BH)Z,_+BH -H)Z,_, =
=2B)n F+(A+BH)Z,_, — Z,.

In perfectly analogous way it is possible to prove that & i S Z,hence 7} = %,
Q.E.D.

system 2

Fig. 5. Restricting the accessible states

Now the above result is dualized. Referring to the system shown in Fig. 3, let
# be a (A, #(C))-conditioned invariant, so that the relationship (A+KC)¢ c ¢
holds for a proper choice of K. Suppose that the set of unaccessible states is not
longer A47(C) but is augmented because of the lack of knowledge of the state com-
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ponents along #. For instance this further uncertainty can be introduced by con-
necting to the output an algebraic linear block as shown in Fig. 5, characterized
by a matrix G which satisfies the condition

A (GC) = /' (C)+ 7. 21)
The following Theorem 6 provides the minimum set of states unobservable

under these conditions. It is a subspace and will be called the minimum unobservable
subspace constrained by ¢ and denote by mus (A, A (C)), Z.

THEOREM 6. Given (A, A4(C))-conditioned invariant ., the minimum unobser-
vable subspace constrained by # is defined by the relationship

mus (A, #(C), #) = MI(A+KC, 4 (C)+ %) 22)

where K is any matrix such that (A+KC) ¢ < 2.
Proof. Theorem 6 is the dual of Theorem 5 and can be proved with
a procedure similar to that developed to prove Theorem 4 by considering the well-
known duality theorem of Kalman [23]. Q.E.D.
The following Corollaries 3 and 4 are easily derivable consequences of Theorem
1,2, 5 and 6.

COROLLARY 3. Given a (A, Z(B))-controlled invariant #, the maximum sub-
space ¢’ = # which can be made a (A+BH)-invariant internally stable by a proper
choice of the matrix His

F' = MRS(A, £(B), f)+ (Z-(A+BH) (£7) (23)
where H is any matrix such that (A+BH)f < 7.

CoroLARLY 4. Given a (A, #(C))-conditioned invariant ¢, the minimum
subspace ' = # which can be made a (A +KC)-invariant externally stable by
a proper choice of the matrix K is

, " =mus(A, #(C), £) 0 (¥ (A+KC)+9), 24
where K is any matrix such that (A+KC) 7 = #.

5. Partial state observers as dual of noninteracting controllers

In the present section the most important structural properties of non-interacting
controlers and partial state observers will be derived by using the results previously
stated and proved. :

A quite interesting feature of the approach developed is to be constructive in
the sense that, besides the proofs of theorem and assertions, it draws procedures
for the design of actual control devices.

Assume that a model which reproduces the dynamic behaviour of the plant is
connected as shown in Fig. 6. Of course if the initial states of the plant and of the
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model are congruent, at every instant of time the variables X’ and y’ represent esti-
mates of the state x and the output y of the plant.

u | x=Ax+Bu y
y=Cx
o 8 sl gane | 5% o Lo
Fig. 6. The plant and the model
+ u | Xx=Ax+Bu y .
+ y=Cx
H |-
- B P X'=Ax'+f' X c ¥
4
H |=

Fig. 7. A general controller or “dual observer”

u_ X=Ax+Bu | _ Y
y=Cx

| |
Lax+f X5 © Yo

Fig. 8. A general observer

It is clear that this situation will remain also in the presence of the connections
shown in Fig. 7, where the matrix H is completely arbitrary, because equal signals
are summed to the inputs of the plant and of the model, or in the presence of the
connections shown in Fig. 8, where the matrix K is also arbitrary, because the signals
which are summed to the forcing actions of the model cancel each other. Note that,
on the other hand, in force of Theorems 1 and 2 the stability of the model can always
be assured if the plant is completely controllable in the case of Fig. 7 and if the plant
is completely observable in the case of Fig. 8. This result is well-known and legiti-
mately is considered a basis of system theory.

But a remarkable difference exists between the connections represented in Fig. 7
and in Fig. 8 since, while in the first case the plant follows the model, which can be
considered a controller (or a “dual observer”) as it has been called in [19], the second
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case clearly concerns a real observer, namely a device whose dynamic behaviour
reproduces that of the plant and whose connection to the plant does not involve
any perturbation.

From the general properties of controlled and conditioned invariants stated
in the previous sections it follows that by a proper choice of the matrices H and
K it is possible to specialize the general controller and the general observer in order
to obtain a restricted control, as necessary for decoupling or non-ineraction, or
a restricted observation, as necessary when, because of lack of input knowledge,
a complete model is not realizable. These features of the devices shown in Fig. 7
and 8 are pointed out in the following Properties 5 and 6.

PROPERTY 5. Given a (A, Z(B))-controlled invariant ¢, it is possible to synthe-
size a controller with state dimension equal to dim (#) which drives the plant along
all and only the state trajectories ranging over 7.

Proof. In force of Theorem 3 at least one matrix H exists such that
(A+BH) ¢ < 4. Hence under the state to input feedback shown in Fig. 7 ¢ beco-
mes an invariant in the state space of the controller. Furthermore Corollary 1 states
that state coordinates of the controller restricted to # (for instance a projection
of the state on #) are sufficient for such a feedback, so that if the control action
and the initial state are restricted to cause state trajectories ranging over Z it is
not necessary to reproduce in the controller the remaining of the state space. Q.E.D.

PROPERTY 6. Given a (A, A (C))-conditioned invariant ¢, it is possible to
synthesize an observer with state dimension equal to n-dim(,#) such that the pro-
jection of the state on any complement of # along ¢ is reproduced by the state
of the observer.

Proof. In force of Theorem 4 at least one matrix K exists such that
(A+KC) # < #. Hence under the output to forcing action feedback shown in
Fig. 8 # becomes an invariant in the state space of the observer. Furthermore Co-
rollary 2 states that it is sufficient for this purpose that feedback acts only on the
state coordinates of the observer restricted to a complement of ¢ (for instance
a projection of the state along ,# on any complement of ), so that if only the pro-
jection of the state on a complement of # is sought it is not necessary to reproduce
in the observer the remaining of the state space. Q.E.D.

In the practical implementations stability is the most important requirement
for the partial controller considered in Property 5 or the partial observer considered
in Property 6. If stability is required for these devices, in force of Corollaries 3 and
4 of previous section the controlled invariant ¢ of Property 5 must be restricted
to the controlled invariant ¢’ defined by relationship (23) and the conditioned in-
variant # of Property 6 must be extended to the conditioned invariant ¢’ defined
by relationship (24).

Now the above presented properties of controlled and conditioned invariants
are employed for the solution of the problem of synthesizing a stable unknown-
input observer of the maximal dimension.
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ProBLEM 1. Let u be accessible except for a given subspace % < R™. Synthesize
a (stable) dynamical observer which provides the maximum information about the
state of the plant.

A solution of Problem 1 is provided by the following procedure, which, even
if outlined from a geometrical viewpoint, reduces to easily mechanizable matrix
computations.

a. Determine the subspace

Z' = mci(A, #(C), B¥), (25)
i.e. the minimum conditioned invariant which contains the subspace of the unknown

forcing actions. In force of Property 6 an observer with state dimension n-dim(Z")
can be synthesized as shown in Fig. 9, choosing the matrix K in such a way that

y )
u Xx=Ax+Bu i il(:‘::f)z Xe
| g=ex ™ Xe=Rz+ Sy
_

Fig. 9. An unknown-input dynamic observer

(A+KC)Z’ < &'3. This is clearly the maximum observer whose dynamic behaviour
is not affected by the unknown input. In fact the corresponding forcing action ranges
on the (A +CK)-invariant Z’, which is not reproduced in the observer.

b. If stability is required, in force of Corollary 4 the following (A, A4"(C))-condi-
tioned invariant must be considered instead of Z”:

i = MI(A+KC, # (C)+2")) 0 (L L(A+KC)+Z"). (26)

Being 2’ = %5, the achievement of stability in general involves a reduction
of the state dimension of the observer with respect to the case in which stability
is not required.

The state z of the observer provides an estimate of the state in the plant except
for the subspace 2" (or &7 if stability is required) and the output directly provides
the state except for A(C), so that an estimate x whose uncertainty is restricted to
N (C)NZ' (or /' (C)nZy) can be obtained as a linear function Rz+Sy. To sum
up, the following theorem has been proved.

THEOREM 7. If the input u of the plant is accessible except for a subspace # = R™,
the minimum unobservability subspace which affects the estimate of the state pro-
vided by a dynamic device of the type shown in Fig. 9 is /(C)nZ" (where ' is
defined by (25)) if stability is not required for the observer, A" (C)nZ; where %
is defined by (26) if stability is required.

Hence using a dynamic observer of the type shown in Fig. 9, it is possible to
derive the projection of the state on subspaces not larger than complements of

5 Of course, the state dimension of the observer being reduced, a change of state coordinates
is necessary (and some of the new coordinates are not reproduced), but for the sake of simplicity
if does not appear in the equations reported in Fig. 10.
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N (C)nZE' or /'(C)n%y. If a greater information is sought, it is necessary to resort
to a different class of observers, that is to devices employing dofferentiators. In
fact by means of differentiators the direct information about the state provided by
the output can be enlarged, obtaining in practice something analogous to a reduction
of the subspace of the unaccessible states ./(C). Therefore a general observer inclu-
ding differentiators consists of two parts in cascade; a device composed of differen-
tiators and algebraic operators and a dynamic observer of the type shown in Fig. 9.

The minimum unobservability subspace with differentiators and algebraic opera-
tors is provided by the following Theorem 8, stated for the first time in [3]. Also,
a possible constraint on the maximum allowed number of differentiators stages
in cascade is taken into account in the statement.

THEOREM 8. If the input of the plant is accessible except for a subspace % = R™,
the minimum unobservability subspace %3  which affects the estimate of the state
provided by a non-dynamic device including k stages of differentiators in cascade
is given by the following sequence

Xy = N (C),
= N (C) N ATH@L B, i=1,2,.., k. @7

If the number of cascaded differentiators stages is not bounded, the unobserva-
bility subspace clearly becomes

Z" = MCI(A, B%, 4 (C)). (28)
Proof. Write equation (1b) as
g = Mox, (29)

where qo =y, M, = C. From equation (29) the state can be recognized except for
the subspace

Zo = N (M) = N (C). (30)
By differentiating (29) and employing (1a), the differential equation
qo = MoAX"I'MoBu (31)

is obtained. Let P, be a projecting matrix along MyB%, so that 4 (P,) = M,B%
and in the differential equation

Podo = PoM, Ax +P,M,Bu (32).

the unknown inputs are not present. Equations (29) and (32) can be written together

as
i M 0
T ° Ix+ u, (33)
Pogo P.M,A P,M,B
or, in more compact form,
q: = M x+f,, (34

where the vector q, is a known linear function of the output and its first derivatives
whereas the vector f; is a known linear function of the accessible part of the input
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From (34) the state can be recognized except for the subspace
1= M) =N M) =N (M) n N (PMgA) =
= N (My) N A~ ¥ Mg A (Py) = N (Mp) N A1 *Mg*M B% =
= N (M) 0 A~ (N (Mo)+B%).  (35)

Starting from (34) instead of (29) and applying k times the same procedure, the
sequence of subspaces

N (M) = N (Mi_y) 0 A5 (W M) +B%), i=1,2,..,k  (36)

is obtained. Being A'(M;) & A4 (M;_,), hence A~*(A'(M;)+B%) < A~'*
(./V (M;_,)+B%), equations (36) by recursive substitution of the first term in the
right side members are easily proved to be equivalent to (27). Q.E.D.

6. Unknown-input observers and inverse systems for non purely
dynamical plants

Theorem 7 and Theorem 8 of the previous section provide complete algorithms
for testing unknown-input observability of purely dynamic system by means of
dynamic devices including differentiators in presence of lack of information on the
input.

These results are of primary importance since a very trivial mathematical trick
makes possible their application also to the solution of a much more general pro-
blem, that is the combined state and input observation of a non purely dynamical
system. This problem includes as a special case that of the system in version, without
or with the stability constraint.

Consider the non purely dynamic system

X = Ax+Bu, (37a)
y = Cx+Du. (37b)

Assume that a block of integrators is connected to the input a shown in Fig. 10,
so that an overall non purely dynamical system with state dimension 7 +m is obtained.

v u | Xx=Ax+Bu y
y=Cx+Du

Fig. 10. Augmentig the state of the plant

Let X = [x, u] be the augmented state, so that the equations of the overall system:
are
% = A% +Bx, (382)

y = C&, (38b)
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The most general observer for the case where the input is completely unknown
is implemented as shown in Fi g 11, i.e. by an algebraic unit including differentiatots

Xe” Xe

u | Xx=Ax+Bu | y | osserver with . |observer with :
= i 1 u integr u

. y=Cx+Du differentiators e tegrators e

Fig. 11. The implementation of a dynamic observer or an inverse system employing differentiators

followed by a dynamic unit®. According to Theorem 8, the observer with differen-
tiators provides at most an estimate of the augmented state except for the subspace:

" = MCI(A, 2(B), H(©)). (40)

The unobservability subspace (40) is pertinent to the case where the numbe
of cascaded differentiatot stages is not restricted. If it is bounded to be at most £,
according to Theorem 8 the recursive procedure for the computation of the con-
trolled invariant appearing in (40) must be stopped at the k-th step and the cor-
responding subspace Z ¥ must be considered instead of (40).

Then, taking information from the observer with differentiators, a dynamic
observer can provide an estimate of the augmented state except for the subspace
e%A”’m & or, if stability is required, ‘%ﬁ; N fc‘A"”, being

& = mic (A, Z, ,%(ﬁ)), (41)
Z; = MIA+RC, #1487 ~ (7,4 +KC)+47), (42)

where K is any matrix such that (A +I€CA) = .

The general observer represented in Fig. 11 provides estimates of the state and
the input as a unique vector. In other words it reproduces a possible correlation
between state and input unobservable components. Criteria for testing the complete
state observability and the invertibility of the dynamical system (37) are provided
by the following corollaries, which can be derived as straightforward applications
of the previously developed theory.

COROLLARY 5. The state of the plant (37) is completely unknown-input
observable by means of a dynamic device including differentiators if and only if the
subspace ' 2" (or & sOZ" if stability is required) is contained in Z(B).

COROLLARY 6. The plant (37) is completely invertible by means of a dynamic

device including differentiators if and only if the subspace &'~ %" (or & Y x4
if stability is required) is contained in A (BT).

S The approach can be easily extended to the more general case where the input is known except
for a subspace, which is not treated here for the sake of notational simplicity.
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7. Conclusions

It has been shown how the well known theory of dynamic observers, which in
the last few years has been the object of many interesting researches in the field
of system theory, can be extended to the case in which some of the inputs of the
observed system are unaccessible for measurement.

The approach herein developed has been based on the concepts of controlled
and conditioned invariance, which seem to be very efficient tools for simplifying
the mathematical treatment of many control problems which usually involve very
complex matrix operations. In particular, also the problem of stability of the
unknown-input observers, which has not been previously considered, has been
stated and approached in geometrical terms.

Furthmermore the convenience of considering together the problems of obser-
ving the state and the input has been pointed out and a synthesis procedure for
inverse systems, which, taking into account also constraints, is much more complete
and exhaustive of those previously treated in the literature, has been presented.
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Niezmienniczogé pPodprzestrzeni sterowalnoS$ci i Podprzestrzeni
nieobserwowalnogci W syntezie obserwatorgw nieznanych wejs¢
i ukladéw odwrotnych

cucrem. K npemmymmecrsan TaKoro monxona, OMIMYATOUIMY ero or banee mpuMeHAEMEBIX, OTHO-
CATCS TPOCTOTa U emmbIi Te€oMeTpuyecKuii Metor g TaKXKe BO3MOYKHOCTE YUHUTBIBAHUA YCIOBHS
yeroiungocry CHHTE3UPyeMbIx yerporicrs.
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