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For a control system subject to disturbances, the problem is considered of finding the set in
state space starting from which an initial state can be brought into a given target set, when the target
is to be reached “for sure” and the disturbances are bound to belong to a given set.

The problem is considered for a different information structures available to the controller,
and the key points for its solution are analized using the concept of geometrical difference of sets.
For the special case of unbounded controls and disturbances, and of target set given by a linear
subspace, the determination of the “starting set” is carried out for two among the possible infor-
mation structures, and interesting properties are shown which are valid in this case.

1. Introduction

Given a control system subject to partialy unknown perturbations, a problem
which arises naturally is to find the set X, of initial states x, which may be transfered
“for sure” into a given target set Xy by an admissible control.

Many practical examples of such a problem may be found in various fields of
system science, of operational research and managment science, when a “worst
case” or conservative phylosophy is to be adopted, that is when the aim is to reach
a goal for sure, not to maximize the expectation of a given event; an intuitive case
is for example the problem of determining the zone starting from which a given
vehicle can reach for sure a target in a noisy environment. This kind of problems,
as well as the determination of the best control in the worst possible conditions,
has been formally treated only recently, either in itself or in the framework of diffe-
rential game theory, in which it may be embedded if the partially unknown distur-
bances or environmental situations are conservatively treated as the adversary of
game theory.

The algorithms which are presently available for the solution of the problem
above, even for linear systems with admissible controls and disturbances belonging

* Presented at the Polish-Italian Meeting on “Modern applications of mathematical systems
and control theory, in particular to economic and production systems”, Cracow, Poland, Sept.
14-20, 1972. This work was supported by National Research Council, Rome, Italy.

T¥



100 A. MARZOLLO, A. PASCOLETTI

to convex compact sets, are generally quite difficult to be implemented and it seems
that further research is needed in order to furnish flexible algorithms for facing
practical situations. The purpose of this paper is to sketch the key points of the
methods of solution proposed until now for different information structures available
both to the controller and to the adversary disturbances, and to show some intere-
sting simplifications which are consequence of taking a subspace as a target set and
any control and disturbance as admissible; for this case it is possible to state some
interesting results in a compact form, as we shall do.

2. Statement of some probiems

As an example of the mentioned problems, let us consider the following linear
discrete time system

Xx41 = Axg+Bug+Cwy, K=0,1, ..., €))

where the states xg belong to R", controls ux and disturbances wx to closed compact
sets U of R™ and W of R respectively, and the target is a given closed compact set
Xy of R" (many types of extensions, like the one to time-varying systems with sets
U and W varying also with time instant are possible but inessential to our purposes).

We formulate the problem of reachability of Xy from X, under disturbances
by giving two among the main possible information structures.

PrOBLEM 1. Determine the set X§ of initial states x, which may be transferred
into Xy at time instant NV by an admissible sequence {uo(xo), 1y (1), ..., uy_1(xn_1)}
of controls, for any admissible sequence {wo, wy, ..., wy_ } of disturbances. Clearly,
for each of its “moves” u; the controller may take into account his perfect informa-
tion about the present state x;, but is ignorant about the “move” w; of the distur-
bances.

PrOBLEM 2. Determine the set X3 of initial states x, which may be tran-
sferred into Xy at time instant N by an admissible sequence {uo(xq, Wo), -.-,
uy-1(Xn-1, Wy_1)} of controls for any admissible sequence {wo, ..., wy_,} of
disturbances.

Obviously, the information available to the controller is in this case “larger”
than in the previous case, since in each step he knows the “move” of the distur-
bances.

Even for these simple examples of the general problem, with the mentioned
clearly defined information structures, the used methods for finding X§ or X¢ have
required the use of the so called operation of geometric difference of sets! and either
the use of separation theorems for convex compact sets [1, 2], or the use of support

1 Given two sets S and 7, their geometric difference Z = S— T'is defined as Z = {z:z+ T < S}
Z=@if SDH 1.
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functions to describe sets and set—inclusion [3, 4], or some ellipsoid—type or poly-
edrical-type approximation of sets [5, 6], which have the advantage of describing
sets with a finite number of parameters but can give only sufficient conditions for
a point x, to be transferrable into Xy, that is can give only subsets of X3 or X2.

When the instant of time at which reachability occurs is of interest, game theore-
tical approaches to the above kind of problems are interesting, but computational
results are rather involved indeed [7, 8].

3. Formal solution of problems 1 and 2; definition of set
regularity

Referring to problem 1, and using equation (1), we see that at (N—1) step
the state xy_, is “transferrable” into X iff there exists uy_(xy_) € U such that
} AXN_1 +BuN_1 "l“CWN__l EXN,
for every wy_, € W, that is iff there exists uy_,(xy_,) € U such that
A.X'N_l +BHN_1 +CW€XN
or
Axy_y+Buy_, € Xy—CW),
that is iff
AxN—l e (XN—CW)—BU
Therefore the set Xy_, of states xy_, which may be transferred into Xy in one
step satisfies the following equation
Yﬁ_l = AXI\IJ_]_: (XN—CW)—BU
and similarly the set Xy_; (i = 1, ..., N) of states which may be transferred into
Xy in i steps satisfies:

Y, = A} = (Y}_i,1—A™'CW)—A'-'BU, i=1,..,N. )

Equations (2), together with the obvious equality
Y 1\17 = X N> (3)

is a recursive algorithm for building Yy_, ..., Yo from U, W, Xy and therefore
X which is characterized by

AXY = Y§. 4)

Proceeding in an analogous manner for problem 2, and taking into account
the different information structure, we have that in this case xy_; may be transferred
into Xy in one step iff for every wy_; € W there exists uy_,(Xy_{, Wwy_) € U such
that

AXN_l +BHN_1 +CWN_1 EXN,
that is iff
AxN_l +CW€XN—BU
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Therefore the set X5_; of states xy_; of this type is given by
YZ_, = AX3_, = Xy—BU)—CW
and similarly the sets X7_;,, i = 1, ..., N, of states which may be transferred into
Xy in i steps by admissible controls and for every disturbance satisfy:
Y3, = AXE ;= (Y3_;,1—A"1BU)—ACW, i=1,..,N. (2)
We have again found a recursive algorithm which, starting again backward
from

Y§ = Xy 39
gives the following characterization of X3:
ANXS = Y35. “)

As it is apparent from (2), (3), (4) or from (2), (3'), (4'), the determination of
X or of X§ involves essentially the computation of N geometric differences and N
additions of sets. The analogous of problem 1 and problem 2 for continuous systems
considering only open loop controls would bring to a similar computation for only
one step, but the matrices 4""'B and A'~'C, i = 0, ..., N—1, would be substituted
by linear integral operators from sets U and W of control and disturbance functions
into R"; separation theorems techniques for convex compact sets have been used
(see [, 2]) for this case. For continuous systems and closed loop controls see the
approach of [8].

Going back to consider equations (2), (3), (4) or (2), (3), (4), we see that the
key difficulty is the description of sets resulting from operations on sets. A natural
tool to be used for this purpose is the one given by support functions (see for example
[3, 9]), when sets Xy, U, W, and therefore also all other sets involved, are convex
and closed. Support functions are linear with respect to the addition of such a kind
of sets; unfortunately, such a property is not enjoyed by the operation of geometric
difference of sets: if & is the support function of the set X:hx(p) = sup {(p, x),

xeX

V p € X*, when X* is the dual of the space X, then for every set S, T
hs_1(p) < hs(p)—hr(p). )

It is therefore important to find conditions on the sets involved in (2), (3), (4)
(or (2, (3), (4")) for (5) to be hold as an equality (we suppose for simplicity that
the geometric differences are never the empty set). In such a case, the construction
of the sets Y34_,, ..., Y from Y3 and of YZ_,, ..., Y§ from Y2 would be straightfor-
ward and we would also have the interesting consequence that these two sequences
of sets would coincide if Y3 = Y2; therefore X§ would also coincide with X3 and
the difference in the information structures of problems 1 and 2 would not have
any effect.

Defining St = (S—T)+S, (S; = S) as the “regular part” of S with respect
to T, we define the set S to be regular with respect to T'iff S; = S. It is easy to prove
that (5) holds as an equality iff S is regular with respect to T indeed, from the regula-
rity it follows that

hs—_r(p)+hy(p) = hs(p), Vp,
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that is

hs-1(p) = hs(p)+hr(p), Vp, ©
and the regularity follows from (6) for any couple of sets S and T completly descri-
bed by the support functions.

These last remarks seem an important reason for further research for finding
conditions easy to be expressed on couples of sets (representing respectively target
sets and reachable regions) in order the first one to be regular with respect to the
second one.

4. Unbounded controls and distarbances, and subspaces as
target sets

A case in which the regularity conditions are trivially satisfied is when the sets
under consideration are linear subspaces. Sets of this kind enjoy the further following

absorption property:
Sif SoT

= . 7
gif ST @

An interesting consequence of this property applies to our problems 1 and 2
when U and W are R™ and R" respectively, and the target set Xy is a linear subspace
M of R". In this case we can define the orthogonal complement N of M in R":R"
N+ M and the projection operator I of R” onto N. We have

MxeN, VxeR', Tlx= {0}, VxeM.
The target set Xy is therefore characterized by
My = Xy = TIM = {0}. ®)

Referring to problem 1 and using equation (1) we have therefore, for xy_, to be

transferrable into M in one step:
H(AXN_I +BHN..1+CWN_1) =My = {O}, VWN—l ew,
that is
MAX%: ; = My—CW)+BU = My_,

and using again equation (1)

My = TLAXY_; = (My_i,1—114™'CW)—TL 41 BU,
(i=1,...N)

which gives an iterative algorithm for the construction of sets X4_; of states which
may be transferred into Xy in 7 steps, until

M = IAVX, = (ML—AN-1CW)—T14AV-1BU

which characterizes X3 .
Recalling U = R™ and W = R", and defining

P; = ll(span4i~'B), Q; = II(span4i~1C), )
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we have
Mli—i = HAiXN—i = (Ml%(—i-{-l—'Qi)—'_Pia i = 1; "'5N, (10)
that is, using the absorption property of geometrical difference for subspaces

My =TA4AX;_; = My_jp1+P;, if My_;,( > P,

. (11)
My_,= @, if  My_i1 9 P
From (11) we see that M;_, is not empty iff
i—1
0, =10}, and P, 50, (Pi+P,) >0, ..., Zij 50 (12)

Proceeding in an analogous way for problem 2 in this case, we have again (8)
and .

I

My = TAXF ; = (MF_i,1+P)—0; (10"
until
M3 = T AXE = (M?4-Py)—Oy.
Using again the absorption property we have

M{_i = M§_; . +P;, if Mg i1+ P o Q;

. ar)
My = @, if  MZ_i1+Pi Q.
From (11") we see that M3_; is not empty iff
Py> Qi (Py+P) 5 0ar sy Y jP 5 04 (12)
1

As it is intuitive condition (12) for the existance of some Xo which can be brought
into Xy in i steps (for example in i = N steps) is more strict than condition (129,
which corresponds to an information structure more favorable for the controller.
Nevertheless, it is very interesting to notice that when (12) is satisfied, then

N
ME = jP = M3
. i

We may summarize the proceeding results in the following:

THEOREM 1. The set X solution of the problem 1 for U = R™, W = R" and

Xy given by a subspace M of R" is not empty iff equations (12) are satisfied, and is
characterized by

MAXS = M3,
where Mj is given by the recursive algorithm (11) starting from M} = {0}. Analo-
gously, the set X3 is not empty iff equation (12') are satisfied, and is characterized by
MAYXE = M3,
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where M3 is given by the recursive algorithm (11') starting from M3 = {0}. Further-
more, if X§ is not empty, then X§ = X3, with

N
Mi=Mi=) jP,.
' 1
For the particular system

XK+1 =AXK+BUK+WK, KZO,I,..., (13)

we have the following

CoroLLARY. Considering problem 2, if X3 is not empty for some N, then

(a) any x, € X§ can be brought into M in an arbitrary number of steps,

(b) X3 = R".

Proof. Since (12") is satisfied with Q; = Il/ = L, we have P, o Q, = L;
i i—1

on the other hand Zij > Zj P;j, ..., o Py; therefore, since all P; are in L,
I 1

Zl,.Pj = L for any i, that is M3 = M3 =,..., = M} = L. Recalling M? = I 4' X3,

part (a) is proved.
Part (b) follows from the characterization of X3:

X3 = {x:MAx e My},
from the definition of II and from M, = L.

i—1

We may observe that in our case, since C = I, }:].Pj D 5um 5 Py ' Oy = TR
-

that is II span [B, 4B, ..., AN"1B"] o IIR. This means the system was controllable
(in classical sense) at least in the subspace L.
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O osiagalnosci zbioru docelowego przy zakléceniach

Rozwazono zadanie znalezienia dla ukladu sterowania podlegajacego zakléceniom takiego
zbioru w przestrzeni stanéw, ze nalezacy do niego stan poczatkowy moze by¢ doprowadzony do
zbioru docelowego, przy czym zbiér docelowy ma by¢ osiagnigty ,,z pewnoscia” a zaklécenia naleza
do pewnego danego zbioru.

Powyzsze zadanie rozwazono dla réznych struktur informacyjnych regulatora i zanalizowano
zasadnicze punkty rozwiazania na podstawie pojecia geometrycznej roéznicy zbioréw. Interesujace
wiasnosci rozwiazania pokazano dla przypadku szezegblnego, w ktérym sterowania i zaklécenia sa
nieograniczone, zbior docelowy jest podprzestrzenia liniowa, a wyznaczanie ,, zbioru poczatkowego”
przeprowadza si¢ dla dwoch mozliwych struktur regulatora.

O HOCTUIACMOCTH IEJIEBOI'0 MHOKECTBa IIPpH ImoMexax

Pacemorpena safava HAXOYKIEHNA JJIT CHCTEMBI YIIPABIEHHUA, IIOLBEPTAEMOl TIOMEXaM, TAKOTO
MHOYKECTBA B IPOCTPAHCTBE COCTOSHMH, UTOOLI IIpHHAMJIEIKAIEE K HEMY HAYAIBHOE COCTOSHUE
MOrJIO GbI OBITH JOBEMIEHO JI0 LENICBOTO MHOYKECTBA, IIPUUEM IETICBOe MHOMKECTRO MOIKHO GBITE
JOCTUTHYTO ,,C YBEPEHHOCTBIO ’, 8 TIOMEXM MPHUHAIIEIKAT K OIIPEIETICHHOMY JAHHOMY MHOIKECTBY.

Bemne yxasannas sajjada paccMOTPEHA I PASHBIX MHGDODMALHOHHDIX CTPYKTYP Peryiaropa
U NPOAHANNSUPOBAHEI TTABHEIE TOUKM DELIEHUA Ha OCHOBE IIOHSATHS TEOMETPHUECKON pasHOCTH
MHO>KeCTB. VIHTepecHbIe CBOMCTBA PElIeHHs OKA3AHbI VI YACTHOTO CIIyUast, KOT/Ia YVIpaBIeHue
¥ TIOMEXH He OTPAaHHUEHBI, LENICBOe MHOYKECTBO ABJIACTCA JUHEHHBIM IO/IIPOCTPAHCTBOM, 2 OIIpe-
JIeTICHIE ,,HAUANBHOTO MHOXKECTBA™’ IIPOBOAWTCA IJIA OBYX BO3MOYKHBIX CTPYKTYD DPErYISATOpPa.
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