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The paper presents a unified approach to several computational techniques of dynamic optimi­
zation, based on the formulation of a basic mathematical programming problem in Hilbert space. 
Several known results and methods are reviewed in this unifying frame. Some new results concerning 
the conjugate direction methods and the variable operator methods are presented. A few applica­
tional examples and the trends of future research are sketched in conclusions. 

Introduction 

Mathematical programming is a broad area of research concerned with problems. 
of analytical and computational methods of optimalization. It includes such classic 
topics as linear, quadratic, ·nonlinear and dynamic programming, other branches . 
of operations research, as well as more modern topics, i.e. computational approaches 
to control theory, both for deterministic and stochastic problems. All these problems 
can be put into a unifying frame when choosing a sufficiently general abstract space 
with appropriate mathematical structure. 

Dynamic optimization probl~ms have been treated in a quite abstract manner 
in Banach or even locally convex topological spaces. However, for computational 
purposes more mathematical structure is necessary; for example, the notions of 
orthogonality of scalar product are of major importance. Therefore, the chosen 
space can be hardly more general than the Hilbert space. On the other hand, the 
Hilbert space is general enough to include most of important mathematical pro­
gramming problems. 

* Presented at the Polish-ltalian Meeting on "Modern applications of mathematical systems. 
and control theory, in particular to economic and production systems", Cracow, Poland, Sept. 
14--20, 1972. 
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1. A basic mathematical programming problem in Hilbert 

space 

One of the simplest and most basic mathematical programming problems in 
Hilbert space can be stated as follows. Given two Hilbert spaces Hu and H.~. a func­
tional Q: HxxHu-+R1 and an operator P: HxxHu-+Hx, minimize Q(x,u) 
subject to the constraint P(x , u) = 0-supposed the set P = {(x,u)EHxxHu: 
P(x, u) = 0} is not empty. In many applications we can assume Q and P be twice 
Frechet differentiable in Hx x Hu. To simplify the problem, assume also the Frechet 
derivative Px(x, u): Hx-+ Hx be bijective for all x, u satisfying P(x, u) = 0. Hence 
there exist P; 1 (x, u) and, under some additional assumptions-see e.g. [4]-a trans­

formation S: Hu -+ Hx implied by P(x, u) = 0, x = S(u). 
In both analytical and computational optimization we are interested in determin­

ing the gradient and the Hessian operator of the composed functional J: H" -+ R
1 

J(u) = Q(S(u), u). (1) 

The transformation S(u) can be shown to be also twice Frechet differentiable, 
hence we could easily compute the gradient and the Hessian operator in a closed I . 
form. However, when the spaces Hx and Hu are specified, it is usually too cumber-
some to apply those closed forms. Most useful instead is another approach, based 

on the variational expansion of J 
J(u+bu) = J(u)+(b(u), bu)+0.5(bu, (u)bu)+Ao(IJbuW), (2) 

and the determination of the gradient b(u) E Hu and the Hessian operator 
A(u): Hu-+ Hu with help of the derivatives of an auxiliary Lagrange functional. 

The assumption that P; 1(x, u) exists may be called normality assumption 
since it corresponds to various normality assumptions in optimization problems. 
Under this assumption we can use the normal form of the Lagrange functional 

· L: HxxHxxHu-+ R1 

L('YJ, x, u) = Q(x, u)+('YJ, P(x, u)). (3) 

We shall denote the derivatives of L by L~, Lx, Lu, L~x· L~"' Lxx etc. without 
indicating the dependence on ('YJ, x, u). Clearly, L~ = P(x, u) and Lq~ = 0; moreover, 

Lqx = Px(x, u) and is inveritble. 
Denote S(u+bu) = x+bx. We have 

x+bx = S(u)+Su(u)bu+o(JJbuJI); bx = bx1 +bx2 ; 

bx
1 

= Su(u)bu = -P; 1(x,u)P.(x,u)bu = -L;Jx1 Lqubu; (4) 

bx2 = o(JJbuJJ). 

Since P(x+bx, u+bu) = 0, we have obviously 

J(u+bu) = L('YJ, x+bx , u+bu). 
Therefore 

J(u+bu) = J(u)+(Lx, bx)+(Lu, bu)+o(JJbuJJ). (5) 

The Lagrange multiplier 'YJ E fl:x was not specified as yet. Choose 'YJ to obtain Lx = 0 

'YJ = -P:- 1(x, u)Qx(x, u) (6) 



(4) 

(5) 

Lx = 0 

(6) 

I· 
I 
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thus suppressing the dependence of J( u + ou) on ox in the first -order approximation. 
It should be stressed that this Lagrange multiplier is slightly more general than the 
Lagrange multiplier related to the necessary conditions of optimality, since we have 
not assumed u to be optimal. 

Having chosen 'Y), we obtain the gradient 

b(u) = Jp(u) = Lu('Y), x, u) = Qu(x, u)-<, Pu(x, u))P-; 1 (x , u)Qx(x, u). (7) 

Assuming u to be optimal, we obtain the known necessary condition of optimality 

b(u) = Lu('fJ, x, u) = 0, (8) 

where 'fJ, .X correspond to the optimal u. 
To investigate the second-order approximation, we introduce a variation O'YJ 

of 'YJ and observe that J(u+ou) = L(n+on, x+ox, u+ou). Hence: 

J(u + ou) = J(u) +<Lu, ou) + 
+0.5 (<ox, Lxxox) +<ou, Luuou) +2<o'YJ, Lqxox) +2<orJ, Lquou) + 

+2<ox, Lxuou))+o(l/ouW) (9) 

since Lx = 0, L, = 0, L,q = 0. But OX = oxl +o(lloull) and LqxOXl +LquOU = 0 
by (4). Therefore, by rearranging the second-order terms 

J(u+ou) = J(u)+<Lu, ou)+ 

+O.S<ou, LuqO'YJ+LuxOX1 +Luuou)+ 

+0.5<ox1 , Lx,1orJ+Lxxox1 +Lxuou) +o(llouW). 

Now we can choose O'YJ to satisfy 

LxqorJ+Lxxoxl +Lxuou = 0. 

Hence, both ox 1 = - L-;1 L~uou and O'YJ are linear transformations of ou 

O'YJ = L;; (LxxL;;} L~"- Lxu) ou. 

(10) 

(11) 

(12) 

Therefore, the term 0.5<ou, Lu~orJ+Luxox1 +Luuou) is quadratic in ou. Thus 
the Hessian operator can be expressed by 

Juu(U) = A(u) = LuqL-;~1 LxxLqx1 L11u-Lu11L;;Lxu-LuxL;}L11u+Luu· (13) 

The sufficient condition of local optimality is that A(u) be positive definite. This 
may be stated on an equivalent way: since ox1 = -L;;1L,uou, the bilinear form 

<oxl, Lxxox1 )+2<ox1 , Lxuou)+<ou, Luuou) (14) 

be positive for all non-zero ox1 , ou approximating linearly the constraint P(x, u) = 0 
at .X, u. 

However, most often it is more useful to define A(u) by the set of equations 

A (u) ou = Lu11 0'YJ +Luxox 1 +Luuou, (15a) 

0: Lx 11orJ+Lxxoxl +Lxuou }, 

0 - Lqxoxl +L~uou 
(15b) 

8 Control and Cybernetics 3-4/73 
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since it is simpler to solve them in specified spaces than to determine the Hessian 
by (13). The equations (15b) may be called basic variational equations; we can 
interpret them as the variations of the equations Lx = 0 and L~ = 0. The equations 
(15a), (15b) are particularly useful when inverting the Hessian A(u). Recall that if 
the functional J(u) is quadratic 

J(u) = c + (b(O), u) +0.5(u, Au), (16) 

and the operator A is strictly positive, then the optimal control u can be determined 
in the following way. Given any initial u, the gradient b(u) and the operator A, we 
compute u = u + d by determining the gradient J.(u) 

Ju(u+d) = b(u) + Ad = 0. 

Hence we get the increment d, called the Newton's step 

d = -A- 1b(u), 

(17) 

(18) 

and add it to u to_ obtain u. If the functional is not quadratic, the Newton's step 
does not guarantee optimality. But it can be either used as a good iterative increment 
of u-in the Newton's method of computational optimization-or as a good direc­
tion of search for directional minimum of J(u+zd) with respect to z E R1-in the 
modified Newton's method. The problem of inverting the Hessian and determining 
the Newton's direction of search 

d = - A-1 (u)b(u) 

is one of the most fundamental computational problems. 
We have then to solve the set of equations 

- b(u) = L.iYiJ+Luxl3x+L.ud, 

0 = Lx,10ij+Lxx05i:+Lxud, 

0 = L~xox+Lqxd, 

(19) 

(20) 

with respect to d. Assume L;;u1 exists and is easy to compute, as it happens in most 
applications. Then 

d = - L;;.\L.ql3i]+L.xl3x+b(u)), 
and 

0 : (Lxq -~x;L;;u
1 

~u~) oij +(Lxx - ~xuL;;} ~ux) 13x -~xuL;;} b(u) } 

0 - - LquLvu Lu~O'YJ+(Lqx - LquLuu Lux)OX - LquLuu b(u) 

or, after obvious notational simplification 

All3x+Az0ii = (31, 

A 3 13x + A'fl3ij = f3z, 

(21a) 

(2lb) 

(22) 

where A'l' is adjoint to A 1 . The equations (21b) or (22) may be called canonical 
variational equations. They have the formal solution 

13x = (A3 - AIA2 1 Al)- 1 (A2 1 f3l - (32), 

13ij = (Az - A1 A3 1 Af)- 1 (A3 1/31 - (32), 
(23) 
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which results in a formal expression for d; both are of little computational use. 
In more specified problems, the most important computational problem is how to 
solve the canonical equations effectively and thus to invert the Hessian, or how to 
omit the inversion either by approximating A- 1 (u) or by applying a method which 
does not require at all the use of the Hessian. 

2. Applications to optimal control and related problems 

2.1. Nonlinear programming problem 

The classical nonlinear programming problem with equality constraints can be 
stated in the following manner: minimizef(x, u) E R1 under the constrain g(x , u) = 

= 0 ER", where x ER", u E Rm.; The classical decision variable is actually the pair 
(x, u) E R"+m, but we split it into two parts: the independent variable u and the 
variable x resulting from the constraints. Assuming fx, fu, f-cx, !.m fuu• gx, g~l, 
gu, gxx• gxu. guu exists (gxx. gxu and guu are notational abbreviations, since they 
correspond to "three-dimensional" matrices), we get 

L(?J, x,u) = f(x, u)+nrg(x , u), 

Lx = 0 <o> 1] = -g-;lfx, 

b(u) = fu-g~g~ 1 fx, 

A (u) = (g~~gu)T (fxx- (g~ 1 fx)T gxx)g-; 1gu +fuu- (g~ 1/x)T guu + 

(24) 

(25) 

(26) 

- (g~l gu)T Uxu- (g~l fx)T gxu)- Uux- guxg;l fx)g;l gu. (27) 

The expression (26) is often used as so called Wolfe's reduced gradient. Nobody 
practically attempts to compute A(u) except in simple cases when the constraints 
are linear and gxx = 0, gxu = 0, guu = 0. 

2,2. Ordinary differential optimal control problems 

Consider the functional 

t, 

Q(x,u) = ~f0 (x(t),u(t),t)dt+h(x(t1)) (28) 
to 

called the performance functional of Bolza type, and the constraint in the form of 
an ordinary differential equation, called the process equation 

P(x, u) = 0 <o> x(t) =f(x(t), u(t), t); x(t0 ) = x 0 • (29) 

The problem . of minimizing the functional (28) subject to contraints (29) is 
lJSUally called continuous-time optimal control problem. 

The independent variable u, called the control function, is usually assumed to 
be a bounded measurable function of time t E (t0 , tt] and u(t) E.Rm. Introducing 
the norm ess sup, we .have u E L[i

0
, t,J but L[i0 ;tl] c Lf10 , t,J for any finite t 0 , t 1 • 

The resulting variable x, called the state function, is 1JSUally assumed to be an ab-

8' 
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solutely continuous function oft E [t0 , t 1] and x(t) ERn. If f is differentiable (hence 
continuous), xis absolutely continuous with square integrable derivative; we shall 
denote such a space by W[[t

0
, t!]· It is a Sobolev and a Hilbert space. Therefore, 

we can assume u E Lf10, 1,1, x E Wl[ro. 1,1 and perform the optimization in Hilbert 
space. As the result we could obtain square integrable u which would not be bounded, 
but such degenerate cases are easy to identify. 

Assume the functions/,/0 , hare twice differentiable with respect to x(t), u(t), and 
there exists a bounded solution of (29). Define P(x, u) = (x-f(x, u, t), x(t0)-x0 ); 

hence P: Wi x L 2 --+ L 2 x Rn, whereas L 2 x Rn is isomorphic to Wf. We have 
Px(x, u)ox = (ox-fx(x, u, t)ox, ox(t0 )). Since for every square integrable q; and 
every ox( to) ERn the equation ox-fx(x' u' t) ox = ({J has a unique solution 
ox E Wi[to. ft]' hence the transformation p x(x' u) : Wi --+ L 2 X Rn has an inverse 
and the problem is normal. . 

It can be proven that the Lagrange multiplier rJ for the problem (28), (29) is 
an absolutely continuous function of time, n(t) ERn, rJ E Wl[to. lt] . Hence the 
Lagrange functional can be expressed in the form 

I, 

L(rJ, x, u) = h(x(t1))+ ~ (TJT(t)x(t)-H(n(t), x(t), u(t))dt = 
to 

t, 

= h(x(t1))+TJT(t1)x(t1)-TJT(t0 )x(t0 )- ~ (i]T(t)x(t)+H(n(t), x(t), u(t), t))dt 
to 

(30) 

where the function H, called the Hamiltonian function 

H(n(t), x(t), u(t)) df -f0 (x(t), u(t), t)+TJT(t)f(x(t), u(t), t) (31) 

is twice differentiable; we shall denote its derivatives by Hq, Hx, Hu, Hnx• Hqu• 
Hxx• HXU> Huu without indicating the arguments in more complicated expressions. 
We have 

Lx = 0-= i](t) = -Hx(TJ(t), x(t), u(t), t); r](tl) = -hx(x(t1)). (32) 

This equation~ is linear in 'i'J and usually called the adjoint equation. Recall 
that 'i'J is slighty more general than the adjoint variable in the known formulations 
of necessary conditions of optimality, since u was not yet assumed to be optimal. 
The gradient b(u) has the simple form 

b(u) (t) = -Hu(TJ(t), x(t), u(t), t). (33) 

Equations determining the Hessian A(u) become 

-A(u)ou = H.,~on+HuxOX1 +Huuou (34a) 

-oi] = Hx~on+HxxOX1 +Hxuou; on(tl) = -hxxox(tl)} 

ox1 = Hqxox 1 +HZou; ox(to) = 0 
(34b) 

Suppose the matrix of fundamental solutions of the last equation is fPx(t, t 0), 

and that of the last but one-fPq(t, t0 ). We can solve the basic variational equations 
(34b) subsequently and get the closed form of the operator A(u) 



(30) 

(31) 

(33) 

(34a) 
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t 

A(u)8u(t) = -Huu(t)8u(t) - Hux(t) ~ ifJx(t, r)H~u(r)8u(r)dr + 
to 

t ' 

+ Hw1(t) ~ ifJq(t, r) [HxxCr) ~ ifJx(r, 19-)H~u(19-)8u(19-)d&+Hxu(r)ou(r)]dr+ 
to to 

t ' 

-Huq(t)ifJq(tl> t) ~ ifJq(t, r) [HxxCr) ~ ifJx(r, 19-)Hqu(19-)ou(19-)d19-+ 
to to 

r, 

+Hxu(r)ou(r)]dr + Huq(r)ifJq(t1, t)h.u(x(t1)) ~ ifJx(t1, r)H~u(r)ou(r)dr (35) 
to 

with obvious notational simplification. However, this form is of little computational 
use; for example, to determine ifJx(t, t0 ) and ifJq(t, t0 ) only, we must integrate 2n2 

linear differential equations. Therefore, it is better to determine A(u) ou simply by 
integrating once the basic variational equations (34b ), beginning with the last, and by 
performing the algebraic operations indicated in (34a); we must integrate then 
only 2n linear differential equations. _ 

To invert A(u) and determine the Newton's direction d = -A-1(u)b(u), we 
assume H;;u1 exists (almost everywhere on [t0 , t 1]) and get 

d = - A-1(u) b(u) = - H;;u1(Hu+Hu,10i} + HuxOSf:) (36a) 

and the canonical variational equations 

oi = d1ox+dzoiJ+fJ1; ox(to) = 0 

oij(t1) = - hxxox(t1) 
(36b) 

where 

d1 = H~x- HquH;;u1 Hux; dz = -H~uH;;u1 Hu~; d3 = - Hxx+HxuH;:u1Hux 

(37) 

Suppose the matrices of fundamental solutions for the equations (36b) taken 
simultanously are &xx(t, t0 ), (j)xq(t 1 , t0 ), &qx(t 1 , t0 ), &~q(t 1 , t 0 ). With help of these 
matrices we could solve the equations, provided &~q(t 1 , t0 )+hxx&x,1(t1, t0 ) is non­
singular; hence we could get a closed form for the operator A- 1 (u) similar to (35). 
But again the closed forms is of little computational use since we had to integrate 
2n2 linear differential equations in order to determine ifJqq(t, t 0), ifJ~x(t, t 0 ) and 
additionaly 2n equations in order to actually solve them. 

We cannot save much computational time when inverting A(u). However, by 
setting 

oif(t) = K(t)ox(t)+L(t), (38) 

where K(t): Rn ~ Rn is a matrix and L(t) ERn, both K and L being absolutely con­
tinuous functions of time, we arrive at the Riccati-type equation for K 

-k = KdzK+Kd1 -d4K- d3; K(t1) = - hxx 
and a linear one for L 

-i = (Kd2 - d 4 )L + K/l1-/l2 ; L(t1) = 0. 

(39) 

(40) 
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It remains then to solve the equation for ox 

o.i = (d1 +d2K)ox+d2 L+(J1 ; ox(to) = 0. (41) 

Since K can be easily shown to be a symmetric matrix, we have to integrate 

n(n+l) r· d:"" . I . I 2 r· d ., _ non mear tuerentia equatwns as wel as n mear ones an to per1orm 

some algebraic operations indicated in (38) and (36a) in order to determine 
d = -A- 1 (u)b(u). Nevertheless, the computational effort becomes a substantial 
one when n grows. 

The sufficient conditions of invertibility of the Hessian are that H';;u1 exists and 
tl>~~(t1 , t0)+hxxt1>x~(t1 , t 0 ) is nonsingular or that the equation (39) has bounded 
solution on [!0 , t d; the last condition is slightly stronger, since it implies the first 
one but conversely. 

2.3. The ordinary difference control problem 

Consider the performance functional 
k,-1 

Q(x,u) = Lf0 (xk,uk>k)+h(xk) 
k=ko 

and the constraint in the form of a difference equations 

P(x,u) = o~xk+l =f(xk>uk>k); Xko = Xo. 

(42) 

(43) 

The problem of minimizing (42) subject to (43) is usually called the discrete-time 
optimal control problem. The control sequence u = {ud~~- 1 , uk E Rm, and the 
state sequence x = {xk)Z~, xk ER", are assumed to be bounded, hence square­
sumable for finite k 0 , k 1 • The transformation P x(x, u) can be proven nonsingular 
by the same type of argument we used for ordinary differential equations. We obtain 
also a form of the Lagrangian functional, which is analogous to (30); the integrating 
by parts in (30) is substituted by simple change of sumation limits. The Hamiltonian 
function has the form 

H ('YJk> xk, uk> k) = - f 0 (xk> uk> k) +'Y)[ f(xk> uk, k). (44) 

The condition Lx = 0 leads to the discrete adjoint equation 

'Y/k-1 = Hx('Y/k> Xk> uk> k); 'Y/k,-l = -hx(xkJ· (45) 

The form of this equation indicates strongly that a natural way of solving the 
adjoint equations is the reverse direction of time. The gradient b(u) has the form 

b(u) = -Hu('Y)k>Xk>uk>k). (45) 

The Hessian operator A(u) is defined by a set of equations quite analogous to 
(34a), (34b). The equations which determine d = -A-1(u)b(u) are (36a) and, 
instead of (36b) 

o.Xk+t = d 1 oxk+dzOrJk+f3t; oxko = 0; 

- o'iJk-1 = d3oxk+d40'Y)k+fJz; o'i]k,-1 = -hxxoxk,, 
(46) 

where d 1 , d 2 , d 3 , d 4 , /]1 , /] 2 are ofthe form (37). 



(44) 

(45) 

(46) 
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These discrete canonical equations are slighty more difficult to solve than the 
continuous ones, since they involve both oxk+ 1 and oijk-1 ; if d 1 (and, therefore, 
d 4 ) is singular, they cannot be solved in the same direction of time. 

The Riccati-type setting becomes 

(47) 

and results in 

-Kk-1 = d3+d4Kk(I-dzKk)- 1d1; Kk1- 1 = -hxx (48) 

-Lk-1 = d4(Kii-dzK,J- 1dz +I)Lk+d4Kk(I- dzKk) - 1{31 +f3z; 

Lk1- 1 = 0 (49) 

(50) 

These equations are also slightly more difficult to solve than their continuous 
counterparts, since we must compute and store at each step the matrix 
Pk = (I-d 2Kk)- 1 • The existence of this matrix is secured if hxx is positive semi 
definite and Huu negative definite- since then d 2 is positive semidefinite, Kk-negative 
semi, definite by induction and I-d 2 Kk-positive definite. 

2.4. Difference-differential optimal control problems 

Consider the performance functional 
r, 

Q(x, u) = ~fo(x(t), x(t-T1), u(t), u(t-T2 ), t)dt+h(x(t1)) (51) 
to 

and the process equation 

x(t) = f(x(t), x(t- T1), u(t ) , u(t- T2), t) 

P(x, u) = 0 ~ x(t) = qy1 (t), t E [t0 -T1 , t0 ] 

u(t) = qy2 (t) , t E [to-Tz , t0 ] 

(52) 

where qy1 , qy 2 are given square-integrable functions . The problem of minimizing 
Q(x, u) subject to P(x, u) = 0 is often called the continuous-time delayed optimal 
control problem. The problem is a rather difficult one, but it can be shown that 
Px(x, u) is invertible. Therefore, the gradient b(u) is relatively easy to compute. 
We have 

r rJ{t1) = -hx(x(t1)) 

i)(t) = -Hx1 (rJ(t), x(t),x(t-T1), u(t),u(t-T2 ), t) , tE[t 1 -Tl> t 1] 

+ T1) , t+T1 ) 

-Hx1 (rJ(t1), x(t); x(t- T1) 1 u(t), u(t- T2), t); 

(53) 
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where H = - fo +rl f and Hx, denotes the derivative with respect to the first 
argument of the functions / 0 , f, whereas Hx

2
-the derivative with respect to the 

second argument of these functions. 
Again, the natural way of solving the adjoint equations (53) is to integrate them 

in the reverse direction of time. The gradient b(u) has here the form 

-Hu/YJ(t), x(t), x(t-T1), u(t), u(t-T2 ), t), t E [t 1 -T2 td 

b(u) = ~ -Hu
2
(rJ(t+Tz), x(t+Tz), x(t-T1 +T2 ), u(t+T2 ), u(t), t+T2 ) (54) 

-Hu,(rJ(t), x(t), x(t-T1), u(t), u(t-T2 ), t); t E (t0 , t 1 -T2 ] 

where Hu, denotes the derivative with respect to the third argument of the function 
fo, f and Hu

2 
-the derivative with respect to the fourth argument. 

The Hessian operator for this problem is much more difficult to determine and 
invert; for example, the Riccati-type equation in this case has the form of a set of 
partial-differential equations. 

2.5. Partial-differential optimal control problem and related problems 

If the operator equation P(x, u) = 0 is equivalent to a partial differential equation 
with respect to the state variable x(t, z), where z is a space variable, we often call 
it the process equations with distributed state. The control variable can be both 
distributed, u(t, z), or concentrated, u(t). There is a large variety of partial-different­
ial optimal control problems and, even if the gradient b(u) can be determined in 
almost all cases, the ways of construction of the Hessian operator A(u) were not 
sufficiently investigated yet. In a special case, when the control u(t) is concentrated 
and the performance functional does not depend on the distributed state x( t ,z) 
but is determined according to a concentrated output variable y(t) = R(x, u)(t), 
R:Hx x Hu~ Hy, the partial-differential problem can be slightly simplified. We 
can eliminate the state x(t, z) from the formulation of the problem and obtain 

Q(y, u) = Q(R(x, u), u); P(y, u) = 0 ~ y = R(x, u), P(x, u) = 0. (55) 

Assume the process equation P(y, u) = 0 is affine. It usually takes then the form 

'• 
y(t) = ~ K(t, r)u(r)dr+y0 (t) (56) 

to 

where the kernel K(t, r) of this integral operator can be interpreted as the matrix 
of output-functions corresponding to controls u described by distributions o(t- r). 
The performance functional takes the form 

I, 

Q(y, u) = ~Jo(Y(t), u(t), t)dt+h(y(t1)). (57) 
to 

This integral-operator approach can simplify the difficulties related to the partial­
differential optimal control problem and make the determination of the gradient 
and Hessian operator less cumbersome. Nevertheless, the inversion of the Hessian 
operator requires in all cases a comparatively large computational effort. 
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3. Computational methods in Hilbert space 

3.1. General convergence properties 

Many of the computational methods is Hilbert space can be put into a unifying 
frame by the definition of a direction of improvement. Given a set C c H and 
a Frechet differentiable functional J: C--+ R1

, with the gradient b(u), a mapping 
d: C--+ H is called a direction of improvement mapping for the functional J if 
<d(u), b(u)) < 0 and, given s > 0, there exists a c3 > 0 such that - <d(u), b(u)) < c3 
implies 1/b(u)l/ < s for all u E C. A direction of improvement method consist of 
minimizing the functional J along subsequent direction of improvement, J(ui+ 1) 

= J(u;+zd(u;)). The directional minimization need not to be precise. In fact, the 
following theorem holds. 

THEOREM 1. (Goldstein). Suppose C = {u E H:J(u) ~ J(u0 )} and b(u0 ) i= 0. 
Suppose z; is chosen according to the following rule. If <d(u;), b(u;)) = 0, set 
z; = 0; otherwise define the functional 

L1 (u z) = J(u+zd(u))-J(u) 
' z<d(u), b(u)) 

(59) 

If Ll(u;, I) ;:.:::: a, where a E (0, 0.5) is an arbitrairly chosen constant, set z; = 1. 
Otherwise chose z; to satify a< Ll(u;, z;) ~ 1-a. Set ui+l = u;+z;d(u;). 

(a) If C is bounded or J is bounded from below, then the sequence {b(u;)} 
converges to 0 while {J(u;)} converges downward to a limit J. If C is weakly compact, 
then every weak cluster point of {u;} is a zero of b(u). 

(b) If J is strictly convex and A(u) > 0 for all u in C, then {u;} converges to u 
such that J(u) < J(u) for all u i= u, u E C. 

3.2. Newton's method 

The Newton's method is conceptionally the oldest one and in many simpler 
cases one of the most efficient. However, the computational effort in this method 
is large or even prohibitive in more complicated cases. The original method c.onsists 
of the iteration 

ui+t = U;-A- 1 (u;)b(u;). 

A modification of this method, called Picard's method 

ui+l = u;-A- 1 (u0 )b(u;) 

(60) 

(61) 

can save some computational effort, but has a smaller radius of convergence in 
highly noillinear cases. An increased radius of convergence has the modified Newton's 
method 

d; = A-1(u;)b(u;); J(ui+z;d;) = minJ(u;+zd;); ui+l = ui+z,d;. (62) 
zeRl 

The directional minimization in (61) need not to be precise. In fact, the following 
theorem holds: 
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THEOREM 2 (Goldstein). Assume the Hessian A(u) has the spectral 
m> OandM 

mllbuW ~ <A(u)bu, bu) ~ MllbuW 

in a convex set C = {ue H:J(u) ~ J(u 0)}. Apply the Newton's direction d(u1) = 

-A(u;)b(u;) and choose z1 as in theorem 1, ui+ 1 = u1+z;d;. Then 
(a) there exists a number N such that z; = 1 fori > N; 
(b) there is a unique optimal u in C and {u;} converges to u faster than an_ 

geometric progression. 
In other words, the convergence of the modified Newton's method (as also o 

the original Newton's method) is superlinear. The Picard's method has 
convergence (at a rate of a geometric progression). 

3.3. Methods of conjugate directions 

A set of directions { d1 , ... , di, ... , dk}, di e H is called A -conjugate or A -ortho­
gonal if <d;, Adi) = 0 for i =I j. Let the functional J be quadratic 

J(u) = c+<b0 , u) +0.5 <u, Au) (64) 

k 

where b0 = b(O) and A is assumed strictly positive. Consider u = u1 + 2: (~i~). 
j=l 

~i e R 1
• Since 

k 

J(u) = J(u1)+ 2.:: (~i<b(u1).di)+0.5~]<di> Ad)) 
j=l 

we can minimize J independently along each direction. 

(6 

The set of conjugate directions is usually constructed by the following family 
of algorithms: 

d1 = -b(u1); di+ 1 = -b(ui+t)+{J;dt (66) 

where u1+ 1 = u;+z;d1 and z; minimizes J(u;+zd;). If d1 are" constructed in such 
a manner, the following lemma holds. 

LEMMA 3. 
(a) If d1 , ... , dk are conjugate, then b(uk+ 1) is orthogonal to all b(u1), ... , b(ut). 
(b) If d1 , ... , dk are conjugate and {Jk is chosen to obtain the conjugacy of dt+ 1 

to dk, then dk+ 1 is also conjugate to all previous d1 , ... , dk-t· 
There are possible many choices of {3; in (66), all mutually equivalent in the case 

of a quadratic functional J. However, the methods of conjugate directions can be 
effectively applied also to nonquadratic functionals, and the choice of {31 influences 
the efficency of a computational algorithm. Some of the algorithms are 

{3; = <h~u~~ 1~d~d;) (proposed by Pagurek and Woodside in H) (6 
" ' 

fl· = <h(ut+t)-b(u;), b(u;+t)) (proposed by Polak and Ribiere inRn) (68 
' <h(u1),b(u,)) 
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{Ji = <b(ui+t), b(ui+t)) (proposed by Fletcher and Reeves 
<b (u,)' b (ui)) in Rn, Lasdon and Mitter in H) 

(69) 

The convergence of the conjugate direction methods follows from the Theorem 1. 
Stronger results were obtained only recently: 

THEOREM 4 (Winnicki) : 
(a) Suppose the functional J is quadratic and the Hessian A is strictly positive 

with the spectral bounds m and M. Then the methods of conjugate directions con­
verge linearly: 

11 
_ ll VJ(ut)-J(uf ( M- m)i 

ui+t u ~ M . m +m 
(70) 

If, additionally, A = A1 +A2 where A1 is a compact operator and A 2 = AI, 
}. > 0, then the convergence is superlinear. 

(b) Suppose the functional J is not quadratic but convex and twice Frechet 
differentiable. Then the algorithms (67) and (68) result in at least linear conver-
gence. 

Fortuna (17] has recently generalized the above result by proving the superlinear 
convergence for the case when A = A1 +A2 , A1 being compact and A2 being a 
linear combination of AL i = 0, .. . , n -1. This property of the Hessian operator 
posses all dynamic optimization problems described by differential, difference and 
difference-differential equations, if H •• = - A 2 is a constant matrix. 

If should be pointed out that the results concerning convergence are valid under 
the assumption of a precise directional minimization. Nevertheless, the vast compu­
tational experience with conjugate directions methods in Rn is quite positive; there 
are less known, but also positive computational applications in infinite dimensional 
spaces. 

3.4. Variable operator methods 

Consider a quadratic functional J of the form ( 64) with a strictly positive 
Hessian A . Denote si = ui+l -ui> Yi = b(ui+ 1)-b(u ). The relations 

(71) 

can be used in order to approximate the operator A and its inverse. The variable 
operator methods-which are, in fact, a generalisation into Rn and infinite dimen­
sional spaces of the secant method in R1-construct a sequence of self-adjoint opera­
tors vi+ 1 = vi+ Ll vi such that 

Sj = Vi+tYi> j = 1, ... , i . (72) 

It is easy to construct vi+ 1 such that 

si = vi+tYi; LIViYi =si- viYi· (73) 

In fact, there is an entire subspace oflinear operators Ll V;: :/f -+ :/f satisfying (73). 
However, we are interested in formulae satisfying (72) also for j = 1, . .. , i -1; 
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we say that such operators have the property of hereditary approximation. If we 
construct a sequence of linearly independent si, then the sequence {yJ has also 
linearly independent elements; if (72) holds, then the operators vi+ 1 are equivalent 
to A- 1 on expanding subspaces of H spanned by {YiH. Hence the hereditary appro­
ximation implies the equivalence of Vz+ 1 and A - 1 on these expanding subspaces. 

For optimization purposes a quasi-Newton's direction is determined 

d;+ 1 = -Vi+ 1 b(ui+ 1) (74) 

and the step si+ 1 = ui+ 2 - ui+ 1 is usually determined by the minimization of J along 
this direction. 

The operator L1 V; is usually constructed with the help of outer products in H . 

Recall that an operator B:H --t H denoted by B = a)<b is called the outer pro­
duct of a E H and b E H if for all u E H 

Bu = a)<bu ctr a<b, u) . (75) 

There are several variable operator method in Rn (called usually variable metric 
methods). Two of them were generalised and applied in H 

L1Vi = si)<s; _ V;y;)<V;Yi (76) 
<s;, y;) <V;y;, y;) 

by Davidon, later by Fletcher and Powell in Rn and by Horwitz and Sarachik in :Yf, 
and 

L1V. = s;-y; V;)<si-y;V; (77) 
' <s;-Yi V;, y;) 

by Davidon, Broyden or Wolfe in Rn and by the author in :Yf [15]. The algorithm 
(76) has been commonly used in Rn through last five years and is considered one 
of the most effective computational methods. However, the hereditary approxi­
mation property (72) for this algorithm results from the conjugacy of the directions 
d; generated by (74); therefore, the algorithm requires a rather precise directional 
minimization for a good approximation of A - 1 by V;+ 1 . The convergence of this 
algorithm in the case of a quadratic functional is given by the theorem 4, part a, 
since the algorithm is equivalent in this case to conjugate direction methods. In 
case of a nonquadratic functional, the algorithm has a better computational efficency 
than the conjugate direction methods. The convergence of the algorithm results 
from a general convergence consideration, of Theorem 1. Stronger results in R~ 

were obtained by Powell, see [13], who has proven the superlinear convergence 
under reasonable assumptions; there are no stronger results in :Yf available as yet. 

The algorithm (77) was not much used in R: until the thorough investigation of 
Murtagh and Sargent [7]. It has one basic advantage over the algorithm (76): the 
hereditary approximation property (72) holds even if the directional minimization 
is not precise and the directions (74) are not conjugate, as long as the expression 
(77) is well defined. It has some other drawbacks-see [7], [15]-but this one advan­
tage is of particular importance in several special problems of optimization, like 
coordination of large-scale problems [15] etc., where a precise directional minimi­
zation is unreasonable. 
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The following theorem on convergence of the algorithm (77) was presented for 
Rn by Goldfarb and recently generalised into H: 

THEOREM 5 (Winnicki). Suppose the functional J is twice Frechet differentiable 
and the Hessian A(u) has for all u EH the spectral bounds m and M, where 0 < m ~ 
~ M< CtJ. Suppose, moreover, that either A(u+h) ?= A(u) (A(u+h)-A(u) is 
positive definite) for all hE {hE H:J(u+h) ~ J(u) } and A- 1 (u1) ~ V1 ~ KI, 

1 
where-~ K < CtJ, or A(u+h) ~ A(u) for all hE {hE H:J(u+h) < J(u)} and 

m 
kl ~ V1 ~ A- 1 (u1). If the algorithm (77) is applied to determine the direction 
(74) and the sequence {u;} is determined by directional minimization of J, then 

,,ui+l-u/1 ~ v ~ (J(ul)-J(u)) (v1- ~ r (78) 

and the algorithm is at least linearly convergent. 
Recently, Ostryhanski [18] has shown that the results on superlinear convergence 

of variable metric algorithm for nonquadratic functions in R~, obtained by Powell, 
can be easily extended to cover the algorithm (77). 

3.5. Other metheds 

There are several other methods of mathematical programming in Hilbert space, 
based either on the classical Ritz technique, or on minimization of a distance to 
a given set, on orthogonalization procedures, on generating a random set of directions, 
on contraction mapping algorithms for the approximation of A- I, etc. Some of 
them are quite effective, but they are usually less general than the algorithms pre­
sented above. 

4. Applications and conclusions 

The Hilbert space approach to mathematical programming unifies computa­
tional algorithms for various optimal control problems. Moreover, it provides for 
effective algorithms of solving several complicated problems, when the determination 
and inversion of the Hessian operator is difficult, such as the difference-differential 
of partial differential optimal control problems, large scale coordination problems etc. 

There are several application of this approach. Recently, in the Institute of Auto­
matics of the Technical University of Warsaw, the following problems are being 
investigated in the unifying frame of this approach: 

(a) the control of a natural gas supply system; 
(b) the control of a steel furnace 
(c) comparison of algorithms for difference-differential optimal control problems. 
Several interesting areas of research are stil open. They include 
(1) Problems related to the determination and inversion of the Hessian operator 

for partial differential optimal control problems etc. 
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(2) Investigation of properties of conjugate direction and variable OTV>T!>T~ 

methods under inadequate directional minimization. 
(3) Comparative discussion of various computational methods of mathema · 

programming in Hilbert space, including those mentioned on 3.4. 
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Metody programowania matematycznego w przestrzeniach 
Hilberta 

Przedstawiono jednolite podejscie do pewnych metod obliczeniowych optymalizacji dynamicz­
nej na podstawie sformulowania podstawowego zadania programowania matematycznego w ~ 
strzeni Hilberta. W tym jednolitym uj~ciu przedstawiono szereg znanych wynik6w i metod . Przerl­
stawiono r6wniez pewne nowe wyniki dotycz<tce metod kierunk6w sprz~zonych i metod zmie 



operator 
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operatora. We wnioskach om6wiono kilka przyklad6w zastosowaD. i naszkicowano kierunki dalszych 

badaD.. 

MeTO~LI MaTeMaTH'IIecKoro nporpaMM.HpoBaHHH 

B rHJILOepTOBLIX npOCTpaHCTB3X 

IJpe,o;CT3BJieH e,o;MHh!H IIOJJ:XO.D: I< Hei<OTOph!M tJHCJieHHhL~ MeTO,D;aM ,il,l!H3hrnqeci<OH OIITMMM3a­

llllll HCXO.D:H ll3 <iJopMyJIHpOBI<ll OCHOBHOH 3a,o;atm MaTeMaTWieCI<Oro rrporpaM .. IIUipOBaHMH B rMJih-

6epTOBOM rrpocTpaHcTBe. Ilpn 3TOM rro,o;xop;e rrpe,o;CTaBJieH PHA H3BeCTHhiX pe3yJihTaToB H MeTo­

.D:OB. IJpMBe,o;eHhl T3I<lKe Hei<OTOph!e HOBble pe3yJihT3Thl I<3C310!liHeCH MeTO,ll;a COrrpiDKeHHhiX Ha­

npaBJieHnH n MeTo,o;a nepeMeHHoro orrepaTopa . B l.J:aCTJil Bhmop;os paCChlOTpeao aeci<OJihKO rrpH­

MepoB npMMeHeHni:f n HaMel.J:eHhi HarrpaBJieHJiiH .D:3JlhHefu:r:mx nccnep;osaHnH: . 
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