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Solution of a three-dimensional bottleneck problem 
by means of Hurwicz's saddle-point conditions*) 

/ 
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The pr,oblem of finding an optimal investment strategy for multistage production processes, 
studied previously by R. Bellman and R. Kulikowski is considered. 

A complex of three industries integrated so as to produce a given product in a most 
efficient manner is investigated. In this formulation, the problem is that of finding three 
functions of time, representing investment strategies in the individual industries, that maximize 
a total amount of final product within a predetermined time interval [0, T]. 

Hurwicz's saddle-point conditions have been formulated for the problem and solved 
numerically for hypothetical coefficients and all admissible initial conditions and positive values 
of T. Some of these results are presented and discussed. 

1. Optimization problem in the dynamic Leontief system 

The bottleneck problem as formulated by R. Bellman in his book on dynamic 
programming [1] is related to a problem of profit or net product maximization 
in the Leontief open dynamic model. 

We shall first formulate the Leontief model based on a continuous version of 
the discrete Leontief model discussed in [2] and then indicate its relation to the model 
used in [1]. 

Suppose that we have a system of n industries each producing a single good. 
For j= 1, 2, ... , n let X; (t) be the activity level of i-th industry at time t measured 
by the flow rate of good i produced by the i-th industry and let q; (t) be the produc­
tion capacity of industry i at time t. 

For i,j= 1, 2, ... , n let au be the minimum amount of good i needed as a row 
material to produce a unit amount of good j (or the minimum flow rate of good 
i necessary to produce good j at a unit rate) and let b;; be the amount of good i 

*) Presented at Polish-Italian Meeting on Modern Applications of Mathematical Systems and 
Control Theory in Particular to Economic and Production Systems, Cracow (Poland), Sept. 1972. 
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needed as a capital stock to provide a unit production capacity (or the minimum 
flow rate of good i necessary for a unit increase in production capacity) of j-th 
industry. 

Of course all au and bu are nonnegative by definition but we distinguish those 
coefficients that are strictly positive. If a particular coefficient ail (or bu) is equal 
to zero it simply means that the i-th good is not used in production of goodj (or as 
a capital stock inj-th industry). Let us introduce the following sets of subcripts. 

Iaj={i: ail>O}; j=l, 2, .. . , n, 

Ibi={i:bu>O}; j=l, 2, ... , n. 

Let xu (t) be the flow rate of good i into j -th industry used as a raw material 
and let zu (t) be the flow rate of good i into j-th industry used as a capital stock. 
We assume that the production function in each industry have the following form 

and 

( ~/X· · (!)) ) 
xi(t)=min min -'J.-.- ,qi(t); j = 1,2, ... ,n; tE[O,T] 

I E laj a,J 
(1) 

(
zi · (t)) · 

qi(t) = min ~ ; j = 1, 2, ... , n; t E [0, T] . 
I Eibj <J 

(2) 

where qi (t) stands for d~t(t)- a time dirivative of qi (t) and symbol min (a, b, .. . , z) 

means the smallest of the numbers a, b, ... , z. The initial capacity of industry j will 
be denoted by ci. 

As we tend to maximize a net product or profit we can assume that for all 
j = l , 2, ... , n 

xi' i(t) xi" At) 
-- -- for all i', i" E Iai; t E [0, T] 

ai' i ai" i 
(3) 

Z;' j (t) Zi" j (t) 
-- -- for all i', i" E Jbi; t E [0, T] 

bi' j bi" j 
(4) 

Indeed, if for some j there existed i' E Iai (or 

. ( Xij (f)) ( Z i' j (t) . (zii (t))) . 
>mm --.. - or - b.,. >mm -b.. on a fimte interval, then some of the 

I E iaj a,J ' J i E ibj !J 

x 1i (or zu) would be wasted so that the net product or profit would not be greater 
than when all equations (3) and (4) hold. x .. 

The same reasoning would show that for all i E Iai andj= 1, 2, ... , n ~ should 
au 

not exceed qi. Under these assumptions equations (1) and (2) may be written in 
the following form 

xli(t)=auxi(t); iElai;j= l,2, ... ,n, tE[O,T]; (5) 

xi(t)~qi(t);j=1,2, ... ,n; tE[O,T]; (6) 

z11 (t)=bu4i(t); iElbi;qi(O) = ci;j=l,2, ... ,n; tE[O,T]. (7) 
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Now we can write the· usual ballance equations of the Leontief model 

(I - A) x(t)-Bq(t)=p(t), t E [0, T], (8) 

where A and B are n x n matrices of coefficients au and bii respectively, x (t) and 
q (t) are n-dimensional vectors of components xi (t) and i]; (t), i= 1, 2, ... , n, and 
p (t) represents n-dimensional vector of consumption rate at time t. 

The optimization problem can now be formulated as that of finding functions 
xii• zu; i,j= 1, 2, .. . , n (decision variables) that give a maximal value of an integral 

T 

J [a(t)V p(t) dt (9) 
0 

where a (t) is a predetetmined n-dimensional vector function, subject to the con­
straints (5)-(8) and additional requirements of nonnegativitity of all functions 
xii, zu,P;, i,j= 1, 2, ... , n. 

Using equations (5), (7) and (8) and making an assumption that the system is 
productive 1) we can reformulate the problem as follows. 

Find vector functions X 0 and qo such that 2
) 

T T 

J [a(t)JT [(I - A) X 0 (t)-Bq 0 (t)] dt=max J [a(t)Y [(I-A) x(t)-Bq (t)] dt (10) 
0 x,q 0 

I 
and that satisfy the following constraints 

(I-A) x~Bq; q (O)=c; 

q~O . . 

(11) 

(12) 

(13) 

It can be easily found that the present formulation is equivalent to the previous one. 

2. Bottleneck-problem - special case 

Observe that since constant proportions between investments flows zu have 
been assumed there is actually only one independent variable function zij for each j. 
Let us distinguish one subscript i, say ii for each j that may be arbitrarily chosen 
with the only requirement that ii E Ibi when Jbi is nonempty. Furthermore, we 
shall assume that all Ibi are nonempty what means that each industry have a possi­
bility of increasing its production capacity. 

')The Leontief system is said to be productive if there exists a positive x for which some posi­
tive bill of goods (I-A) x can be produced. It has been shown (for example in [3]) that the Leontief 
system is productive if and only if matrix (/-A) has a nonnegative inverse. Owing to the producti­
vity assumption inequality (12) guarantees x being nonnegative when q is nonnegative. 

2
) Throughout this paper the following notation is used. When y denotes a vector function 

it means y:[O, T]->R11 , where '1 is appropriate natural number indicating dimensionality of this 
vector function. Sign ;;. (or =) between y' and y" means that y;(t)-y;' (t);;.O (or =0) for all 
1, 2, ... , 17 and all t E [0, T]. Symbol y (t) denotes a value of the vector function y at time t. 



40 K. IRACKI 

Let us denote coefficients b.j by 1/bi fori= 1, 2, ... ,nand introduce an x n dia-
• I j 

gonal matrix B of coefficients b i and a vector function z defined as follows 

q=B·z. (14) 

It follows from the above definition and (7) that zi = z.j. for all j = l, 2, ... , n. 
I J 

If the system described is treated as a control system then· z may be regarded as 
a control function and equation (14) together with the initial condition 

q(O)=c (15) 

may be regarded as system's state equation. 

We shall introduce another n x n matrix ':I' of technological coefficients that 
will be useful 

'I'=B·B. • (16) 

It can be easily seen that the coefficients ':l'ii of ':I' can be expressed in terms of 
coefficients bu of B 

(17) 

Using this new notation we can write problem (10)-(13) as follows . Find vector 
functions X 0 and z 0 such that 

T T 

J [(I--A)x0 (t)-':l'z0 (t)]Ta(t)dt=max J [(I-Ax(t)-Pz(t)f·a(t)dt (18) 
0 z,x 0 

and subject to the constraints 

(I-A) x-':l'z~O; (19) 

t 

c+ J Bz(r)dr-x(t)~O; !E [0, T]; (20) 
0 

z~O. (21) 

_Making two hypotheses that are satisfied by Bellman's three dimensional case 
we shall reduce the problem (18)-(21) to a strightforward generalization of the 
three-dimensional case called in this paper the bottleneck problem. 

These two hypotheses are following: 
(1) One of the industries uses row materials only from outside of the system 

and flows of these row materials are unlimited. Let us agree that it is industry number 
one. 

(2) The whole system operates in order to produce net product in one industry 
only. This means that the ·vector function a in the integrand of the criterion function 
has only one nonzero component. Let us agree that it is industry number two. 

The consequence of hypothesis (1) is that the production rate in the first industry 
is equal to the production capacity of that industry for all t E [0, T]. This means 
that the first inequality in (20) becomes equality. 



Solution of a three-dimensional bottleneck problem 41 

From the second hypothesis we can deduce that all inequalities except the second 
one may be replaced by ·equalities. This means that consumption rates in all but 
the second industry are equal to zero. Indeed, suppose that it is not true and that 
the optimal solution is such that there is a positive consumption of good i i= 2. If 
this good, or raw materials used in its production, were used as raw materials and/or 
investments in industry 2 in appropriate proportions then some additional amount 
of good 2 would be produced and the criterion function's value would be increased. 

Using n equations resulting from the above assumptions we can express x in 
terms of z and write equations (19) and (20) in ihe form 

x(t)=A':' (c+ j Bz(r) dr) +B':'z(t): t E [0, T]; 

d (c+ j Bz(r) dr) +P4z(t)~O; t E [0, T] 

(22) 

(23) 

where d, A':', .?4 and B':' are all n x n matrices whose coefficients are functions of 
coefficients of matrices A, B and lf'. 

Denoting the second rows of matrices (I- A) and lJ' by (1- A)(2) and 'P(2) respecti­
vely and introducing new vectors 

a':'= [(I- A)(2) A ':'V; 

b':' = [(I-A)(2) B':' -'P(2)f; 

(24) 

(25) 

and assuming, for simplicity, that a (t)=(O, 1, 0, ... , 0) for t E [0, T] we finaly state 
I 

the bottleneck problem as follows. 
Find vector function Z 0 (being an element of some functional space Z) such that 

l [a>:<r ( c+ j Bz0 (r) dr) +bH z0 (t)] dt=max JT[a':'T (c+ j Bz(r)dr)+ 
o \ o z e u= o o 

+ b':'T Z (t)] dt (26) 

where the set Uz c Z consists of elements satisfying the following inequalities 

d (c+ j Bz(r) dr)+g6iz(t)~O, tE [0, T], 

z~O. 

3. Quasisaddle-point optimality conditions for the bottleneck 
problem 

(27) 

(28) 

Hurwicz's quasi saddle-point conditions were applied to the bottleneck problem 
first by R. Kulikowski in [4] where two basic theorems providing necessary and 
sufficient conditions for optimality were used. These Theorems were first proved 



42 . K. IRACKI 

in [5] and then carefully studied in [6] and [7] in which their application to the 
bottleneck problem was considered in more detail and the two -dimensional 
case was solved. 

In the present paper we use optimality conditions as formulated in [6] and [7]. 
Let X and Y be partially ordered Banach spaces. Let f and g be functions 

defined on X, f: X----* R and g: X----* Y. Let U be a set defined as follows 

U={x: .x EX; g(x);;;,O; .x;;:,o} (29) 

We shall call P a problem of maximizing f(x) over the set U. We shall call .xo 
a solution of problem P if 

(30) 
XEU 

In order to formulate Hurwicz's theorem for the problem P we introduce a 
function 1/J: Xx Y':'---*R such that for .X EX and }, E Y* 

lP (x, J,) = f(x) + Jc [g (x)J (31) 

where }, is a linear functional defined on Y, i.e. an element of the conjugate space 
Y'!' of Y. 

THEOREM. Let f and g be concave and both possess Frechet differentials in X. 
Let g satisfy conditions of regularity and regular convexity of certain set of functio­
nals defined by means of g 3

). The1i _xo is a solution of the problem P if and only if 
there exists a nonnegative functional 4) A0 E Y* such that the following condi­
tions hold. 

d; rp [(.Xo, },o), _xo] = 0, 

d; rp [(.X0
, } ,

0
), x]~O for all .x;;:,o; X EX, 

d;_ 1/J[(.Xo, Jco), Ao]=O, 

d;. rp [(.X0
, },

0
), },];;:,0 for all },;::,0; A E Y':'. 

(32) 

(33) 

(34) 

(35) 

Here d; 1/J [(.X0
, X0

),· ](d;. 1/J [(x 0
, X0

),·]) denotes a Frechet differential of a 
functional 1/J with respect to .X (X) at point (.X0

, X0
). The point (x0

, },
0 ) that satisfies 

the above conditions (32)-(35) is called a nonnegative quasisaddle-point of functio­
nal 1/J. 

If the functions f and g are not concave then (32)-(35) are necessary conditions 
for optimality. We shall assume in the following that f and g are concave and use 
the above theorem. 

3
) The above theorem gathers the results of theorems V.O., V.3.3.2 and V.3.3.3 in [5] for the 

special case defined by the hypothesis of the present formulation. 
The definitions of regularity of g and of the set of functionals mentioned above are given in 

section V.3.3.2 and in the hypothesis of the theorem V.3.3.2 in [5]. We shall not discuss them here 
as in the bottleneck problem defined in the preceding section/and g are linear and both hypotheses 
as well as that of concavity off and g are satisfied. 

4
) We call a functional l: Y-+ R nonnegative if }, (y)> 0 for all y> 0; y <= Y . 

.. 
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We assume that Z is a Cartesian product of n spaces V (0, T) (that is z; E V (0, T) 
for i = 1, 2, ... , n) and we denote this space by L; (0, T). 

The operator g is given by the left hand side of inequality (27) 

[g(z)](t)=d(c+ j Bz(r)dr)+88z(t) for tE[O,T], zEZ (36) 

and the set U is equal to Uz defined by (27) and (28). 

The space Y is again L,~ (0, T) and hence every linear nonnegative functional 
J: defined on Y can be expressed as an integral 

•t 

X(y)= J [y(t)Y·A(t)dt for yE Y (37) 
0 

where A is a nonnegative function belonging to L~ (0, T). Using (37) we obtain the 
Lagrangean function in the form 

<P(z,A)= [[a':'T(c+ I Bz(r)dr)+bH z (t)]dt+ 

+ /[d(c+ j Bz(r)dr)+88z(t)rA(t)dt. (38) 
The Frechet differentials of . <P are following 5) 

T [ . T ]T 
dz <P[(z0

, },
0
), z]= f b':'+BUT A0 (t)+! B(a':'+dT A0 (r)) dr ·z(t) dt, (39) 

d;. <P[(z0
, A0

), A]= /[d(c+ j.sz0 (r) dr)+ 88z0 (t)rA(t) dt. (40) 

Applying now (32) to (35) we obtain the folowing necessary and sufficient 
conditions for a vector function z to be an optimal solution of a problem (26)-(28) 

[[b*+BUT A0 (t)+ f B(a':'+ dT },0 (r)) drr z(t) dt~O for all z~O, 

/[d(c+ j .Bz0 (r)dr)+88z 0 (t)rA0 (t)dt=O, 

/[d(c+ j Bz0 (r)dr)+ BUz0 (t)r J, (t)dt ~ O for all }, ~0 . 

(41) 

(42) . 

(43) 

(44) 

5
) Usual in such cases (see [6] and [7]) integration by parts have been applied to obtain dz if> in 

the form of (39). 
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Observe that inequalities (42) and (44) can be satisfied for allnonnegative z and 
all nonnegative A if an only if the first component of a scalar ptoduct under each 
integral (that is the term in square brackets) is respectively nonpositiv.e and nonnega­
tive almost everywhere in [0, T]. This implies that equations (41) and (43) are 
satisfied if and only if the integrands are equal to zero almost everywhere in [0, T]. 
Thus we can write equations (41)-(44) in the following equivalent form 

[b':'+.%'T ),(t)+ f B(a':'+dT A(r)) drr z(t) =O almost everywhere in [0, T], (45} 

T 

b':'+ .%'T A(t)+ I B(a':'+dT A(r)) dr~O almost everywhere in [0, T], (46} 

[d(c+ j Bz(r)dr)+.%'z(t)rJ.(t)=O almost everywhere in [O,T], (47) 

d(c+ j Bz(r)dr)+.%'z(t));0 almost everywhere in [O,T]. (48) 

The superscript o over x and A has been neglected because all z and A in ( 45)-( 48) 
are Z 0 and A0

• 

4. Solution of the optimality conditions 

To solve the above set of equations we assume that all the functions zi (and 
' consequently ),i); i = 1, 2, ... , n are piecewise continuous. 

The scalar product on the left hand side of the equation ( 45) is a sum of products 
of the respective components of the two vectors. Since all first components of these 
products are nonpositive and all the second are nonnegative, the equation (45) 
is equivalent to the set of n similar equations - one for each component of the 
scalar product. The same is true for equation (47) and we can write equations (45) 
and (47) in the form 

[b;' +.%'T (JP (t)+ f bj (a; + dT (j}}c(r)) dr] zj (t)=O; j= I, 2, ... , n 

almost everywhere in [0, T], (49) 

[d(j) (c+j Bz(r) dr)+.%'(1) z(t)] ),j(t) =O ; j=l, 2, ... , n 

almost everywhere in [0, T], (50) 

where si (j) denotes j-th row of matrix A, zj-j-th components of vector z and so on. 
It follows from (49) that whenever zj (t)>O in some interval [T', T"]; O~T' < 

<T"~T then for t E [T', T"] we have 

T 

b;+ f!P(j)}c(t)+ I bj(a;+sfT(j)Jc(r))dr=O;j=l,2, ... ,n. (51) 
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Thus if in some interval there are some components of z (say in a number i; 
i = Q, 1, 2, ... , n) that are stric~ly positive then the appropriate inequalities in (46) 
become equalities so we have i equations and n-i inequalities in ( 46). The same 
applies to (47) and (48). It is convenient to introduce a concept of a state of a vector. 

Let s (t) be a 2n-component vector (s1 (t), s2 (t), ... , S11 (t), ... , S11 + 1 (t), ... , S211 (t)) 
:such that 

l 
0 if z;(t) =0 

S· (t)= 
' 1 if Z; (t) > 0 . ! 0 if A.;(t)=O 

s"+i (t)= 1 if },;(t)>O 

i=l,2, ... ,n; tE [O,T], (52) 

i=l,2, ... ,n; tE [O,T]. (53) 

We say that value s (t) of the function s:[O, T]~s defined above (where S is 
the set of all 2n-component binary vectors) defines state of vector function (z, },) 
.at time t. 

Since z and A. are piecewise continuous s is piecewise constant. In the finite 
interval [0, T] there is a finite number of points in which s changes its value and 
.a finite number of intervals (say N) in which (z, A.) is continuous and does not change 
its state. 

Let us number these intervals backword from 1 to Nand denote their boundary 
points by T;, i = O, 1, ... , N in such a way that 

(54) 

.and ith interval I; is the interval (T;, T; _ d; i = 1, 2, ... , N. 
We can write equations (45)-(48)_ for each irrterval separately in the following 

form. 

[b':' + toT A.(t)+ T' B(a* +dT A (r)) dr+Q cri-1)r z cr) = o; 

tE[T;,T;_l]; i=l,2, .. . ,N; (55) 
Ti-1 

b':' +toT A.(t)+ J B(a'~+dT A.(r)) dr+Q(T;_ 1)~0; t E [T;, T;_ 1 ]; 

t 

i= 1, 2, ... , N; (56) 

[d(q(T;)+ j Bz(r) dr)+toz(r)r A.(t)=o; tE [T;, ri-1J; i=l, 2, ... ,N; (57) 

d(q(T;)+ j Bz(r) dr)+toz(t);;:;,O; t E [T;, T;-d; i=l, 2, ... , N; (58) 

where· vectors q (T;) and Q (T; _1) are constant in the interval i and are given by the 
~quations T; 

q(T;)=c+ J Bz(r) dr; i= 1, 2, ... , N, 
0 

T 

Q(T;_ 1)= J B(a':'+dT A.(r) dr); i= 1, 2, ... ,N. 
T;-1 

(59) 

(60) 
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For given matrices d, PJ and vectors a* and b':' let QcR" be a set of values 
of vector c for which piecewisecontinuous solutions of inequalities (27) and (28) 
exist. 

Any nonnegative piecewise-continuous function z EL~ (0, T) for which there 
exists a nonnegative piecewise-continuous function A. EL~ (0, T) such that (z, A.) 
is a solution of (45)-(48), is an optimal solution of the problem (26)-(28). From 
now on, we shall refere to such a function (z, A.) as an optimal solution. 

In what follows, we shall present a method of obtaining optimal solutions for 
all c E Q. 

Let i be any of the numbers 1, 2, ... , Nand let si be any element of S. 
Suppose that the solution of (55)-( 58) is in state si, i.e. for t E I1 =(T1, T1 _ d c 

c [0, T] s(t) = si. Denote this solution (z, A.){. It depends on parameters vectors 
q (T1) and Q (T1 _ 1). A nonnegative solution of (55)-(58), (z, A.){ exists, in gene­
ral, only for certain values of q (T;) and Q (T1 _ 1) . We can say that this solution 
exists under certain existance conditions which can be written in the form 

(61) 
where 

(62) 

and rp{ is nrdimensional vector function what means that for each si existance 
conditions are given by ni inequalities. 

Let Is be a set of all indeces j for which a nonnegative solutions exist for some 
i. Let us construct a sequence 

(z, A.)~·, (z, A.)~'.::{, ... , (z, A.){' (63) 

where r is natural number and jk E Is for k = I, 2, .. . , r. 
Let us consider the following set of inequalities connected with this sequence 

(64) 

These inequalities can be expressed in terms of q (Tr) and Q (T,). Indeed, intro-
ducing notation n-, 

A1 q= j Bz(t) dt; i = 1, 2, ... , N, (65) 
T, 

Tt-t 

A1 Q= J B(a':'+dT A.(t))dt; i=l,2, ... ,N, 
r, 

we can write equations (59) and (60) in the form 

q(T1)=q(T1_ 1)- A1 q; i~ 1, 2, ... , N; 

Q(T1)=Q(T1 _ 1 )+A1 Q; i=l,2, ... ,N. 

(66) 

(67) 

(68) 

Using the above equations we can express q (T1) and Q (T1_ 1 ) in terms of q (T,) 
and Q (T,) and write inequalities (64) in the form 

(69) 
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Observe that for the last element (i .e. element number I) of any sequence must be 

Q(T)=O. 

Using (67) and (68) we write this equation in the form 

ip~0 (Q(Tr), L11, Llz, ... , L1r)=O. 

(70) 

(71) 

For m= 1, 2, ... , mr and r = 1, 2, ... let r ·m be a number of a r-element sequence . 
We shall say that sequence r·m is permissible if there exists a set Qr·m (Tr) of 

pairs (q (Tr), Q (Tr)) such that q (Tr) E Q, Q (Tr) ER" and inequality (69) and equa­
tion (71) are satisfied for L1k>0; k= l, 2, ... , r. 

For each pair ( q (Tr), Q (Tr)) E Qr ·m (Tr) there exists a nonempty set of vectors 
(L1 1 , L1 2 , ... , L1r) such that .dk > 0 for k = 1, 2, ... , r. 

Denote this set Ll ~(;" and define a set 

r 

g-r ·m(q(T,.) ,Q(T,.))={v:v=}; L1k;[(L11>L1z, ... ,L1r)EL1~(;"}. (72) 
k= 1 

Vector Q (Tr) may be calculated by means of equations (66) and (68) starting 
with Q(T0 )=Q(T)=0 as an initial value. Thus actually the set ffr ·m is a function 
of q (Tr) only. 

It follows from the definition of a permissible sequence of interval solutions 
that every such a sequence determines an optimal solution for certain values of 
c apd Tin the following way. If there exists an element (q (Tr), Q (Tr)) E Qr·m (Tr) 
such that q (Tr)=c and if T is an element of ffr·mlq\T,)=c then a function 

(z(t),A(t)) = (z(t),J,(t)W for tE(Tk,Tk_ 1) k=1,2, ... ,r (73) 

is an optimal solution for the pair (c, T). 
Observe that TE ffr·m (c) means that there is an element (LI 1 , L1 2 , ... , L1r) E L1~0m 

such that 

(74) 
k=l 

what means that Tr =0. 
On the other hand, for every optimal solution there exists r and a sequence 

r·m (m= 1, 2, ... , mr) such that the optimal solution can be expressed in the form 
(73) as there are no other solutions of (45)-(48). 

Constructing all permissible sequences we obtain all optimal solutions. 
Note that if r·m' is a permissible sequence then it is easy to construct a sequence 

r+ l·m" (m"= 1, 2, .. . , mr+ 1 ) by adjoining (z, },);';!"{for jr+ 1 E / 5 • In order to check 
whether this sequence is permissible or not it is enough to express set Qr·m' (Tr) 
in terms of q (Tr + 1), Q (Tr+ 1) and by adjoining inequality 

(75) 

construct set Qr+l·m" (7~+ 1 ). If Qr+l.m" is :hot empty then sequence r+l·m" is 
permissible and we determin set ff~;il·m" (q (Tr+ 1)) to define a range of parameters 
(c, T) for which an optimal solution is determined by sequence r+ 1·m". 



48 K. IRACKI 

The technique described above has been used for obtaining solution of the 
particular three-dimensional example formulated in [1], in which the three indu­
stries are steel, auto and tool industry with the goal of producing autos. 
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Rozwil!zanie trojwymiarowego problemu 1 Wl!skich gardel 
przy uzyciu warunkow punktu siodlowego Hurwicza 

Rozwa:i:ono zagadnienie poszukiwania optymalnej strategii inwestycji dla zespolu kilku pro­
ces6w produkcyjnych, rozwa:i:ane uprzednio przez R. Bellmana i R. Kulikowskiego. 

Zagadnienie dotyczy zespolu trzech przemysl6w zorganizowanego tak, aby uzyskac okreslony 
produkt w spos6b najbardziej efektywny. W niniejszym sformulowaniu zagadnienie polega na­
znalezieniu trzech funkcji czasu reprezentuj~tcych strategie inwestycyjne w poszczeg6lnych prze­
myslach, maksymalizujqcych calkowity produkt koilcowy jednego przemyslu w zadanym prze­
dziale czasu [0, T]. 

Przedstawiono warunki punktu siodlowego Hurwicza dla rozwa:i:anego zagadnienia i rozwi~t­
zano je dla zalo:i:onych wsp6lczynnik6w technicznych produkcji i inwestycyjnych w calym dopusz­
czalnym obszarze warunk6w poCZf!tkowych, dla dodatnich wartosci horyzontu planowania T. 

PemeHne TpexMepHoii 3a;::t;aqu Y3KIIX MeeT npu ucnoJib30BaHHu 
ce;::t;JIOBOH TOqKJI rypnuqa 

PaCCMOTpeHa 3a,L(a'la ITOHCKa OllTl!MaJibHOH CTpaTenm Ka!liiTaJIOBJIOJKeHHii: ,[(Jlil KOMIIJieKCa 
HeCKOJibKMX IIpOH3BO.[(CTBeHHbiX IIpoiJ,eccoB, paHee paccMoTpeHHaH P. EenJIMaHOM H P. KyJIH­
KOBCKnM. 

3a.[(a<ra KacaeTCH KOMIIJieKCa COCTOHIIJ,ero' Jl3 TpeX OTpacneil lljJOMb!liiJieHHOCTJ!, opraHH30-
BaiiHOf0 TaKJ!M o6pa30M, '!T06bi Han6onee 3tjJ<lJeKTHBHO ITOJIY'!HTb Ollpe.[(eneHHbrH fljJO.[(YKT. 

B .[(aHHOH cPOPMYJIHPOBKe 3a,[(a'la COCTOHT B HaXOJK.[(eHHH Tpex tjlyHKII,Illi BpeMeHH, OTpaJKa­
IOIII,IilX CTpaTerHH KannTaJIOBJIOJKeHHll: B OT,[(eJibHbJX OTpaCJIHX IlpOMbiTIIJieHHOCTH, MaKCHMH3H­
pyiOIII,IilX IlOJIHbrH KOHe'!HbrH IIjJO.[(yKT O,[(HOi1: OTpaCJIH llpOMbiiTIJieHHOCTH 3a 3a,[(aHHblll nepHO,[( 
BpeMeHH [0, T]. 

ITpe.[(CTaBJieHbi yCJIOBHH ce,[(JIOBOH TO'!KH rypBnHa ,[(Jlli paCCMaTjJHBaeMOll 3a,[(a'!H H rrony­
'IeHbi HX pemeHHH llpH npe.[(IJOJiaraeMbiX TeXHH'!eCKHX K03$$HIJ,HeHTaX lljJOH3BO.D;CTBa li Kailii• 
TaJIOBJIOJKeHHHX, ,[(Jli! BCeH ,[(OJJYCKaeMOH o6naCTH Ha'IaJibHbJX yCJIOBHH H ,[(Jli! TIOJIOJKHTeJibHbJX 
3Hatremrll: ropn30HTa nnamrpoBaHHH T. 


