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The problem of finding an optimal investment strategy for multistage production processes,
studied previously by R. Bellman and R. Kulikowski is considered.

A complex of three industries integrated so as to produce a given product in a most
efficient manner is investigated. In this formulation, the problem is that of finding three
functions of time, representing investment strategies in the individual industries, that maximize
a total amount of final product within a predetermined time interval [0, T1.

Hurwicz’s saddle-point conditions have been formulated for the problem and solved
numerically for hypothetical coefficients and all admissible initial conditions and positive values
of T. Some of these results are presented and discussed.

1. Optimization problem in the dynamic Leontief system

The bottleneck problem as formulated by R. Bellman in his book on dynamic
programming [1] is related to a problem of profit or net product maximization
in the Leontief open dynamic model.

We shall first formulate the Leontief model based on a continuous version of
the discrete Leontief model discussed in [2] and then indicate its relation to the model
used in [1].

Suppose that we have a system of n industries each producing a single good.
For j=1,2,..,n let x; (¢) be the activity level of i-th industry at time ¢ measured
by the flow rate of good 7 produced by the i-th industry and let ¢; (¢) be the produc-
tion capacity of industry i at time z.

For 7,j=1, 2,...,n let a;; be the minimum amount of good 7 needed as a row
material to produce a unit amount of good j (or the minimum flow rate of good
i necessary to produce good j at a unit rate) and let b;; be the amount of good 7

*) Presented at Polish-Italian Meeting on Modern Applications of Mathematical Systems and
Control Theory in Particular to Economic and Production Systems, Cracow (Poland), Sept. 1972.
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needed as a capital stock to provide a unit production capacity (or the minimum
flow rate of good i necessary for a unit increase in production capacity) of j-th
industry.

Of course all ;; and b;; are nonnegative by definition but we distingnish those
coefficients that are strictly positive. If a particular coefficient a;; (or b;;) is equal
to zero it simply means that the i-th good is not used in production of good j (or as
a capital stock in j-th industry). Let us introduce the following sets of subcripts.

IaJ':{i: aij>0}; ]=17 2: ey F
L, =%i:b;3>04; j=1,2, .0

Let x;; (¢) be the flow rate of good i into j-th industry used as a raw material
and let z;; (¢) be the flow rate of good i into j-th industry used as a capital stock.
We assume that the production function in each industry have the following form
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where ¢; () stands for P a time dirivative of ¢; () and symbol min (a, b, ..., z)

means the smallest of the numbers a, b, ..., z. The initial capacity of industry j will
be denoted by c;.
As we tend to maximize a net product or profit we can assume that for all
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Indeed, if for some j there existed i'el,; (or i'el,;) such that

. (%@ zp; (@), (200 oyl e
> min or >min on a finite interval, then some of the
iely; aij bi,j iclpj bij

x;; (or z;;) would be wasted so that the net product or profit would not be greater
than when all equations (3) and (4) hold. .
The same reasoning would show that for all ie [,; and j=1,2, ..., n a—l{ should
ij
not exceed g;. Under these assumptions equations (1) and (2) may be written in
the following form
x;O=a;;x;@); iel;; j=1,2,..,n, tel0,T]; &)
x;0<q;(®; j=1,2,..,n; te[0,T]; (6)

2y (O=bi; 4;(®); iely; q;0)=c;; j=1,2,..,n; te0,T]. O]
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Now we can write the usual ballance equations of the Leontief model
(I-A)x(®)—Bq()=p(®), t€[0,T], ®)

where 4 and B are nxn matrices of coefficients a;; and b;; respectively, x (f) and
g () are n-dimensional vectors of components x; (f) and ¢; (1), i=1,2, ..., n, and
p (¢) represents n-dimensional vector of consumption rate at time 7.

The optimization problem can now be formulated as that of finding functions
Xij» Zij5 0, j=1, 2, ..., n (decision variables) that give a maximal value of an integral

T
[ [a@1 p(0) dt ©)
0
where a (f) is a predetermined n-dimensional vector function, subject to the con-
straints (5)—(8) and additional requirements of nonnegativitity of all functions
Xigs Zigs Din b J =15 25 wss 1,
 Using equations (5), (7) and (8) and making an assumption that the system is
productive ') we can reformulate the problem as follows.
Find vector functions x° and ¢° such that ?)

T T

[ la@I [d—4) x ()= B ()] dr=max [ [a(O) [T~ 4) x())—Bi ()] dr (1)

and that satisfy the foHowing constraints

q=x; (11)
(I—A4) x=Bq; q(0)=c; (12)
G=0. (13)

It can be easily found that the present formulation is equivalent to the previous one.

2. Bottleneck problem — special case

Observe that since constant proportions between investments flows z;; have
been assumed there is actually only one independent variable function z;; for each j.
Let us distinguish one subscript 7, say i/ for each j that may be arbitrarily chosen
with the only requirement that i’ e Z,; when I,; is nonempty. Furthermore, we
shall assume that all 7,; are nonempty what means that each industry have a possi-
bility of increasing its production capacity.

1) The Leontief system is said to be productive if there exists a positive x for which some posi-
tive bill of goods (I—A) x can be produced. It has been shown (for example in [3]) that the Leontief
system is productive if and only if matrix (/—A) has a nonnegative inverse. Owing to the producti-
vity assumption inequality (12) guarantees x being nonnegative when ¢ is nonnegative.

2) Throughout this paper the following notation is used. When y denotes a vector function
it means y:[0, T]— R", where 5 is appropriate natural number indicating dimensionality of this
vector function. Sign > (or =) between y’ and y’* means that yj(1)—y: (£)=0 (or =0) for all
1,2, ...,7 and all [0, T]. Symbol y (¢) denotes a value of the vector function y at time 7.
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Let us denote coefficients b, 4, by 1 /b; for i=1,2, ..., n and introduce a nxn dia-
gonal matrix B of coefficients b; and a vector function z defined as follows
G=B-z. (14)

It follows from the above definition and (7) that z;=z; for all j=1,2, .., n.
If the system described is treated as a control system then z may be regarded as
a control function and equation (14) together with the initial condition

q(0)=c (15)

may be regarded as system’s state equation.

We shall introduce another nxn matrix ¥ of technological coefficients that
will be useful

W=B.B. ' (16)

It can be easily seen that the coefficients ¥;; of ¥ can be expressed in terms of
coefficients b;; of B

=t (D

Using this new notation we can write problem (10)—(13) as follows. Find vector
functions x° and z° such that

fT (I A4) x (0~ ¥ ()] a(t) dr=max fT [(I—Ax @O —Pz(O]T-a(®)dt (18)
and subject to the constraints s
(I— A) x—¥z>0; (19)
c+ftl§z @ dr—x(H)=0; tel0, T]; (20)
] z>0. @1

‘Making two hypotheses that are satisfied by Bellman’s three dimensional case
we shall reduce the problem (18)—(21) to a strightforward generalization of the
three-dimensional case called in this paper the bottleneck problem.

These two hypotheses are following:

(1) One of the industries uses row materials only from outside of the system
and flows of these row materials are unlimited. Let us agree that it is industry number
one. '

(2) The whole system operates in order to produce net product in one industry
only. This means that the vector function « in the integrand of the criterion function
has only one nonzero component. Let us agree that it is industry number two.

The consequence of hypothesis (1) is that the production rate in the first industry
is equal to the production capacity of that industry for all # € [0, T]. This means
that the first inequality in (20) becomes equality.
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From the second hypothesis we can deduce that all inequalities except the second
one may be replaced by "equalities. This means that consumption rates in all but
the second industry are equal to zero. Indeed, suppose that it is not true and that
the optimal solution is such that there is a positive consumption of good i#2. If
this good, or raw materials used in its production, were used as raw materials and/or
investments in industry 2 in appropriate proportions then some additional amount
of good 2 would be produced and the criterion function’s value would be increased.

Using n equations resulting from the above assumptions we can express x in
terms of z and write equations (19) and (20) in the form

x(t)=A4* (c+ f Bz(7) df) +B*z(t): te[0, T1; (22)

,,QJ(C-l—fBZ(T) df)+@z(r)>o; tel0, T] (23)

where o7, A*, # and B* are all n xn matrices whose coefficients are functions of
coefficients of matrices 4, B and V. ;

Denoting the second rows of matrices (/— 4) and ¥ by (I1—A4),, and ¥, respecti-
vely and introducing new vectors

a* =[(I— A)) A¥]T; (24)
b*=[(I— )y B* — ¥ "3 , @3)

and assuming, for simplicity, that a (#)=(0, 1, 0, ..., 0) for ¢ e [0, 7] we finaly state
the bottleneck problem as follows. \
Find vector function z° (being an element of some functional space Z) such that

T T

t t
f [a” (c+ f Bz (7) d‘c) +b*T 20 (r)] dt =max f -[a*T (c + f Bz(v) d‘L’) I
0 NN zeUz ¢ 0

+b*T z(t)] dt (26)
where the set U.,<Z consists of elements satisfying the following inequalities

o (c+ [ Bz(x) dr) +B2(6)>0, te[0, T], @7

z20. (28)

3. Quasisaddle-point optimality conditions for the bottleneck
problem

Hurwicz’s quasi saddle-point conditions were applied to the bottleneck problem
first by R. Kulikowski in [4] where two basic theorems providing necessary and
sufficient conditions for optimality were used. These Theorems were first proved
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in [5] and then carefully studied in [6] and [7] in which their application to the
bottleneck problem was considered in more detail and the two — dimensional
case was solved.
In the present paper we use optimality conditions as formulated in [6] and [7].
Let X and Y be partially ordered Banach spaces. Let f and g be functlons
defined on X f: X¥X-sRand g: ¥ 7. Let U be a set defined as follows

U={F: Fe Xy g()20; 520} 29)

We shall call P a problem of maximizing f(x) over the set U. We shall call x°
a solution of problem P if
f(Z°)=max f(%). (30)
xeU
In order to formulate Hurwicz’s theorem for the problem P we introduce a
function @: ¥ x Y*—R such that for fe ¥ and Le ¥*

D (%, H=f(®)+[g(®)] - @D

where Z is a linear functional defined on Y, i.e. an element of the conjugate space
Y* of Y.

Tueorem. Let f and g be concave and both possess Fréchet differentials in X.
Let g satisfy conditions of regularity and regular convexity of certain set of functio-
nals defined by means of g *). Then %° is a solution of the problem P if and only if
there exists a nonnegative functional ) 1°e Y* such that the following condi-
tions hold.

- @ [(x°, 1°), %°]=0, (32)

- @ [(x°, 1), X]<0 for all ¥>0; xe X, (33)
[(®e, 29), 2°]=0, (34)

Cd, D[(x°, J°), A]=0 for all A=0; le Y* (35)

Here d; @ [(x°, 1°),-1(d, @ [(%°, 1°),-]) denotes a Fréchet differential of a
functional & with respect to X (1) at point (¥°, A°). The point (%°, A°) that satisfies
the above conditions (32)—(35) is called a nonnegative quasisaddle-point of functio-
nal @.

If the functions fand g are not concave then (32)—(35) are necessary conditions
for optimality. We shall assume in the following that f and g are concave and use
the above theorem.

3) The above theorem gathers the results of theorems V.O., V.3.3.2 and V.3.3.3 in [5] for the
spe_cial case defined by the hypothesis of the present formulation.

The definitions of regularity of g and of the set of functionals mentioned above are given in
section V.3.3.2 and in the hypothesis of the theorem V.3.3.2 in [5]. We shall not discuss them here
as in the bottleneck problem defined in the preceding section f'and g are linear and both hypotheses
as well as that of concavity of f and g are satisfied.

4) We call a functional A:Y— R nonnegative if A (»)=0 for all y>0 yeY.
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We assume that Z is a Cartesian product of n spaces L? (0, T) (that is z; € L2 (0, T)
for i=1,2, ..., n) and we denote this space by L2 (0, T).
The operator g is given by the left hand side of inequality (27)

[e@]()= (c—i—fgz () dr)—i—@z () for te[0,T], zeZ (36)

and the set U is equal to U, defined by (27) and (28).

The space Y is again L? (0, T) and hence every linear nonnegative functional
/. defined on Y can be expressed as an integral

20)= [ @@ dr for ye Y (37)

where /. is a nonnegative function belonging to L? (0, 7). Using (37) we obtain the
Lagrangean function in the form

& (4
D (z, /1)=f [a*T<c+sz(T) dr)+b*T z(t)] dt+

e t -
+f [&i(c+] Bz () df)+gz(r)] A dt. (38)
0 o]
The Frechet differentials of & are following °)

T T
d. @ [(z*, 2°), 2]= [ [b===+9;u°(z)+ [ B(a*+a7 1°(2) dr]T-z(t) dr,  (39)

T

t T

d, @[(z°, 1), A= f [&l (c+ f Bz (7) d‘c) +%’z°(t)] A1) dt. (40)
0 0

Applying now (32) to (35) we obtain the folowing necessary and sufficient

conditions for a vector function z to be an optimal solution of a problem (26)—(28)

7 T T
f [b"‘+,@T/1“(t)+ f B(a*+o47 ) (7)) dr] 2°(f) dt=0, (41)
0 4

T T T

¥ [b*+93T/1° O+ [ B(a*+7 10 (2)) d‘[] z(f) dt<0 for all z>0, (42)

o

f [.52{ (c + f Bz (v) dr) +%z° (z)]T A°(t) de=0, 43)

T t
f [.mf(c—{— f Bz (7) dr)+.%’z"(t)]T)u(z‘) dr >0 for all 2>0. (44)
(0]

0

5) Usual in such cases (see [6] and [7]) integration by parts have been applied to obtain d, @ in
- the form of (39).
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Observe that inequalities (42) and (44) can be satisfied for all nonnegative z and
all nonnegative A if an only if the first component of a scalar ptoduct under each
integral (that is the term in square brackets) is respectively nonpositive and nonnega-
tive almost everywhere in [0, 7']. This implies that equations (41) and (43) are
satisfied if and only if the integrands are equal to zero almost everywhere in [0, T'].
Thus we can write equations (41)—(44) in the following equivalent form

T 7
[b* + BT A1)+ f B(a*+ A7 A(1)) dT] z()=0 almost everywhere in [0, 7], (45)
t

. :
b*+ A7 J.(t)+ [ B(a*+ /7 (1)) dr<0 almost everywhere in [0, T], (46)

t

C T
[M (c—l— f Bz(7) dr) + %z (t)] 2.(1)=0 almost everywhere in [0, T],  (47)
0

t
o (c+ f Bz(7) dr) +%z(1)=0 almost everywhere in [0, T]. (48)
2 !

The superscript o over x and 1 has been neglected because all z and A in (45)—(48)
are z° and A°

4. Solution of the optimality conditions

To solve the above set of equations we assume that all the functions z; (and
consequently 1,); i=1,2,...,n are piecewise continuous. :

The scalar product on the left hand side of the equation (45) is a sum of products
of the respective components of the two vectors. Since all first components of these
products are nonpositive and all the second are nonnegative, the equation (45)
is equivalent to the set of n similar equations — one for each component of the
scalar product. The same is true for equation (47) and we can write equations (45)
and (47) in the form

: .
[ijrﬂT(j) 20+ [ by(@]+7 () 4) dezf<f>=0; IRb % e n

:
almost everywhere in [0, 7], (49)
[M(j) (c+ ft Bz (1) dr) +%()) z(t)] A (D=0s 5=11,2. 2 m
k almost everywhere in [0, 7], (50)
where o7 (j) denotes j-th row of matrix 4, z;—j-th components of vector z and so on.

It follows from (49) that whenever z; (f)>0 in some interval [7", T"']; 0<T"'<
<T""<T then for te[T’, T"'] we have

T
By +B7() 2O+ [ by(d}+47(j) A(2) de=0; j=1,2, ..., n. (51)
{
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Thus if in some interval there are some components of z (say in a number i;
i=0,1, 2, ..., n) that are strictly positive then the appropriate inequalities in (46)
become equalities so we have i equations and n—i inequalities in (46). The same
applies to (47) and (48). It is convenient to introduce a concept of a state of a vector.

Let s (f) be a 2n-component vector (s (), 55 (£), .., S (1), <ty Sy 1 (), vy $24(2))
such that O if 5(0)-<0

()= =1, 2 won; te]0,T], 52
(0) llifzi(t)>0 I 1% 7] 2

; 0 if 4,(H)=0
Sn+i 1=
1 if 2,()>0

We say that value s (#) of the function s:[0, 7]— S defined above (where S is
the set of all 2n-component binary vectors) defines state of vector function (z, A)
at time ¢.

Since z and A are piecewise continuous s is piecewise constant. In the finite
interval [0, 7] there is a finite number of points in which s changes its value and
a finite number of intervals (say V) in which (z, 4) is continuous and does not change
its state.

Let us number these intervals backword from 1 to N and denote their boundary
points by 7;, i=0, 1, ..., N in such a way that

i=1,2,.,n; tel0,T]. (53)

OZZv<TN_1<...<T1<To=T (54)

.and ith interval Z; is the interval (T}, T;-4]; i=1, 2, ..., N.
We can write equations (45)—(48) for each interval separately in the following
form.

Ti-1
lb""+§3‘T A(t)+f B(a*+7 1 (7)) d’L’+Q(Ti_1)]TZ (H=0;

16Ty To_sls i=1,2, s N: (55)

Ti-1

b*—!—%Ti(t)+f B'(a*'i“&{Tl(T)) di+Q(T;-)<0; te|[T;, T;_,];
T
i=1,2, . N; (56)

[d(q(T,-)+ fB'z(r) dr)—f—.@z(t)]T/l(t):O; L€ [T T a i i=1,20 0 N5 =, =(5T)
T :

&l(q(Ti)+ [ Bz(x) df)-i—%‘z(t)?O; telTn T (b =1, 2 sy - L(58)

Tl
where vectors ¢ (7;) and O (7;_,) are constant in the interval i and are given by the
-equations 7
g(T)=c+ [ Bz(x) dr; i=1,2, ., N, (59)
(0]
i

O(Ti-1)= f B(a*+7 A(7) d7); i=1,2, ..., N. (60)

Ti=1

Z
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For given matrices o/, # and vectors a* and b* let Q< R" be a set of values
of vector ¢ for which piecewisecontinuous solutions of inequalities (27) and (28)
exist. '

Any nonnegative piecewise-continuous function ze L2(0, 7) for which there
exists a nonnegative piecewise-continuous function AeL?(0,7) such that (z, 1)
is a solution of (45)—(48), is an optimal solution of the problem (26)—(28). From
now on, we shall refere to such a function (z, 4) as an optimal solution.

In what follows, we shall present a method of obtaining optimal solutions for
all ce Q.

Let i be any of the numbers 1, 2, ..., N and let s/ be any element of S.

Suppose that the solution of (55)—(58) is in state s/, i.e. for t € ,=(T}, T;_{]<=
[0, T] s(f)=s’. Denote this solution (z, 4)]. It depends on parameters vectors
g (T;) and Q (T;_;). A nonnegative solution of (55—(58), (z, )] exists, in gene-
ral, only for certain values of ¢ (7;) and Q (7;_;). We can say that this solution
exists under certain existance conditions which can be written in the form

91(q(T), Q(Ti-4), 4;)>0 (61)
where
4;=T,_1—T, (62)

and ¢} is n;dimensional vector function what means that for each s/ existance
conditions are given by n; inequalities.

Let I, be a set of all indeces j for which a nonnegative solutions exist for some
i. Let us construct a sequence

(o A7, (o, Aty v U AJ (63)

where r is natural number and j, € [ for k=1,2, ..., r.
Let us consider the following set of inequalities connected with this sequence

o (4T, Q(Tie), 4)>0, k=12, .,r. &

These inequalities can be expressed in terms of ¢ (7,) and Q (7,). Indeed, intro-
ducing notation Tios

dig= [ Bz@dr; i=1,2.,N, (65)
T
Ti—y
4, 0= f B(a*+47 A(0) dt;  i=1,2,.., ], (66)
T;
we can write equations (59) and (60) in the form
q(T)=q(Ti-1)—4:q; i=1,2, .., N; (67)
Q(T)=0(Ti-1)+4,Q; i=1,2,..,N. (68)

Using the above equations we can express ¢ (7;) and QO (7;_,) in terms of g (7})
and Q (7,) and write inequalities (64) in the form

G @@, Q(T), by Airsy s 4)20; k=12, yr. (69)
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Observe that for the last element (i.e. element number 1) of any sequence must be

0(T)=0. (70)
Using (67) and (68) we write this equation in the form
(f)éo (Q(Tr)a Ala AZ» ey Ar):o (71)

.

For m=1,2,..,m,and r=1, 2, ... let r-m be a number of a r-element sequence.

We shall say that sequence r-m is permissible if there exists a set 2., (7;) of
pairs (¢ (7,), O (7,)) such that g (7,) € 2, O (7)) € R* and inequality (69) and equa-
tion (71) are satisfied for 4,>0; k=1,2, ..., .

For each pair (¢ (T}), Q(T,)) € Qr-m (T,) there exists a nonempty set of vectors
(A Aoy 4,). such that 4,50 for k=12, ., 7

Denote this set 477" and define a set

T (@ (@), QD)) ={o: 0= D 4[4y, 4s, ..., 4) € L7} . (72)
k=1

Vector QO (7,) may be calculated by means of equations (66) and (68) starting
with Q (T,)=Q(T)=0 as an initial value. Thus actually the set 7., is a function
of g (T,) only.

It follows from the definition of a permissible sequence of interval solutions
that every such a sequence determines an optimal solution for certain values of
¢ and T in the following way. If there exists an element (q (T 0 (T, r)) e, (T)
such that g (7,)=c and if 7 is an element of J, |, 1,-. then a function

z®, A®)=(z@), A®)} for te (T Ti-1) k=1,2, .., r (73)

is an optimal solution for the pair (¢, 7).
Observe that Te 7., (c) means that there is an element (44, 4>, ..., 4,) € 4.

such that "
Z 4,=T (74)
k=1

what means that 7,=0.

On the other hand, for every optimal solution there exists r and a sequence
rem (m=1, 2, ..., m,) such that the optimal solution can be expressed in the form
(73) as there are no other solutions of (45)—(48).

Constructing all permissible sequences we obtain all optimal solutions.

Note that if r-m’ is a permissible sequence then it is easy to construct a sequence
r+1-m' (m'’=1,2, ..., m,,) by adjoining (z, A)i+} for j,,, € I,. In order to check
whether this sequence is permissible or not it is enough to express set Q... (7))
in terms of ¢ (7,11), QO (T,,,) and by adjoining inequality

gﬂi'—j—ll (q(Tr+1): Q(Tr+1)9 Ar+1)>0 (75)

construct set Q, ;. (Trr1). If Q.1 1., is hot empty then sequence r+1-m'’ is
permissible and we determin set 775 ™" (g (T,+,)) to define a range of parameters
(¢, T) for which an optimal solution is determined by sequence r+1-m’’.
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The technique described above has been used for obtaining solution of the
particular three-dimensional example formulated in [1], in which the three indu-
stries are steel, auto and tool industry with the goal of producing autos.
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Rozwiazanie trojwymiarowego prob]emu\ waskich gardel
przy uzycina warunkow punktu siodlowego Hurwicza

Rozwazono zagadnienie poszukiwania optymalnej strategii inwestycji dla zespotu kilku pro-
cesOw produkcyjnych, rozwazane uprzednio przez R. Bellmana i R. Kulikowskiego.

Zagadnienie dotyczy zespotu trzech przemystow zorganizowanego tak, aby uzyskaé okreslony
produkt w sposob najbardziej efektywny. W niniejszym. sformutowaniu zagadnienie polega na-
znalezieniu trzech funkcji czasu reprezentujacych strategie inwestycyjne w poszczegdinych prze-
mystach, maksymalizujacych catkowity produkt koncowy jednego przemystu w zadanym prze-
dziale czasu [0, T].

Przedstawiono warunki punktu siodtowego Hurwicza dla rozwazanego zagadnienia i rozwia-
zano je dla zalozonych wspolczynnikow technicznych produkgji i inwestycyjnych w catym dopusz-
czalnym obszarze warunkoéw poczatkowych, dla dodatnich wartodci horyzontu planowania 7.

Perenne TpexvepHoii 3a/1a4u Y3KHX MECT HPH HCIIOJIb30BaHNH
ceqioBoii Touku I'ypBuua

PaccmoTpeHa 3amada MOMCKA ONTUMANBHON CTPATErMM KaUTAJIOBIOKECHUN I KOMILIEKCa
HECKOJILKMX TIPOM3BOJICTBEHHBIX IPOLECCOB, paHee paccMmorperHas P. Bemmvawom u P. Kymu-
KOBCKHM.

3amaya Kacaercs KOMILIEKCAa COCTOSIEr0 M3 TPeX OTpaciieli NPOMBINIIEHHOCTH, OPraHu30-
BaHHOrO TakuM o0Opazom, 4ToObl Haubosee >PPEKTHBHO IMONYYATH OMPENCIICHHBIN ITPOIYKT.

B nmanHO# hopMymupoBKe 3amavya COCTOMT B HAXOXIEHWM TpeX (YHKIHI BpeMeHH, OTpaxka-
IOIMX CTPAaTerud KalMTAJIOBIOXEHWI B OTHOENBHBIX OTPACIAX IIPOMBIIIICHHOCTH, MaKCHMH3U-
PYFOUINX TIOJHBIM KOHEYHBIM IMPOIYKT OIHON OTPACiId HPOMBIIUICHHOCTH 34 3a[aHHBIM TEPHOXN
Bpemenu [0, T].

IIpencraBieHsl yCIIOBUS CEIJIOBOM TOYKE I'ypBHHA IS pacCMaTPHBAEMOM 3akadd H IIOIy-
9YEeHBI WX PEIICHWs NPY IPEANOJIaTacMBIX TEXHWYCCKMX KO3(Q(OUMIMEHTaX NPOU3BOJCTBA W KalHd-
TAJIOBJIOXKEHUSIX, Ui BCEM HOIMYCKAaeMOl O0acTH HaYallbHBIX YCIIOBHHM W IS TIOJIOXKHUTEIHHBIX
3HAYEHWI TOPHW30HTA IUTaHUpoBaHuS 7.




