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An iterative algorithm of finding a minimum of a convex functional on a closed convex and
bounded set in a Hilbert space subject to linear constraints of state space type is proposed.

The algorithm is based on a combination of a convex programming method and a penalty
function method. The penalty coefficient is modified in the process of iterations.

The proof of the convergence of the algorithm is given.

The application of the method to a problem of optimal heating subject to constraints of ther-
mal stress is proposed and some numerical results are presented.

1. Introduction

An optimal control problem subject to constraints of control function and state
space coordinates 'is considered.

The problem is formulated in an abstract form as the minimization of a convex
functional on a closed, convex and bounded set in a Hilbert space subject to addi-
tional linear constraints.

An iterative procedure of solving this problem is proposed. It is based on a
combination of two methods: a convex programming method and a penalty func-
tion method.

The penalty coeflicient is modified in the process of iterations and thus it is not
necessary to find a minimum of penalty functional with fixed penalty coefficient.

An algorithm of changes of the penalty coefficient is given, which provides the
convergence of the iterative procedure to a solution of the initial optimization
problem.

Each step of iterations requires solving of a finite — dimensional quadratic
programming problem subject to linear constraints. To this end one of well known
algorithms [7] can be applied.
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The application of the method to the problem of optimal heating subject to
constraints of thermal stress is proposed and some numerical results are presented.

2. Problem statement

Let V be a Hilbert space and U a closed, convex and bounded subset of V.

On the space V there is defined a non-negative convex functional J (&) and =
continuous linear operators G, (u) (v=1, 2, ..., n) mapping V into L2(0, T), where
7 is a given parameter.

We are going to consider the following problem of potimization (P): find an
element u,,, € U, called an optimal control, such that

J (uopt) =infJ ) ¢))
ubject to constraints R
g @O—-G,wW®»=0, v=1,2,..,n, ae. in [0,7], (1a)
where g, (+) e L? (0, T) are given functions.
If the set
U={uueU;g,t)—G,®w) =0, v=1,2,..,n, ae. in [0, T} @)

is not empty, then an element u,,, exists. Indeed, since G, (z) are continuous and
linear, the set U’ is closed and convex; moreover it is bounded and hence weakly
compact [4].

On the other hand J () is weakly semicontinuous as a convex one [12]. There-
fore it assumes its minimum on U’ [12].

If in addition J (u) is strictly convex the element u,,, is unique.

Instead of solving (P) directly we eliminate the constraints (la) introducing a
penalty for violating them.

Namely we introduce a well known penalty functional

J, ()—J(u)**l*K()AJ(uH“l—Zn[ ax {0, G, () ()—g, M} dt  (3)
o (W)= e u)= 5 L max {0, G, (u gy

depending on a positive parameter ¢;>0, and we formulate an auxiliary problem
(P;): find u, e U such that

T, (u,)=inf J, (). @

uelU

Since G, (1) are linear the penalty term

n T
K@= D [ [max {0, G, () () —g, ()} dt

v=10

is convex. Hence the functional J,, () is convex and an element u, exists.
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It is obvious that K () is equal to zero iff the constraints (1a) are satisfied. More-
over it is known [1] that

J. & (uei) —_—;J(uopt) . &)

£g;—~>0
Therefore the solution of (P) can be approximated by a solution of P, with
¢; small enough.

However we do not know an a priori estimation of ¢ with which a required
accuracy of the approximation is achieved.

Since the minimization of J; (1) can be usually achieved only using an iterative
procedure it seems reasonable to perform this minimization with the simultaneous
decreasing of ¢;. In what follows such a method is presented. It assures the con-
vergence to a solution of problem (P).

3. Iterative method of minimization

To minimize J;, (1) there will be applied a method introduced in [3] and genera-
lized in [11].

In i-th iterative step of this method we find a minimum of a quadratic approxi-
mation of J;, (#) on a subset U; or U. Where U, is a convex hull of a finite number
of elements u].

In the sequel we shall assume that J (u) is twice weakly differentiable and the
following condition is satisfied
(J'wv,v)<N(v,v) VYueU, veV (6)
where N <oo,
The functional K (u) is differentiable and

(K @,9)=2 > [[G,@) ®)—g®)]G,(@) @) dt @)
where -
M,={te[0,T]: G, () ()—g,()>0}. (72)
Denote :
M ={te[0, T1: G,(u)) ()~ g, (1)>0} ®
and
M, =M. (8a)

For every ue U,, i.e. for every

u=20cju{,ocj>0,20cj=l. ©
a J

we have

M,cM,,. » (%a)
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Let us denote

(R, v, v)=2 2 f G:@(@Hdt. (9b)

v=1 A}vt
Taking into account (7), (9) it is easy to check that
K@) <KW +(K W),v—u)+(K,(v—u),v—u), Vu,veU,. ' (10)

Let u; be an element of the set U;. On the set U; we define an auxiliary functional
J;, () by
i

T, =T, 3 o ul) =7, @)+ (7 @, D ol ul—u)+

+%((N+;1:Ki)(2 ocju{—ui), Z a.fug‘;ui). .(11)

J

As it is seen .751 (u) is a quadratic functional of parameters «. Moreover it fol-
lows from (6) and (10) tht

J,@<T, @), Yuel, % (12)
and

T =Tt A A (13)

Hence J,, (u) is a quadratic approximation of J;,(u) in the neighbourhood of
u;, which majorizes this functional on U,. :

In each iterative step we find two elements — an element u; € U;, which satis-
fies the condition

J,,_, @w)=infJ, _ (u) (14)

uelU;

— an element #; ., € U such, that
(_Js,i (ui)s u)<(_‘]g', (ui)a ﬁi+1), Vue U (15)
i.e. u;,; is a point at which the hyperplane H; ortogonal to -—Js'i (u;) supports
the set U.
Having definitions (14) and (15) we are in the position to define the sets U,.
As U, we choose any arbitrary point u, € U. Then we find 7, satisfying (15)
and as U; we take the segment joining u, and u, i.e.
U, =conv {uy, i@, } =conv {ul, u?}.
In further iterations we construct the sets U, in the same way putting

Uy=conv {uy, 1, ..., y=conv {u}, 1, ..., ut*1}. (16)

Remark. To find the element #; we must solve a quadratic programming problem
of minimization of functional (11) with respect to coefficients o/, subject to linear
constraints (9). It follows from the construction of Uj;, that the number of coeffi-
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cients o’ increases in each iteration. Hence increases also the time of computations
necessary to find u;. To avoid this difficulty a method proposed in [10] can be applied
which allows to reduce the number of «’ to a given number. -

: As it has been already told the value of the coefficient ¢; is not constant but it
is modified in the process of iterations. With the appropriate choice of the values
of parameter ¢; the sequence {u;} can be used to find an approximation of the solu-
tion of problem (P). /

Here we should point out: the difficulty which cah be:encounter in such an
approach '

- For fixed value of ¢, in the described method of minimization of J, (u) we obtain
a sequence of non-increasing values J, (ul) convergent to J;, (u,,) from above.

On the other hand in penalty functlon method the opt;mal value J (u,,,) of the
functional J(u) is approximated from below. (‘u8 -do not satisfy the constraints (1a)).-

Hence if we change ¢ we can obtain an increase of the value of the functional
J;, (). Thus the sequence {Jsi (ul)} may lose its monoton101ty, and may not be
convergent to the optimal value.

However as it will be shown this difficulty can be overcome by an approprlate
choice of ¢;. :

Before it will have been shown we will prove the following

Lemma. For any arbitrary sequence {¢;} such that
0<g4158 an

lim (—é&; J,, (), 4 —u;) 2 1im x;=0. . (19)

i—>oo i—>oc0

we have

Proof. First note that the sequence {¢; J, ()} is non-mcreasmg Indeed takmg-
into account (12), (13), (14), (16) and (17) we obtain :

Eiv1 J8i+l(ui+1)<8i Jai(ui+1)<8i & (ui+1)<e, a‘(ui)=£i ]si ().
On the other hand the sequence {¢;J,, ()} is bounded from below by zero,
hence it is convergent.
Let us assume now that (18) does not hold. Hence in view of (15) we conclude
that there exists a constant 6> 0, such that for every integer Q>0 there exist a sub-
script #>Q such that

(Bt o (th)s Ty — 1) > 0. : (19)
Define ; i
u=uyto(lye1—ty), «€(1). (20)

It follows from (14) and (16) that
&y js,, (u¢)> 811 je,, (url+ 1)5 Vae (0’ 1) (21)

From (11), (19), (20) and (21) we have
—(8,, Js:, (un), Upr1— Uy 2% ((811 N+I€n) Upr1— Uy Uy _un)+
+OC(—J8,,,(url)’ 12,,+1 _un)—% az ((811 N+ Kn) (ﬁn+1 _un)s ﬁn+1 —Zl,,)?
23 ((ey N+K,) (g1 — 1), thy g1 —y) + 00 —% 0® 1.
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where
p=sup {&; N(u—v, u—v)+(Gu—1v), G(u—v))}<co.
Substituting L
e=min {1, d/u}
we obtain

(""8n Je:,(uﬂ)3 uﬂ+ 1 _un)>‘12‘((€n N+K-n) (un+ 1 _un)’ Uyt _un) o
2
+min {% U3 ;‘}‘—‘%((gﬂ N+Kn) (g 1 —Up)s Uy — un) +E (22)
52
where x=min {% mE 7} >0 does not depend on 7.
Taking into consideration (12), (17) and (21) we get

En+1 Je,,+1(un+1)<£n ja,,(un+1)=8n Js,,(un)+(8n Je',, (u,,), Upt1— n)+

+%((8ﬂ N+Kn) (un+1_”n)’ un+1_un)<£n JE,,(uﬂ)—K
or

K& Js,, (u,,)—s,,+ 1 Je,,+1(un+1)

which contradicts the convergence of {g;J;, (1;)}. This contradiction proves the
lemma.

The sequence {¢;} is constructed in the following way
— choose ¢,>0

— put .
min {81_1, kl xf_l} if x;_1>0
_81_1 if xi_1=0 ( )
k,

where x,=(—é& J;, (), #+1—u;), and k;>0, k,>1 and 0<p<1 are fixed con-
straints.

_ The sequence {¢,} constructed in such a way satisfies (17), hence it follows from
Lemma that from the sequence {x, } can be substraced a subsequence {x}<{x;}
monotonically decreasing to zero.

THeOREM. The following convergence takes place

e W) s (o) 24

and in the case where u,,, is unique
Uiy (;T,: Uopt (25)

(f u,y, is not unique (25) takes place for some subsequence of {u}).
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Proof. Let us consider first the case where x;_, =0, i.e. where (——J;_l(u,-_l),
ﬁi—u;_1)=0. It means [9] that J, _ () assumes at u;_, its global minimum on U,
ie. u;_y=u,_,. As it follows from (5) in this case any choice of ¢;<g;-, is proper
and in particular we can choose ¢; given by (23).

For the case where x;_,;>0 note that

Xy

lim (—J; ¢ (), gy 41— ) =lim —==0. (26)
> M->o &)

Indeed as it follows from Lemma and (23) for (i) large enough we have
Xciy X ) v
oo iy <l D
what in view of (18) proves the monotonic convergence to zero of the sequence
B
ey)’
Now taking into account that J, o (u) is convex we obtain from (4) and (15)

@=(

’ - 14
t ey Waiy)s Ty +1— u)=(—J, ® (“wy)s Uy ™ u(i))>Jsu) (uay)+

—Joy (Usp) =0 27
(5) together with (26) and (27) prove (21).
To prove (25) let us note that from {u;,} we can substract a weakly convergent
subsequence {u;} = {u;}:
uy——u. (28)

J—>o

Since J,, (4) is convex we get from (15)
Xj ’ e, ’
;ﬂ = (_Je, (uj)9 Ujr1— uj)>(—']g, (), Uopt —uj)>',aj (uj) —Ja, (”apr)=
J

1
or =J (u.i) + ;j— K (uj) -J (uopt)

Xj + &; (J (uopt) —J (uJ))> K (uj) . (29)

Functional K (u) is weakly lower semicontinuous as a convex one. Hence from
(18), (28) and (19) we get

0=1m [x;+&; (J (top) —J (;))1>1im K () > lim K (u;)> K (@)
J>o J>o Jow
which proves that # satisfies (la).

On the other hand from (24) and (28) as well as from the fact that J () is weakly
lower semicontinuous it follows that

J@<lim J(u;)<lim J, ’ () =J (Uypr)
j>oo J>ow

which proves that #=u,,. The uniqueness of u,, assures [2] the convergence of
the whole sequence {u;)} to u,, as in (25). Q.E.D.
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COROLLARY. If the functional J (u) satisfies
no o)</ We,0), Yuel, YoeV (30)

where n>0; then ‘ ;
ll(i) (_1)7;3 Uopt - ) e (31)

Proof. Taking into account that J (1) and K (u) are convex from Taylor formula
and (30) we obtain \ <

J(uop}.)‘=Je(;) (Llopr)ZJQ(i) (u(i)) e (J;(i) (u(i))’ Uopt — u(i)) +1 (o — i‘;(i): u;pt = u(i.))- d
Using (15) we get
(J @ope) = Togy () + (=T (), gty 1 — 1)) 21 (ot —Ugiyy hops —Upy) - (32)

Relations (24) and (26) together with (32) prove (31).

In the classical penalty function method the value of penalty term is usually
taken as stop condition for iterative procedure, i.e. it is required that
where 8, is a given number. K(u)fél’ el

In our case the condition (33) can be misleading. It follows from the fact that
the value of penalty component K (#;) can be small, and at the same time the value
of J;,(;) can be far from the minimal value of this functional on the whole set U.
Hence we should additionally check if we are close enough to the minimum of
J.,(u) on U.

To this end we can use the estimation (27) and besides (33) require that

(—Jsl(,-) Uty Uy +1—U)) <05 (34)

4. Problem of optimal heating subject to constraints of thermal
stress

As an application of the iterative method described in Chapter 3 a problem of
optimal heating of a homogenious plate subject to constraints of thermal stress is
considered. oY

This problem was stated in [S] and [6].

We consider a system described by one — dimensional heat equation

ay(x, ) *y(x 1)
o ax? -

for x€(,1), te(©0,7) (35)

along with initial condition
y(x,0)=0 (35a)
and boundary conditions

pO,H a0
ox =0 ox

=plv@®-y(1,9l, (35b)
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where T is a fixed time of control, >0 is the coefficient of heat exchange between
the plate and the environment and v () is the environment temperature the changes
of which are governed by the equation

do@ 1 Ll el .
™ ——7v(t)j1——y—u(t) : (36)
u(0)=0

where measurable control function u (the inflow of heating media) must satisfy
the condition :
; O<u()<1 ae. in [0, T] (36a)

Maximal thermal stress, which takes place in the system (35) at time # can be
expressed by approximate formula

a@®=2 [ [y(x )=y (0, D] dx 37

where: A=Ep/(1—4); E is Young’s modulus; p is coefficient of linear thermal
expansion; A is Poisson’s ratio.
The problem of optimization is to find a control u,,, (#), satisfying (36), which

minimizes the functional,
1

J@)=(z=y(T;w), z=y(T; W)= [ [2(¥) =y (x, T; )] dx (38)

0
subject to the condition

g(f)<o,. a.e. in [0, 7] 39)

where ze L? (0, 1) is a given final distribution of temperature in the plate, which
is to be approximate and given number o, denotes the maximal admissible thermal
stress. ;

It is known [8] that the mapping w—y (¢; u) is linear and continuous from
L? (0, 1) to L? (0, 1), hence denoting

Gw =0t u)=4 [ [y(x 1;w)—y(©, £;w)] dx.

g®)=o0,
U={uel?>@©,7);0<u(®)<1l ae. in [0,T]}

we find that our problem of optimization can be reduced to the scheme considered
in Chapter 2. :
Moreover the functional J (u) is quadratic and its Hessian

(7" ) v, 0)=2(y (T; v); y (T} %)) (40)

trivially satisfies (6). Therefore we can use the iterative procedure described in
Chapter 3.
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Note that in our case the condition (30) is not satisfied, hence we obtain only
weak convergence of {u,} to u,,,. However if we use (40) and repeat the argument
of Corollary we find that {y (T’ u;)} is strongly convergent to y (T’; ) in L? (0, 1).

To apply the procedure of minimization we must find elements u; and #,,,
satisfying (14) and (15).
Functional J, (¥) is given by

1
I W)= @)+ — K@)=(z-y(T; 1), 2=y (T; u))+

1 T
e f [max {0, o (, ) —oo) 2 dr  (41)
< : 0
and J,, (u) has the form

e, (u)=J(u)+;1‘— {K(u,)+(K’ (), Z ot u{——ui)-i-

+-;—(12i (X wui-u), 3 oc"u{-ui)]=(z— D Oy z+

J J J

R . 1
- Z‘Wy(u;))Jr—[f(a(t;ui)—go)z dt+2 [ (o (t; u)—ao) x
J & M M;
” (Zocfc(t;u{)—a(t;ui))dt+ [ (2 ocfa(t;u{)-a(t;ui))z dt], (42)
7 My J
where M; and M, are given by (7) and (8).
The element u;,; is determined from the condition (14) using (42). To this
and we must find coefficients o/ of convex combination, which minimize (42). This
can be done using well known methods of quadratic programming in finite dimensio-

nal space. The element #7;., must satisfy conditions (15) which in our case takes
on the form

(Z_J"(T§ u), y(T; ﬁi+1))+8_1. f (0(15 U;)—00) 0 (t; #y4,) dt >

1
2@y (@u), y(Tw)+— [ u)-0)) o uyde.  (@3)
i M;
If we introduce the system of the following equations adjoint to (35) and (36)
respectively

p(x tu) plxtiu) A
. = = o -l-;i— fmax {0, o(t; u;)— 0o}, 44
M

P, Ty w)=y(x, T; u)—z,

3p (0’ t; ui) /1
5 max {0, o (s )=o),
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op(1,t;u)
T+ﬂp @, t; u)=0,

dq (¢; u; 1
q(dt u—)=7 [a@t; w)+p(1, t; u)l, 45
q(T; u;)=0,

then from (43) we obtain
dvq ()=%[1+sgn q(s; u)]. (46)

As it follows from (42) and (46) in each step of iteration we must integrate two
partial differential equations: the equation (35) of the system and the adjoint equa-
tion (44).

To obtain the aproximate solution of these equations a finite difference method
was used. The time and space domains were devided into P and Q subintervals of
the length Az=T/p and Ax=1/Q respectively. The solution of the quadratic pro-
gramming problem necessary to find u; was obtained using simplex method [7].

The computations were performed on the computer ODRA 1204. The following
data were taken in computations:

B=10; y=0.003; T=02, A=105 o0,=2.7x10% P=40; Q0=10; g,=10%
k=10, k,=2, p=1/2.

Moreover it was assumed that the functions z (x) and y (x, 0) are constant and
z (x)=0.4; y (x, 0)=0.

The total time of computations was 1091 sec. The obtained results are presented
in figures 1 and 2.

i '\
% N | !
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| S
/ 1074 I e fut \i {151 8
2.267-1072 14 \& t
g 0 i \ R
AR TR R PR R 0 2 4 & 5 W0 WM oHRm
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Fig. 1. Values of J(u;) and J,, (u) in Fig. 2. Values of K(u;) and & in the

the function of number of iteration function of number of iteration
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The plots of values of functionals J (u), J,, (1) and K (u) as well as the values
of the parameter ¢, against the number of iterations are shown in figures 1 and 2.

The forms of obtained approximation of optimal control u,,, thermal stress
o (t; u,,,) and final distribution of temperature are given in figures 3—5.

4 Ugpt (2')

sl iy L Fig. 3. Obtained approximation of optimal
0 7/2 T control

Ao(t; Uopf)

2.710°

3-107 t  Fig. 4 Maximal thermal stress as a
0 7/2 T function of time

y(x, 7 Uopf)
0.5 ‘

0.4f————————- T TS

0.3 r
0.2 —

0.1

Fig. 5. Optimal final distribution of
e temperature
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Pewna metoda iteracyjna optymalizacji z zastosowaniem
do zadan sterowania optymalnego z ograniczeniami w przes-
trzeni stanu :

Zaproponowano algorytm iteracyjny wyznaczania minimum funkcjonatu wypuklego na zbiorze
domknigtym, wypuklym i ograniczonym w przestrzeni Hilberta przy ograniczeniach liniowych typu
ograniczenn w przestrzeni stanu. Algorytm polega na polaczeniu pewnej metody programowania
wypuklego z metoda ffmkcji kary. Wspolczynnik kary jest modyfikowany w procesie iteracyjnym.

Podano dowdd zbieznosei algorytmu.

Jako przyklad zastosowania tej metody podano zadanie wyznaczenia optymalnego nagrzewu
preta jednorodnego przy ograniczeniu naprezan cieplnych. Przedstawiono uzyskane wyniki nu-
meryczne.

HexoToppiii NTEPANUOHHBIH METOX ONTHMH3AUMM C IPHMEHe-
HHEM K 321a4aM ONTHMAJILHOTO YHPABJICHHUS C OrPAHHYEHHSAMHI
B HPOCTPAHCTBE COCTOSIHHiL

IIpennoxeH WTEPATHBHBIA AITOPHTM ONpEHEICHHS MHHHMYyMa BBIIYKIOTO (yHKIMOHATIA
Ha 3aMKHYTOM, BBIIYKIOM M OrPaHHYCHHOM MHOXECTBE B I'HIBLO0EPTOBOM INPOCTPAHCTBE NPHU
JIAHEHHBIX OTPaHMYCHMSIX THIA OrPAHMYEHWU B MPOCTPAHCTBE COCTOSHHMIL. ANTOPHTM OCHOBAH
Ha COYETaHMU HEKOTOPOTO METOA BBIMYKJIOTO MPOrPaMMUPOBAHUS C METOIOM (yHKImE mTpada.
Koabdunmenr mrpada Momuduumpyercss BO BPEMSI WTEPALMOHHOTO MPOLIECCA.

JlaHO IOKa3aTEeNBCTBO CXONMMOCTH aJTOPUTMA.

B xayecTBe MIUIIOCTpAIiM TPUMCHCHHS OTOrO0 METOJa IPHBOAMTICA 3aJadya ONpeNeIeHUs
ONTHMANIBHOTO HarpeBa OJHOPOIHOTO CTEPKEeHS, IPH OTPAHMYCHUH IO TEIUIOBON HANPSHKEHHOCTH.
ITpencrapneHsl MOJIYyYEHHBIE YMCIIEHHBIE PE3YJIBTATEL







