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An iterative algorithm of finding a minimum of a convex functional on a closed convex and 
bounded set in a Hilbert space subject to linear constraints of state space type is proposed. 

The algorithm is based on a combination of a convex programming method and a penalty 
function method. The penalty coefficient is modified in the process of iterations. 

The proof of the convergence of the algorithm is given. 
The application of the method to a problem of optimal heating subject to constraints of ther

mal stress is proposed and some numerical results are presented. 

1. Introduction 

An optimal control problem subject to constraints of control function and state 
space coordinates ·is considered. 

The problem is formulated in an abstract form as the minimization of a convex 
functional on a closed, convex and bounded set in a Hilbert space subject to addi
tional linear constraints. 

An iterative procedure of solving this problem is proposed. It is based on a 
combination of two methods: a convex programming method and a penalty func
tion method. 

The penalty coefficient is modified in the process of iterations and thus it is not 
necessary to find a minimum of penalty functional with fixed penalty coefficient. 

An algorithm of changes of the penalty coefficient is given, which provides the 
convergence of the iterative procedure to a solution of the initial optimization 
problem. 

Each step of iterations requires solving of a finite - dimensional quadratic 
programming problem subject to linear constraints. To this end one of well known 
algorithms [7] can be applied. 

4 
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The application of the method to the problem of optimal heating subject to 
constraints of thermal stress is proposed and some numerical results are presented. 

2. Problem statement 

Let V be a Hilbert space and U a closed, convex and bounded subset of V. 

On the space V there is defined a non-negative convex functional J (u) and n 
continuous linear operators Gv (u) (v= 1, 2, ... , n) mapping V into L 2 (0, T), where 
T is a given parameter. 

We are going to consider the following problem of potimization (P): find an 
element uopt E U, called an optimal control, such that 

J(uopt) = inf J(u) (1) 
ubject to constraints ueU 

g.(t)-Gv (u)(t)~O, v= 1, 2, ... , n, a.e. in [0, T], (la) 

where g. ( ·) E V (0, T) are given functions. 
If the set 

U'={u:uEU;gv(t)-Gv(u)(t)~O, v= 1,2, ... ,n, a.e. in [O,T]} (2) 

is not empty, then an element Uopt exists. Indeed, since G. (u) are continuous and 
linear, the set U' is closed and convex; moreover it is bounded and hence weakly 
compact [4]. 

On the other hand J (u) is weakly semicontinuous as a convex one [12]. There
fore it assumes its minimum on U' [12]. 

If in addition J (u) is strictly convex the element uopt is unique. 
Instead of solving (P) directly we eliminate the constraints (la) introducing a 

penalty for violating them. 
Namely we introduce a well known penalty functional 

1 1 n 

l,Ju)=J(u)+-;; K(u) a J(u)+-;; 2 [max {0, Gv (u) (t) - gv(t)}]Z dt (3) 
V=l 

depending on a positive parameter ei >0, and we formulate an auxiliary problem 
(P,): find u,

1 
E U such that 

J,. (u,.) =inf J, (u). 
' ' ' 

(4) 
UEU 

Since G v ( u) are linear the penalty term 

n T 

K(u) = }; J [max {0, Gv(u) (t)-gv(t)}]Z dt 
v=l 0 

is convex. Hence the functional J,. (it) is convex and an element u, . exists. 
' ' 
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It is obvious that K (u) is equal to zero iff the constraints (la) are satisfied. More
over it is known [1] that 

(5) 

Therefore the solution of (P) can be approximated by a solution of P.
1 

with 
e1 small enough. 

However we do not know an a priori estimation of e1 with which a required 
accuracy of the approximation is achieved. 

Since the minimization of J.Ju) can be usually achieved only using an iterative 
procedure it seems reasonable to perform this minimization with the simultaneous 
decreasing of e1• In what follows such a method is presented. It assures the con
vergence to a solution of problem (P). 

3. Iterative method of minimization 

To minimize J.Ju) there will be applied a method introduced in [3] and genera-
lized in [11]. · 

In i-th iterative step of this method we find a minimum of a quadratic approxi.:. 
mation of J,, (u) on a subset U1 or U. Where U1 is a convex hull of a finite number 
of elements uf. 

In the sequel we shall assume that J (u) is twice weakly differentiable and the 
following condition is satisfied 

(J" (u) v, v)~N(v, v) VuE U, v E V (6) 

where N<oo. 

The functional K (u) is differentiable and 

n 

(K' (u), v)=2 }; J [G.(u) (t)-g(t)] G.(v) (t) dt (7) 
V=l Mv 

where 

M.={tE [0, T]: G.(u) (t)-g.(t)>O}. (7a) 

Denote 

M;>{t E [0, T]: G.(u{) (t)-g.(t)>O} (8) 

and 

(8a) 

For every u E U1, i.e. for every 

U=}; ct.i u{, IX1~0, }; IXJ = 1. (9) 
j j 

we have 

(9a) 
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Let us denote . 
11 

(K1 v, v)=2}; J G;(v)(t)dt. (9b) 
v= 1 Mv, 

Taking into account (7), (9) it is easy to check that 

K(v) ~ K(u)+(K' (u), v -u) + (K;(v-u) , v -u), Vu, v E U1• (10) 

Let u1 be an element of the set U1• On the set U1 we define an auxiliary functional 
J,, (u) by 

1~, (u)=l,,.(}; CI.J u{) =1,,(u;)+ (1;, (u1), :z=· et/ u{ -u1) + 
' j j 

+~({N+ :
1 

K1){}; .rl1 u{ - u1) , }; Cl.1 u{-u1). (11) 
J J 

As it is seen J,, (u) is a quadratic functional of parameters Cl.. Moreover it fol
lows from (6) and (10) tht 

(12) 

.and 
' (13) 

Hence J,. (u) is a · quadratic approximation of 1,. (u) in the neighbourhood of 
' ' u1, which majorizes this functional on U1• 

In each iterative step we find two elements - an element u1 E U1, which satis
fies the condition 

J,l-1 (u1) = inf J.,_, (u) (14) 
U E Ut . 

- an element u1 + 1 E U such, that 

(-1;,(u;),u)~(-1;,(u1),u1 + 1 ), VuE U (15) 

i .e. u1+ 1 is a point at which the hyperplane H1 ortogonal to - 1;, (u1) supports 
the set U. 

Having definitions (14) and (15) we are in the position to define the sets U1• 

As U0 we choose any arbitrary point u0 E U. Then we find u1 satisfying (15) 
and as U1 we take the segment joining u0 and ut> i.e. 

U1 = conv {uo, u1} ~ conv {ui, ui}. 

In further iterations we construct the sets U1 in the same way putting 

U1=conv {u0 , Ut. .. . , u1} ~ conv {ut, ui, ... , ul+ 1
} . (16) 

Remark. To find the element u1 we must solve a quadratic programming problem 
of minimization of functional (11) with respect to coefficients a.J, subject to linear 
con.straints (9). It follows from the construction of Ut> that the number of coeffi-
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cients r:1./ increases in each iteration. Hence increases also the time of computations 
necessary to find u1• To a;void this diip.cp.lty .a met~od prqposed in [10] can be applied 
which allows to reduce the number of rxj to a given number. , 

As it has been already told the value of the coefficient e1 is not constant but it 
is modified in the process of iterati<;>ns. With the appropriate choice of the values 
of parameter e1 the sequence { u;} can be used to find an approximation of th~ ,solu-. 
tion of problem (P). . · ... . · 

Here we should point out; the di@culty whiCh.· ,Sap ~be.; encounter· ip such an 
approach. · 

· For fixed v..ahJe of e1 inthtHlescrib~d - method'Of<minimi,Zation of J, . (u) we obtain 
a sequence of no~~in~reasing , value~ J,

1 
(uY conv~rge~t to i,

1 
(~.) fro~ above. 

On the other hand in penalty function method the opt~mal valu~ J (uovt) of the 
functional J(u) is approximated from below,.(u.ido·not ·satisfy !he . c~nstraints (la)). · 

Hence if we change e1 we can obtain an increase of. the value of the fuJ+ctional 
J,.(u). Thus the sequence {J~,(u;)} may lose its mon9tollicity, ana:' ~ay.not be 
convergent to the optimal value. . . . . . . 

However as it will be shown this difficulty can be overcome by an appropriate 
choice of e1• 

Before it will have been shown we will prove the following 

Lemma. For any arbitrary sequence {e1} such that 

we have 
lim ( -e1 J;

1 
(u;), ii1+ 1 -u1) ~ lim x 1 =0. 

f-+oo f-+co 

(17) 

(.18) 

Proof. First note that the sequence {e1 J, (u1)} is non-increasing; Indeed taking 
. I 

into account (12), (13), (14), (16) and (17) we obtain 

e1u J,
1
+1 (u1+ ~)~e1 J,.(u1+ 1)~e1 1,

1 
(u1 + 1)~e. 1,, (u1)=e1 J,

1 
(u1). 

On the other hand the sequence {e;I,,(u1)} is bounded from below by zero, 
hence it is convergent. 

Let us assume now that 08) does not hold. Hence in view of (15) we conclude 
that there exists a constant o>O, such that for every integer Q>O there exist a sub-. 
script 11 > Q such that 

Define .· 
I 

u"=u11 +rx(ii11 + 1 -u~), rx E (0, 1). 

It follows from (14) and (16) that 

e,J. (u")';3e11 l, (u"u), Vrx E (0, 1) . . ., 
From (11), (19), (20) and (21) we have 

- ( e11 J;. (u~), U11 + 1 - u,,)';3-!- ((e11 N + K,) U11 + 1 - u, u11 + 1 - U11) + 
+rx( -J;.(u11), ii11 + 1 -u11)-t rx2((e11 N+K,,) (ii11 + 1 -U11), ii11 +1-u11)';3 

';3t((e11 N+K11) (u11 +1-U11), U11 +1-u11)+rxl5-t rx2 Jl, , 

(19) 

(2oY 

(21) 
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where 

Jl=sup {e1 N(u-v, u-v)+(G(u-v), G(u-v))}<oo. 
u,veU 

Substituting 

a=min {1, ~/Jl} 

we obtain 

- ( -e,J;~(u,), u,+l -u,)~t((e, N+K,) (u,+ 1 -u,), u,+ 1 -,u,)+ 

{ ~2} . 
+min t Jl, t-p =!((e,N+K,) (u,+ 1 -u,), u,+ 1 -u,)+K . (22) 

where K=min {t Jl,! :
2

}>0 does not depend on YJ. 

Taking into consideration (12), (17) and (21) we get 

e,+ 1 J"•+' (u11 + 1)~e, J •• (u,+ 1) =8,1 J •• {u,)+(e, J;~ (u,), u,+l -u11)+ 

+-!((e, N+K,) (u,+ 1 -u11), u,+ 1 -u,)~e, J,.(u,)-K 

or 

which contradicts the convergence of { e1 J., ( u1)}. This contradiction proves the 
lemma. 

The sequence {e1} is constructed in the following way 
- choose e0 > 0 
-put 

I 
min {e1_ 1 , k1 xf_ 1 } 

8;= 1 
k2 Bt-1 

(23) 

where x1=( -eJ:,(u1), ii1+ 1 -u1), an<! k 1 >0, k 2 > 1 and O<p<l are fixed con
straints. 

, . The sequence { e1} construc~ed in _such a way satisfies (17), hence it follows from 
Leriuna that from the sequence {x.,} can be substraced a subsequence {x<r>}c{x1} 

monotonically decreasing to zero. 

THEOREM. The following convergence takes place 

. J,<,> (u(i)\0_.,.-;,J(u~pr) 

and in the case where uopt is unique 

(if U0p1)~ not unique '(25) takes 'place for some sup's~quence of {u(l)}). 

(24) 

(25) 
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Proof. Let us consider first the case where x1_ 1 =0, i.e. where ( -1:1-1 (u1_ 1), 
u1-u1_ 1)=0. It means [9] that 1.1-1 (u) assumes at u1_ 1 its global minimum on U, 
i.e. u1_ 1 =u. . As it follows from (5) in this case any choice of e1<e1_ 1 is proper 

"1-l 

and in particular we can choose e1 given by (23). 
For the case where x 1_ 1>0 note that 

lim ( -J:Ci>(u(l)), u(l)+ 1-u<1>)=1im x(I)=O. 
(1)-+oo (1}->-oo e(i) 

(26) 

Indeed as it follows from Lemma and (23) for (i) large enough we have 

x< 1> x<1> 1 
0~-=-k P-~-k xt,=~> 

e(l) 1 x(f-1) 1 

what in view of (18) proves the monotonic convergence to zero of the sequence 

{x(i)} . 
e(l) 

Now taking into account that J"<O (u) is convex we obtain from (4) and (15) 

x(l) ( , - ) ( , ) -e-= -J.<,>(u(l)), u(l)+1-u(i) ~ -J.<,>(u(l)), u.<,>-u(i) ~J.l,)(u(l))+ 
(I) 

-J.(,)(ue(,))~O . (27) 
(5) together with (26) and (27) prove (21). 
To prove (25) let us note that from {uc1>} we can substract a weakly convergent 

subsequence {u1} c {u(i)}: 

u-...... u 
J J-+oo • 

(28) 

Since J •. (u) is convex we get from (15) . 

or 

(29) 

Functional K (u) is weakly lower semicontinuous as a convex one. Hence from 
(18), (28) and (19) we get 

O=lim [x1 +e1 (J(uop1)-J(u1))]~Iim K(u1)~Iim K(u1)~K(u) 
i-+oo 

which proves that fi satisfies (la). 
On the other hand from (24) and (28) as well as from the fact that J (u) is weakly 

lower semicontinuous it follows that 

which proves that fi=uopt· The uniqueness of Uopt assures [2] the convergence of 
the whole sequence {uc1>} to uopt as il1 (25). · · Q. E. D . 
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CoROLLARY. If the functional J (u)" satisfies 

n (v, v)~ (J" (u) v, v ), \:fu E U, \:fv E V (30) 

where n > 0; then 
{31) 

Proof. Taking into .account that J (u) and K (u) are convex from Taylor formula 
and (30) we obtain 

J(uop~)=J,;;) (Uovt)~J;(;) (u(i)) +(J:(;) (il(i)), Uopt .:___ U(i)) + 11 (uopt - l)(i)' Uopt ~ U(i)) • . 

Using (15) we get 

(J (uopt) -Jc(;) (u(i))) + ( - ]:(;) (u(i)), U(i)+ 1-U(i))~ 11 (uopt- U(i)' U0 pt - U(i)). (32) 

Relations (24) and (26) together with (32) prove (31). 

In the classical penalty function method the value of penalty term is usually -
taken as stop condition for iterative procedure, i.e. it is required that 

(33) 
where b1 is a given number. 

In our case the condition (33) can be 'misleading. It follows from the fact that 
the value .of penalty component K (u;) can be small, and at the same time the value 
of l,.(u;) can be far from the minimal value of this functional on the whole set U. 
Hence we should additionally check if we are dose enough to the minimum of 
1,

1
(u) on U. 
To this end we can use the estimation (27) and besides (33) require that 

4. Problem of optimal heating subject to constraints of thermal 
stress 

(34) 

As an application of th~ iterative method described in Chapter 3 a problem of 
optimal heating of a homogenious plate subject to constraints of therma.l stress is 
considered. 

This problem was stated in [5] and [6]. 
We consider a system described by one - dimensional ~eat equation 

oy(x, t) o2 y(x, t) 
for X E (0, 1), t E (0, T) 

along with initial condition 

and boundary conditions 

oy (o, t) 
--;;-;-- = 0; 

y(x, 0)=0 

ay (1, t) 
p[v(t)-y(l, t)], 

ox 

(35) 

(35a) 

(35b) 
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where T is a fixed time of control, fJ>O is the ' coefficient 6f heat exchange between 
the plate and the environment and v (t) is the environment temperature the changes 
of which are governed by the equation 

dv (t) 1 1 
-= - - v(t)+- u(t) 

dt )' . y 
(36} 

u(O)=O 

where measurable control function u (the inflow of heating media:) must satisfy 
the condition 

O:::;;;u(t):::;;;l a.e. in [0, T]. (36a) 

Maximal thermal stress, which takes place in the system (35) at time t can be 
expressed by approximate formula 

1 

a(t)=2 J [y(x, t)-'y(O, t)] dx (37) 
0 

where: 2 =Ep/(1 - L1); E is Young's modulus; p is coefficient of linear thermal 
expansion; L1 is Poisson's ratio. 

The problem of optimization is to find a control uopt (t), satisfying (36), which 
minimizes the functional, 

1 

J(u)=(z - y (T; u), z-y(T; u))= J [z(x)-y(x , T; u)f dx (38) 
0 

subject to the condition 

a(t):::;;;a0 a.e. in [0, T]. (39) 

where Z E £2 (0, 1) is a given final distribution of temperature in the plate, which 
is to be approximate and given number a0 denotes the maximaladmissible thermal' 
stress. 

It is known [8] that the mapping u-+y (t; u) is linear and continuous from 
L 2 (0, t) to L 2 (0, 1), hence denoting 

1 

G(u) (t)=a(t; u)=2 J [y(x, t; u)-y(O, t; u)] dx. 
· 0 

g(t)=a0 

U={uEU(O,T);O:::;;;u(t):::;;;1 a.e. in [O,TJ} 

we find that our problem of optimization can be reduced to the scheme considered 
in Chapter 2. 

Moreover the functional J (u) is quadrat~c and its Hessian 

(J" (u) v, v) =2(y (T; v); y (T; v)) (40) 

trivially satisfies (6}. Therefore we can use the iterative procedure described in 
Chapter 3. 
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Note that in our case the condition (30) is not satisfied, hence we obtain only 
weak convergence of {u(i)} to uopt· However if we use (40) and repeat the argument 
of Corollary we find that {y (T; u<1>)} is strongly convergent toy (T; U0 p 1) in V (0, 1). 

To apply the procedure of minimization we must find elements u1 and u1+ 1 

satisfying (14) and (15). 
Functional J,, (u) is given by 

1 
J,,(u)=J(u)+--;:K(u)=(z-y(T; u), z-y(T; u))+ 

' I T 

+~ J [max {0, a (t, u)-a0 }]2 dt (41) 

0 

and '·· (u) has the form 

J,,(u)=J(u)+ :
1 

[K(u1)+(K'(u1), ~ ~iuf-u1)+ 

+ ~ (K1 (~ ~iuf-u1), ~ ~iui-u1)]=(z- ,4 ~iy(uf),z+ 
J J J 

- ~ ~i y(ui)}++ [ J (a(t; u;)-a0 )
2 dt+2 J (a (t; u1)-a0) x 

j i ~ ~ 

x ( ~ ~1 a (t; uf)-a(t; uJ) dt+ j (~ ~i a(t ; uf)-a(t; u;)y dt], (42) 
J Mt J 

where M1 and M1 are given by (7) and (8). 
The element u1+ 1 is determined from the condition (14) using (42). To this 

and we must find coefficients ~1 of convex combination, which minimize (42). This 
can be done using well known methods of quadratic programming in finite dimensio
nal space. The element ii1+ 1 must satisfy conditions (15) which in our case takes 
on the form 

1 
(z-y(T; u;), y(T; ii1+ 1))+- J ( a(t; u1)-a0 ) a(t ; ut+ 1) dt~ 

e; Mt 

1 
~(z-y(T; u1), y(T; u))+- J (a(t; u1)-a0) a(t; u) dt. (43) 

el Mr 

If we introduce the system of the following equations adjoint to (35) and (36) 
respectively 

_op(x,t;u1)=o2 p(x,t;u1) ~J . 
ot ox2 + e

1 
max{O,a(t,u1)-a0 }, (44) 

Mr 

p(x, T; u1)=y(x, T; u1)-z, 

op (0, t; u1) .A 
~ =-max {0, a(t; u1)-a0 }, 
ux e1 
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op (1 , t; u;) 
ox +pp(1,t;u;)=0, 

dq(t;!lj) 1 
- d- -=- [q(t; u1)+p(1, t; u1)], 

t y 
(45) 

q(T; U;)=O, 

then from (43) we obtain 

u1+ 1 (t)=t[1+sgnq(t; u1)] . (46) 

As it follows from ( 42) and ( 46) in each step of iteration we must integrate two 
partial differential equations : the equation (35) of the system and the ad joint equa
tion (44). 

To obtain the aproximate solution of these equations a finite difference method 
was used. The time and space domains were devided into P and Q subintervals of 
the length l1t=Tfp and l1x= 1/Q respectively. The solution o£ the quadratic pro
gramming problem necessary to find u1 was obtained using simplex method [7]. 

The computations were performed on the computer ODRA 1204. The following 
data were taken in computations: 

P=10; y=0.003 ; T=0.2, 2 =105
, a 0 =2.7xl04

, P=40 ; Q=10; e0 =104, 
k 1 =10, k 2 =2, p=1/2. 

Moreover it was assumed that the functions z (x) and y (x, 0) are constant and 
z (x)::0.4; y (x, 0):=0. 

The total time of computations was 1091 sec. The obtained results are presented 
in figures 1 and 2. 
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The plots of values of functionals J (u), le; (u) and K (u) as well as the values 
of the parameter ei against the number of iterations are shown in figures 1 and 2. 

The forms of obtained approximation of optimal control Uovt• thermal stress 
a (t; uovt) and final distribution of temperature are given jn figures 3-5. 
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0 7/2 7 
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Fig. 3. Obtained appro~imatio.n of optimal 
control 

Fig. 4. Maximal thermal s~ress as a , 
function of time 

Fig . . 5. Optimal final distribution of 
temperature 
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Pewna metoda iteracyjna optymalizacji z zastosowaniem 
do zadan sterowania optymalnego z ograniczeniami w przes
trzeni stanu 

Zaproponowano algorytm iteracyjny wyznaczania minimum funkcjona!u wypuk!ego na zbiorze 
domknif<tym, wypuk!ym i ograniczonym w przestrzeni Hilberta przy ograniczeniach liniowych typu 
ograniczen w przestrzeni stanu. Algorytm polega na pol'lczeniu pewnej metody programowania 
wypuklego z metod'l funkcji kary. Wsp6!czynnik kary jest modyfikowany w procesie iteracyjnym. 

Podano dow6d zbieznosci algorytmu. 
Jako przyklad zastosowania tej metody podano zadanie wyznaczenia optymalnego nagrzewu 

prf<ta jednorodnego przy ograniczeniu naprf<zan cieplnych. Przedstawiono uzyskane wyniki nu
meryczne. 

HeKoTopbril uTepa~HOHHhril MeTO,Ll; onTHMHJa~uu c IlpHMeue
nueM K Ja,Ll;a'laM ODTHMaJibHOrO ynpaBJieHHH C orpaHIItteHHHMU 
B IlpOCTpaHCTBe COCTOHHIIH 

Ilpep;JIOJKeH HTepaTHBHbiH amopHTM Onpe,n;eJieHHH MHHHMyMa BbiiiJKJIOfO <jlyHI\I.(HOHaJia 
Ha 3aMKHyTOM, BbJIIYKJIOM li orpaHll'!eHnOM MHOJKeCTBe B fHJib6epTOBOM ITpOCTpaHCTBe npn 
JHI:HeHHbiX OrpaHn'!eHHHX TJilla OrpaHH'!eHHH B IIpOCTpaHCTBe COCT05!HHH. AJirOpHTM OCHOBaH 
Ha CO'leTaHHH HeKOTOporO MeTO)J;a BbiiiYKJIOfO nporpaMMHpOBaHH5! C MeTO)J;OM $YHKI.\Hn Il!Tpa<jla. 
Ko3<jl<jln:~neHT rrnpa<jla Mo,n;n<jln~pyeTc5! BO BpeM5! HTepa~noHHoro npo~ecca. 

,[(aHO )J;OKa3aTeJibCTBO CXO)J;HMOCTH aJirOpHTMa. 
B Ka'!eCTBe HJIJIIOCTpa~ rrpHMeHeHIDI 3TOfO MeTO)J;a npHBO)J;HTC5! 3ap;aqa onpep;eJieHH5! 

OllTHMaJThHOfO HarpeBa O.n;HOpO,!J;HOfO CTepJKeHll, npH orpaHii'!eHHH ITO TellJIOBOH Harrp5!JKeHHOCTH. 
Ilpe.n;craBJieHbi rrony'leHHI>re 'IHCJieHHDre pe3ym.TaTI>I. 




