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This paper is concerned with the real sensitivity analysis of singular pertirbed optimal control
systems in various structures. The basic formulation of the sensitivity problem is presented. The
properties of thesolution of linear differential equations in Banach space with a small parameter
in the derivative are considered. The results are applied to the A-sensitivity analysis. the method
consists in an approximation of the sensitivity measure by its first- and second-order derivatives.
An example ilustrates the application of the method.

1. Intreduction

Realistic description of a physical, economical etc. process to be controlled usu-
ally results in a complicated mathematical model. Applications of control and
optimization technique to this model often lead to enormous analytical and compu-
tational difficulties. Therefore simpler but more relevant practical models may be
considered. To accomplish this it is necessary to analyse the effectiveness of the
optimal control, defined on the basis of the model and applied to the real process.

In this paper we extend the concept of sensitivity to changes of the system order,
i.e. so-called Z-sensitivity or structural sensitivity of optimal control systems. The
finite dimensional structural sensitivity problem has been studied by many authors —
see [4], [6]. The mathematical basis of this problem has been given by Tichonov
[7], Tuptchiev [8] and Vasil’eva [9], [10]. The continuonity of the sensitivity meas-
ure for the processes described by differential equations in Hilbert space has been
proven [2]. We consider now a more general class of models and apply the varia-
tional method to the real sensitivity problem.

Consider a process described by the following state equations:
Xy=Ay1 X1 +A12 X2+Bu, x1(0)=x10, (la

A=A X1+ Az X2+ B u, X5 (0)=x30, (1b)
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where the state x; (f) € B. is an absolute continuous function of time #; u (¢) € B,
is a measurable and essentially bounded function of t;Bxi, B, are Banach spaces
where B!, B, are reflexive; Ae0, 4,] is a small') positive parameter. We assume
the operators A4;; are linear and bounded.

The A-sensitivity analysis consists in determining the quantitive effects due to
reducing the order of the sysitem, i.e., defining the following low-order model:

/{"1:/111 Xi+A, %+B i, X (0)=xy0, (2a)
0=A21 j’1+A22 3?2‘5‘32 i, (2b)

by setting 1=0. We assume the model is well-defined, i.e., there exists 45,'. We
say that the model is degenerated if the initial condition x,, does not satisfy the
equation (2b) for 7=0.

The performance index is assumed to have the form

11

J Grs, 0)=0.5 Cxy (1), Fxy (1)) +0.5 [ (1, Q1)+, Ruy) dt ®
o

where R is a linear bounded positive definite and selfadjoint operator: F, O are
linear and bounded positive semidefinite and selfadjoint operators: ¢, is a fixed
final time.

The maximum principle — see [3] — implies that along the optimal trajectory
@(t)=R~*B* Y, (1) “

where B=B,—A,, A5, B, and {, € B!" represents the constate variable, which
satisfies the canonical equations:

% =%, + oy, (52)
U= = T+ 0%, (5b)
with the boundary conditions
*1(0)=x10, ¥u(t)=—F%,(t,),
where N=A,;—A,, A5, A5, 9=BR™* B*. Setting
VL ()=K(® %) ®)
we obtain the Riccati operator equation
—K=K* A+UA* K+K* pK—0Q, @)

Kt )=~F.
Thus, the optimal control can be defined in a form of the closed-loop controlier
Q(t)=R-1B* K(1) % (). ®)

1y Actually, the “smaliness” of the parameter A can be determined on the basis of the sensi-
tivity analysis which is considered in this paper.
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The optimal control (4) for the model (2a, b) can be applied to the real process
(la, b) in various structuressee [12]. Since the model deviates from reality, the real
state (and control) will be not optimal for the process nor for the model. Therefore,
it is necessary to estimate the performance losses in (3) when the model order
changes?). These losses will determine, in some sense, the effectiveness of the
model and of the control structure.

2. Real sensitivity analysis

We present now some basic notions of the sensitivity problem, which was broadly
investigated in [12]. Generally, the optimal control problem under equality con-
straints can be defined as follows

min J (x, w)=min J (X (u, a), u)=J(a), )

X, u u
where x=X (u, a) represents the state equation, the state x € B,; u € B, is the control;
a€ B, is a parameter. We assume the real process is represented by another state
equation, which differs from the original one in the value of the parameter (e.g.
x=X (u, «)). Suppose the optimal control law is represented by the operator equa-
tion u'=R!(x, a, «) where i denotes the i — the structure of the control system.
The real state x! and the real value of the performance functional are determined as

x'=X(R'(x', a, ), o), (10a)
Ti(a, )T (e, u). (10b)

We call the operators X' (a, o) =x", which is a solution of (10a), and U’ (a, «)=u'
(if they exist) the structural state and control characteristics.

Assume there exists the optimal solution £=X(x, o)L X (a), u=U(e, 2) &L
%70 (). The operators X (2), U () are called the basis state and control character-
istics. The functional

S(a, ) LT (g, 0) —F () (1)

evaluates the performance losses due to an imperfect knowledge of the process
parameter «, and is called the sensitivity measure — see [12].

Suppose the state operator X and the performance J are twice differentiable
with respect to their arguments. The following lemma results from [12].

LemMA 2.1. Suppose the basic and structural characteristics are twice strongly
and continuously differentiable with respect to @, o in an open set containing a=o.
Then the sensitivity measure is twice differentiable with respect to a, « and its de-
rivatives satisfy the relations:
® S, (a, @)=5;,(a, 9)=0, (12a)
(iD) St (@, @)= =S, (@, )=, (a, @) . (12b)

2) Note that if A4,,=0, the sensitivity problem is trivial.
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Thus, the sensitivity measure can be approximated by the Taylor expansion
S¥(a, 2)=0.5 (S}, (a, @), 6a, 6ay+o(loal?), (13)

where da=o0—a and
Sta (@ ) =X." Lox X +2X;" Loy Up+ Uy Lo, U, (14)

where X}, U} are the Frechet derivatives of the structural characteristics with respect
to a at (a, @) and L (3, x, u, a) is the Lagrange functional of the optimization problem;
n represents the adjoint variable.

Now suppose a, o € [aq, a;]=R'. Let the basic sensitivity characteristics have
continuous second-order derivatives at (a0, @;] and one-side first- and second-
order derivatives at a=a,. Suppose the basic characteristics and their derivatives
are continuous when a—ay, i.e., for instance

lim X, (a)=2X_, (a,) etc. (15)
a—>a3’
where X, (a,) denotes the one-side derivatives.

Suppose the structural characteristics have continuous second-order deriva-
tives with respect to @, « € (o, @,] and one-side first- and second-order derivat-
ives with respect to a, o at a=w=a,. Suppose the derivatives are continuous when
a=a—ag, ie.

lim X} (a, @)=X_. (ao, ao) ctc. (16)

a-ag

Then the following lemma holds:

LemMmA 2.2. The sensitivity measure has first- and second-order one-side deriva-
tives with respect to @, « at (ao, @,) and these derivatives satisfy the relations (12a, b).

The proof follows from the properties of the composite function (e.g. Si(a, o)=
=J (X' (a, @), U'(a, @))—J (X («), U («)). Because of the continuity

Sk+ (a9, do)= lim Si(a, a)=0.

: a—af
Analogously S.. (o, 46)=0 and
Saia+ ((10, ao) — S;m+ (a(), ao) = lill’l (S‘:a ((l, a) - S:m (a, a)) S 0 .

asay

This lemma implies that the sensitivity measure S (ao, »), o€ [a,, ;] can be
approximated locally as in (13), (14) where X}, U! will denote the one-side deriva-
tives at point (ao, @o)-

This result can be also stated in a form of a relativity principle of the local
sensitivity analysis. Namely, it is not important which of the parameters has chang-
ed, e.g., to approximate S (ao, ») we can compute the one-side derivatives of
St (o, ag) with respect to a at point (aq, ap) — see [12].

The derivatives X, U, are called the basic sensitivity functions (operators);
X}, Ul are called the structural sensitivity functions.
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3. Basic theorems — the homogeneous equations

Consider first the singular perturbed homogeneous equation (la, b), setting
u=0. Assume the operators A4;; are linear, but not necessarily bounded?®). Let the
Chauchy problem (la, b) be well-defined for A€ [0, 1,], that is, let 4;; be infini-
tezimal generators and let there exists the operator %, defined by (5a, b) which is
also an infinitezimal generator. Let 7 (¢) denote the stringly continuous semi-
group generated by A4, [T, (¢, 1), 1€ (0, ;] denote the semigroup (strongly con-

1 _
tinuous) generated by 7/122; T (t) denote the semigroup generated by .

THEOREM 3.1. If there exist e€ (0, A,], a;, a,<0, N,, N, such that for every te
€ [0, ¢;] and for every Ae (0, &)%)

axt

ITL(OI<Nye™", [To(t, HIISNye * 17y
then for every
tel0, ¢], lim x, (¢, H)=%,(t), : (18a)
0+
te(0, 1,1, lim x, (t, )=x,(¢), (18b)
A0+

where x; (¢, 1) are the solutions of the perturbed system, and ¥; (¢) are determined
by (2a, b), with u=0.

This theorem is a generalization of the analogous result presented in [2], and
can be similarly proven. In order to show the uniform boundnes of x; (¢, 1), the
Gronwall inequality and the Tichonov’s theorem [7] can be used. The continuity
follows from an application of the Green formula.

The above theorem implies that if the subprocess (1b) is stable, the limit trajec-
tory of X, (¢) does not depend on the degeneracy of the model. This result is often
interpreted as an effect of “boundary layer” — see [6], [10].

We assume that the assumptions of the Theorem 3.1 are fulfilled in further anal-
ysis. In Appendix 1 the following theorem is proven.

THeOREM 3.2. The solution x; (¢, ) of the perturbed system (la, b) has a one-side
derivative with respect to A at A=0%, which is defined by the equation

51:\3[51"1412 A57 Ay, ‘rx (19a)
with the initial condition
& (0)=4,, 43, (-‘~'20+Az_21 A1 X10)- (19b)
A direct consequence of this theorem is the following corollary.
%) Obviously, an additional assumption xo; € Z (4,;) is needed.

+) This condition can be stated in an another form: the spectrum of operator 4,, is situated
in the left half of the complex plane. Note that this condition is sufficient for the existence of Az
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CoroLLARY 3.1. The derivative & (7, 4) of x, (¢, 1) with respect to A for A>0 tends
continuously to the one-side derivative &, (¢), determined by (19a, b), when 1—0*.

Norte 3.1. Assume that the operators 4;; depend on ¢, i.e., the process is not station-
ary. Then, the analogous theorems can be proven (see Appendix 1), with the
following assumptions.

(i) A;; (1) have domains independent of ¢ and are strongly continuously twice
differentiable with respect to ¢ in their domains.

(ii) The strongly continuous semigroups Ty (¢, 1), T, {7, 7, 4) satisfy the ine-
qualities
Szl

ITy (¢ DISNy €2, T, (1,7, DISNz e * (20)

where a,<0. The initial condition for the derivative &, (¢) is

£ (0)=4,,(0) 45,/ (0) (x20+ 45, (0) 45, (0) xlO) . 29)

Notk 3.2. Is the operators 4;; depend on 1 and are strongly continuous with respect
to A when A—0%, whereby 45, (1) 4,; (1) strongly converges to 45, (0) 4,4 (0);
and if for 4 € (0, ¢] the inequalities (17) are fulfiled, then Theorem 3.1 holds — see [2].

Moreover, if the operators A;; (1) are strongly continuously differentiable with
respect to A € [0, ¢], whereby A5, (1) 4,4 () is strongly continuously differentiable,
then the one-side derivative &; (1) exists and satisfies the equation (see Appendix 1)

P <dA1, d .
& =UE + —ZZT‘(O)_AH (O)E(Azz A31) (0)—

A1z

— (0)(A;21A31><0>>x1—A12<0)A;;(0>A2;<0)>%1 @

with the initial condition (21).

NotE 3.3. In the operators 4;; depend on ¢ and 2, and 4;; (¢, /) strongly converges
to A;; (2, 0) whereby A5, (¢, A) 45, (r, 2) strongly and uniformly converges to
Azt (1,0) Ay, (2, 0), and the semigroup 7, (¢, 7, 1), T, (4, 7, /) satisfies (20), then
‘Theorem 3.1 holds.

If the operators A4;; (t, A) are strongly continuously and uniformly differentiable
with respect to 1 and twice differentiable (strongly continuously, uniformly) with
respect to ¢ whereby A5 (t, 1) 4.5 (t, ) is differentiable (strongly continuously,
uniformly) with respect to A and twice differentiable with respect to ¢, then the
derivative &, (¢) exists and satisfies equation (22) where 4;; (4) are substituted by
Aij (Igﬂ /1)

TueoreM 3.3. The solution x4 (7, 4) is twice differentiable with respect to A for
A€ (0, ], and its second-order derivative converges continuously to the one-side
derivative at A=07", defined as follows
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ﬁ:%{Ef—Alz A2—22 Azx 5.1
& O=¢,(0

when A—-07.
The proof is similar to that of Theorem 3.2.

4, Basic theorems — the optimization problem

Counsider now the optimization problem, formulated in the introduction. Setting

o
WZ— /‘L
the canonical equations for problem (la, b), (3) in a form:

Xy=Ay X +A4, x,+B,; R_I(Bf Wi +B§ Vi),
Ay =Ayy X1+ Azs X+ By R™Y(BY v, +BZ W),
fry= _A; Vi —AZ Wo+0xq,
Way=—A1, Wi—A5 ¥,
with boundary conditions
X1 (0)=x10, X2 (0) =10, ¥ (t))=—Fx(t)), . (t,)=0

and the optimal control
a(t, )=R~* (B w,(t, ) +B, w,(t, 1)).

THEGREM 4.1. If the assumptions of Theorem 3.1 hold, then for every

tel0, 1] limx, (7, )=%, (1),
A0+
€0, 1] lim 4 (t, 2)=i(t).
A0

The proof follows immediately from [2].

W/, (Where /, denotes the constante variable corresponding to x,) we obtain

(242)
(24b)
(252)
(25b)

26)

@n

(28a)

(28b)

Tueorem 2.4. The optimal solution £, (¢, 4), ¥, (#, A), @ (s, /) has one-side deriva-
tives &, (2), fj; (1), & (¢) with respect to A at A=0%, which are determined by the

equations:
£ =UE,+BG— A1, A57 Az %4,
ijy=—A*ij, + Q& — 43, Ajgz A5 Uy,
where
E1(0)=4,, 45; (X20+A3—21 Ay X0+ A3, B, &(0» :

s (t)=—FE (t,)+ A5, A55245, FZ, (1)

(292)
(29b)

(302)
(30b)
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and i
G()=R 1 B*ij,+ R~ 1B, 472 A>1 Y. (31)

The proof is given in the Appendix 1.

COROLLARY 4.1. The derivatives &, (¢, 4), o (t, 4) of the optimal £, (¢, A), @ (1, A),
determined for A>0, tend continuously to the one-side derivatives &, (), & (¢)
when A—0%.

Nortke 4.1. If the operators A4;;, B; depend on ¢, and if some additional assumptions
are fulfilled — see Note 3.3., then the derivatives &;, & can be defined in an analo-
gous way.

NoTE 4.2 If can be easily proven that the optimal solution has second-order one-
side derivatives with respect to A at A=0" — see Theorem 3.3.

In terms of the sensitivity analysis according to the foregoing theorem, there
exist basic sensitivity functions &,, G which can be obtained by solving the two-
point boundary value problem (29a, b). The most suitable way to compute these
functions is to introduce the substitution

iy ()=K(r) &, ()+L(), (32)
where K will satisfy the Riccati equation (7) and L is determined by the equation
L=—(Kop+U*) L—K,+6,, (33)

L(t;)=+43, A53% A7, Fx, (1)),

o>

1-

where 8, =BR-1 B} A%72 A, i — Ay, A52 Ay %y, Sy=— A%, A332 4%,
Tnus, the basic control sensitivity function is defined as

G=R'B*KE, +R ' B*L (34)

and this relation expresses exactly the linearised closed-loop optimal control law-
see [12].

5. Sensitivity analysis of several optimal control structure

The theorems presented in Sections 3 and 4 provide a basis for the A-sensitivity
analysis. We consider now several well-known optimal control structures — see
[12]. In order to determine the second-order sensitivity approximation we apply
the relativity principle, i.e. assume that the model is singularly perturbed and the
real process is described by the low-order state equation (2a, b). If is easy to show
that the conditions of Lemmas 2.1, 2.2 hold for the considered structures. Thus,
the sensitivity analysis consists in determining the structural sensitivity function
(which will be denoted by X}, U?) and approximating the sensitivity measure accord-
ing to (14).

(i=0) — open loop structure
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The control is applied to the system in the same way as it is determined, hence
U°=45. The structural state sensitivity function X? does not depend on Z in the mod-
el explicitely, and can be computed from the equation

X9=UX+B7, X0(0)=0 (35)
(i=1) — closed-loop structure

It is assumed that the optimal control law is synthesized on the basis of a per-
turbed model, and its linear approximation is given by (34). Hence

Xiz?IXiJr%U‘, X1 (0)=0, (36)
where
U'=R™ B* (KX +1),

where K and L are given from (7), (33).

Note that the closed-loop controller is independent of the process initial condi-
tions. Hence we formulate one important property of the closed-loop structure —
the second-crder sensitivity approximation does not depend on the degeneracy of
the model. This is not true for the open-loop structure.

If the process is absolutely controlable along the trajectory X (f) — see [11],
and if we can measure the current state x, (¢) of the process exactly, then the optimal

trajectory of the model >€1 can be strictly realized in the process. Then we may say
that the optimal trajectory tracking structure is applicable-see [11], [12]. In Appendix
2 the conditions of absolute controlability of a singular perturbed process (1a, b)
are discussed.

The Z-sensitivity analysis of the optimal trajectory tracking structure is very
complicated and will not be presented here (some remarks are given in Appendix 2).

Under some additional assumptions — see [12], the open- and closed-loop opti-
mizing feedback structures can be applied. If can be easily proven that, in this case,
these structures have the same sensitivity as the classical open-(closed-)-loop struc-
tures respectively.

Because the process is linear, the second-order term of the sensitivity approxi-
mation has the form

1
SL=X{" (1) FX{(t)+ [ (X{* 0X{+ U™ RUY dr (37)
(0]

and can be easily computed.

6. An example

Consider the following simple example which can be interpreted as a model
of destributed heat exchange. The state equation has the form

1

>'61:—x1+2fx2(t, Ddz+u, x,0)=1, (372)
0
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ox5(t,2) 3
}u-—',\ e —XZ(“a Z)+le (Z)9 xz(oa 2)24227 (37b)
ot 2
and the assumed performance functional
- 1
J(x, 0)=0.5 (xf H+ f (bxf(t) +7 u? (z)) dt) : (38)
0
where x; ()€ R', x, (t, -) € L?}o 1;. Setting A=0 we obtain the low-order model
i‘l=u, xl(()):l. (39)
Hence the optimal solution
Fimen,  d——ben,

and K (t)=—1. The basic sensitivity functions satisfy the equation
 =bif; +be™", &, (0)=0,
7, =b& —be", fi()=-& (1) +e>.

Hence L=¢?(—2),

In order to determine the structural sensitivity functions we solve the equations

o UV,

— for the open-loop structure
X%=—bi,, XJ0)=0;
— for the closed-loop structure
X =1P, X:0)=0,

where: Ul=—b (X! —e?~2),

Lo}

/

=

s /
((\Q 0,7 e Ny \ 4

< Y

>

0.01 e L

\7 b

0.1 02 05 1 2 5 10

Fig. 1

In Fig. 1 the relative performance losses approximations for 2=0.1 are shown.
If 5>1 then the performance losses for the closed loop structure are close to zero.
Moreover, the feedbach optimal controller can be very easily constructed.
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7. Conclusions

The paper describes an application of the general theory of sensitivity to the
singular perturbed optimal control system, described by differential equations in
Banach space. The preliminary notions of the sensitivity analysis and the A-sensi-
tivity problem have been presented. Basic results similar to the theorems proved
before have been obtained. Namely, if the, reduced state equation, is stable, then
the J-sensitivity problem is well-defined and a computational method can be applied.

The reduced model is usually much more relevant and practical for numerical
optimization and the synthesis of various optimal control structures. The perform-
ance losses due to employing the low-order model can be rather easily estimated.
The computational effort of the method is comparable to the solving of the reduced
optimization problem. Moreover, the sensitivity analysis allows the comparison
of different optimal control structures.

By giving a simple ilustrative example the advantage of the pfoposed method
is shown.

It is expected that in future research more general results for nonlinear systems
will be obtained.

APPENDIX 1. THE PROOFS OF THEOREMS 3.3 AND 4.2
Equation (1b) can be expressed in an integral form:
1 t
x,(t, A)=T5 (2, A) x50 +7 f To(t—1, ) Ayy x, (z, A) dr. (L.1y
4 0

Applying the Green formula we obtain

Xy (8, =T, (1, 1) (X20+ 455 Azy X10)— A7, Azy X1 (8, 1)+

+ftT2 (t—7, ) A5, Azs (A11 %1 (3, )+ 445 %, (7, 2)) dr. (1.2)
0
Let us denote Ax; (f)=(x; (, )—%; (¢))/A. (Since (1.2) we have
Ax, (¢, /1)=—/;—T2 (#, A) (x20+ A3, Azy X10)— A5y Ayy Ax( (2, 1)+
+%ftT2(Z——z, A Az Ay %z, Ay dx. (1.3)
0
We now transform the integral part of the above equation

1 It
— [ Tat=7,2) 43} 430 3%, (5, 2) de=
1 =T,(t, 1) A2—21 Az (A1 X0+ 41 xzo)_Az_zz Az X, (2, D+

t
— f To(t—7, A) A5 Azy (Agy %4 (2, D)+ Ays X5 (3, /l)) de. (1.4)
0
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Hence, by the uniform boundness of X; (7, 1) — see theorem 3.2, we obtain

1

lim
A A

t
[ Ta(t=7,2) A3} Azs 31 (5, =457 A1 %1 (1)
0

and
A3y (8, )=WAx, (1, )=A1s A32 Asy 1 (D +

1
+7A12 T,(t, 2) (x20+A2_11 Asq x10)+0(;”)a (1.5)

Ax,(0)=0

Let us consider the following integral

i 2
R s [ T(t=7) 412 Ta (z, 2) do=— A1z A7; To (1, D+
0

%
+T () Az Az = [ T(t—0) Uy, 457 To(z, )
0

Hence
lim I(¢, )=T(t) Ay, A5} (1.6)

A0t

and

Ax (2, ;~)=T(t) Aqs A;21 (Xzo‘i'Az_z1 Ay Xi0)+

—fT(t—z)Alz A2 Ay % (D dr+0(). (L7

1 _
i i e lim Ax, (1, =&, (1) (1.8)
1—>0+
where &, (¢r) is determined in (19a, b). The proof is complete.

If the operators 4;; depend on #— see Note 3.1, the relation (1.2) will have
the following form:

X, (8, =T, (1,0, 2) (x20+ A5, (0) A21 (0) x20)—A55 () Ap1 (1) x, (1, )+
d(A;; (r) 421 (T))
dr

# [ T2 ) (45 @) A @ 55 D + 5 )d (19

and the relation (1.4) can also be easily modified.

In the proof of the result, given in the Note 3.2, the relation (1.3) will be ex-
pressed as

Aty 1y =T (6 1) (tao+ A5 () Ay (B) %10) +
= (A5 O) Azy ()= A7 0) Az O) FO+A5 () s () % (. )+

+fT(t——r, N A2 Ary () %1 (c, D de. (1.10)
0
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The proof of theorem 4.2 is similar. From equation (25b) we have
(I . Bl
valt, = - exp( ) Aruva(e D dr. (1.11)
Denoting A, (¢, ), 4w, (¢, ) as before
1 & tl'—‘t %o &
Ay, (2, A):TCXP — Ay, 1 Azt A i (8 A)—
* * 1 : t T &
— A5 AL dya )y [ e (Al )it AL D (LD
Iy
or, in an another form,
1 % tl - t ®_1 %
Ay, (t, )= TTGXP AzzT Ay5 " AL, Fxy (6 D)+
— A5t AL, Ay (6, )+ A3 AL Y () +0(). (1.13)
Since (24b) we have
A%y (t, )= —A7} Asy Ax, (t, ) — A2 Ay 7 (D+
— Az, By Ry (Bt Ay (1, /1)+B: Ay, (1, )+
1 t
+7exp (Azz—/l—) (X20+ 455 Azy x10+A45,) B, #(0))+0(h)  (1.14)
where # (0)=1 (=0, 1) obviously depends on x;,, X,,. Hence
A%y =UAx, (t,7) — Az A72 Ay 5y — Ay, A52 B, R (Bt Ay, + Bl dy,) +
% y 1 i
+B, R~ (B} 4y, +B:A‘//2) ¢ 7 Ay, exp (Azz 7) (xzo’i'Ag—gl Azy X100+
+43, B, #(0))+0(4), (1.15)
My (8, 2)=—W* Ay, (t, )+0A4x,(t, })— A5, 4552 7,0+
1 * % ti—1 Foal 4% 2
+7A21exp +A,, —— A5 A, F (t)+0()  (1.16)

A

with the boundary conditions
Ax,(0, )=0, Ay, (t1, )= —FAx,(t;, A).

We can easily prove that

1
hm-—fexp( —* (t—r))A ; €Xp (A2'7 )df_

2=0% A

=exp (—W*(t—1,)) 45, A57".
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Because of (1.6) and because of the continuouity of the solution of this two-
point boundary value.problem, we obtain

lim A%, (¢, A)=E; (1), lim Ay, (¢, =77, ()

A0+ i—=+0+

which completes the proof of theorem 4.2.

APPENDIX 2. CONTROLABILITY IN THE OPTIMAL TRAJEC-
TORY TRACKING STRUCTURE

By definition, the singular perturbed process (la, b) is absolute controlable

along the trajectory %; of there exists a control u? such that for every Ae [0, 4]
the corresponding real state fulfilles the state equation for the model. Therefore,
we choose the control »? which satisfies the equations

3€1=A11 9%1 + A4, X, +B; 12, 3%1 0)=x10, (2.1a)

AXy=Aj; 3%1 +Azs %o+ By 4%, x5 (0)=x10, (2.1b)
for Ae€0, A,].
Let there exists By *. After some transformations we obtain the following integral
equation for the control u?:

t
o (t)= M’f(t)_}“Bl_l Ain CXP(Azz 7) X320+

t—1

;o t'”"[ i T
_B{ Ay, [exp (AZZT)MT) di—B, Ay, | exp(Au : )uZ(r)dr, 22)
0

4
Q

where
f@)=—B; (pK— A4, A3, A,,) %1 (1) (2.3)

It can be shown that the solution #* (#, ) of this equation exists, and if 4,, is
negative definite u? (¢, 1) tends continuously to the optimal control u (¢), when
A—07%. In order to prove it, the Gronwall inequality and the Green formula can be
applied.

The differentiability of u? (¢, 1) (the structural control sensitivity function) with
respect to A is analysed similar to the proof of theorem 3.2. Additional assumptions
for the initial conditions x4, X, Will be necessary. Nevertheless, the sensitivity
analysis can be performed without conceptual difficulties.
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Analiza wrazliwoSci nieskonczenie wymiarowych Iiniowych
ukladow sterowania optymalnego przy zmianach rzedu ukladu

Przedmiotem artykulu jest rzeczywista analiza wrazliwosci w réznych strukturach pewnych °
zaklocanych ukladow sterowania optymalnego. Podano podstawowe sformutowanie problemu
wrazliwosci. OmoOwiono wlasnosci rozwiazan liniowych rdéwnan rozniczkowych w przestrzeni
Banacha z pochodna przy malym parametrze. Otrzymane wyniki wykorzystano w analizie A-
wrazliwosci. Omawiana metoda polega na aproksymacji miary wrazliwosci jej pierwsza i druga
pochodna. Przyklad jest ilustracja zastosowania tej metody.

AHan3 YYBCTBHTEJILHOCTH OECKOHEYHOMEPHBIX JIMHEHHBIX
CHCTEM ONTHMAJIGLHOIO YNPaBJIeHHS NPH HZMEHEHHTX Belii-
YHHBI HOPAIKA CHCTEMBI

B craTthe paccMaTpuBaeTCs BOMPOC PeabHOIO aHaIM3a YyBCTBUTEIBHOCTH IIPH Pa3HBIX CTPYK-~
TypaX HEKOTOPBIX CUCTEM ONTHMAJIBHOTO YNPaBIICHMS, IIPU BO3LEHCTBHH ITOMeX. [aHa OCHOBHas
dopmynupoeka TpoGIEeMBI YYBCTBHTEIBHOCTH. PacCMOTpPEHbI CBOWCTBA DPEIMCHUN IJTMHEWHBIX
nudbdepeHManbHbIX ypaBHCHNE B GaHAXOBOM HPOCTPAHCTBE C MPOU3BOIHON TPU MajoM Iapa-
metpe. [TonydeHnble pe3ynbTaThl NCHOIB3YIOTCS TIPU aHaIM3€ — YyBCTBHTEIBHOCTH. PaccMmoTpes-
HBI METOJ COCTOHMT B amIPOKCHMAIMH Mephbl 4yBCTBUTEILHOCTH ITOCDEICTBOM €€ IEPBOU U BTO-
po#i mpousBoIHON. JlaH npumep, MIIIFOCTPUPYIOLIMM IIPEMEHEHHE 3TOr0 METOXA.
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Application of numerical methods for multipole
description of the electrical field of heart
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The paper deals with the studies on multipole components of the cardioelectric field using the multi-
electrode network leads constructed following the principle of platonian polyhedra. Numerical
methods were applied to develop the potential of electric field into a multipole series. Recent stu-
dies reveal that the cardioelectric field has complex structure and attempts to describe it using the
dipole approximation in an oversimplification.

1. Introduction

For simplicity sake, electrocardiography assumes the electric field of the heart
to have dipole nature [2].

Multipole [3] and multidipole [1] assays reveal complex structure of the electric
field of the heart [13, 14]. '

Our studies on multipole components of the electric field of the heart using the
multi-electrode network leads constructed following the principle of platonian
polyhedra [10] reveal that the cardioelectric field has a complex structure and at-
tempts to describe it using dipole approximation is an oversimplification [5, 8].

In our approach to multipole description of the electric field of the heart we
are making use of the definitions accepted in the physical theory of the multipole
fields [9, 15].

This theory enables description of any system of electrical charges of the heart [9].

Studies on multipole components of the electric field of the heart were carried
out qualitatively and quantitatively. The simple selection rules resulting from the
theory of representations of groups [4, 11] were used for qualitative studies [6, 7].
Numerical methods were applied for quantitative studies.
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2. Multipole description of the electric field

Let ¢ (x") denote charge density located inside of a sphere S with radius
R'; x=(x,, x,, x3) — coordinates of a point located inside of S; r, 9, p — spherical
coordinates of a point x=(x1, X,, X3); Y (3, @) — spherical functions, /=0, 1, 2, ...
wym=—I, —(-1), =(-2), ..., =2, =1,0, 1,2, ., I-L, ; 1= Y1 (%, ") 5 (')
r't d® x"—m-th component of 2'-pole moment

Yl, -m (‘97 (ﬂ):(_ l)m 7lm (‘93 (D) . (1)
Then the potential @ (x) at a point x=(x, X,, x3), (|x|>R’) may be written in
the form [9] . 1 Yo (9 0) )
= Im s @ =
qj (x): 2 2 2[_'_ 1 Gim rl+1 = @lm (x)' (2)
1=0 m==] 1=0 m=-1

According to the usual terminology, the terms
4 Ylm ('95 ¢)
2041 Im

B, ()= 1=0,1,3, .., )

represent the 2L-pole contribution.
In particular, for /=0, 1, 2 we obtain the following contributions:
(i) /=0, 2°=1 — pole (monopole) moment

1 - 1
Do (X)=47 qoo B Yoo (3, 0)=2 ]/n oo R @

(ii) /=1,2'=2 — pole (dipole) moment

47 1
gDlm(x)=T qlm r—z Ylm (‘9’ ¢7) " (5)

(iii) /=2, 2?=4 — pole (quadrupole) moment

4r 1
Dy ()= ? Q2mr—3 Yu (9, 0). ' (6)

It is easy to check that if we restrict ourselves to the simplest systems of electric
charges treated traditionally as monopole, dipole, quadrupole etc., then the respec-
tive potential coincide with the above defined multipole potentials of the degres
1=0,1, 2, ..., etc., respectively [9].

3. Approximation of electric field potential function
Program POTENTIAL (see Appendix)

Application

The program POTENTIAL is designed to approximate the F=F(p, 9, ¢)
function (p, 9, ¢ being the spherical coordinates of a point) with given values F,=
=F(P,) upon a finite discrete set of points:

Pk=(r’ 'gk’ ¢k)a k:1, 2’ ey 1y (7)
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lying upon a sphere having the radix r and the centre in the coordinate system zero
point, by means of a function

¢ 1 ,
Gst(p’ '97 (ﬂ)= Z p—lhl Wy 2 qlm Ylm(‘ga (0), P>", (8)
where t=s =y
4z
LY
2041 (I—m)l\'/? )
Yin (8 0) =\~ ! Py (cos §) e~ ™,

i (x) is associated legendre function of the first Kind, while the coeflicients gy,
I=s,5+1, ..., t; m=0,1, ..., I; q1, -u=(—1)"" qi,; are determined from a condition
the expression

n

R({gm)= D [~ G (PP ©
k=1
to achieve the least value.

The program has been written in the language ALGOL 1204 for ODRA 1204
computer.

Method used

Let U, and V,,, denote real and omaginary pért of g (g:0="U,, is real).
As (1) then the formula (8) may transformed in the following manner

t
Gue(p 9, @)= D) wip™'=1 Hy(S, ),

l=5s

where

14 s
H, (3, 9)=U,, Q1o (cos ) +2 Z (Ulm cos mo— Vi, sin mg) O, (cos 9),

: A+1 (—m)!\M?
le (X):( 47 mm_y) p;n(x)

The necessary condition of obtaining minimum value by the function (9) leads
to the set N2 (z41)2—s? of linear equations with N unknowns:

U, I=5,5+1, ..., t; m=0,1, ..., [;
Vi =8, s+1, ..., t; m=1,2, ..., [.
This set is solved by elimination method with partial pivoting as described

in many manuals of numerical methods.

Data

n — number of points (7)
r—radius of a sphere
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8y, ¢, — spherical coordinates of the points (7)
s, t — numbers appearing in the formula (8)
D — number of the first cell of the drum area allocated for the use during the
program run
S — string, comment dealing with further following data
T — number of detailed data (see note below)
F, — values of function F in the points (7).
Data should be perforated on the tape in the following order:
: nor ]
‘919 P, '929 P2 e '9m Pn
O
D
S

TF,F,..F, (10

999
Note. In the practice it frequently occurs that the problem of approximation is
solved for an established network of nodes (7) and for many systems {F,}. The data
tape should then contain data (10) and data (11) pertaining to the first system {F},
second, etc. The number 999, as an accesory datum is a conventional end of data
sentinel. '

(10)

Resuits

q1m — coefficients appearing in (8). The results are tabulated in z—s+1 lines.
Moreover, a table with a heading

k pot mes pot calc,
is printed which combines the values Fy, and G, (P,). We gixe also the mean square
€rror M=R ({qlm})llz'
Run time

The program run time depends mainly on s, # and n. In the test runs the follow-
ing times have been obtained:

Run time in seconds

n s ¢ R for the second and
O IICHIERE 0k &g next in-turn sets

[§9]

30 8
18
61

180

152
14
30

105

317

276

60

MO ODONNWMOOON
AR LWNRN AR DD WD
N0 LW WKW
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Correctness check

The program was checked among others for n=30 and s=¢=2. The results
were obtained for which relative mean square error equalled to about 3 9.

4. Conclusions

The use of numerical methods enables to develop practically the potential of
cardioelectric field info a multipole series. This made it possible to determine exper-
imentally the dominating role of miltipols components of cardioelectric field,
in particular of those of rank six [16]. The multipole description gives access to new
information on the heart being not revealed by dipole interpretation of electro-
cardiograms.

At the current status of development of the quantitative studies on the multipole
components of the electric field of the heart the conclusions are of approximate
character.
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APPENDIX
Program POTENTIAL for multipole description of the electrical field of the heart

begin
" comment Program POTENTIAL;
EA@ETM,ab2,al,all,a12,a13,be,drumpl,drumpll,i,il,j,j1,k,l,ll,12,13,11m,12m,m,n,p,p1,p2,p4,t,t1,t2;
mabk, ctk, c0,cl,c2,clmk,fk,gj,gl,Qik,Qlm,r,s,sabk,simk,s0,s1,s2,s3,Vk;;
Ed(n,r) 3
begin
_a_rray ct,f,V[1:n];
real | procedure Q(I,m,t);

value t;

integer I,m;

real ts
begin
—iﬁ{eger Im;
H éj[;tt,ttl,c;
1@ procedure P(l,m);
_-i;lteger 1m;
i—ﬁf:bs(t)=l.0 then m>0 else false
_t_ﬂen P:=.0 T -

else

begin

integer i,lm;
switch wl:=10,11,12,13;
go to wlfif 1<2 then 1+1 else 4];

10; P:=10;
go to endP;
11: P_:=_if m=0 then t else —st;
g0 to_endP; -
12: -P:=_if m=0 then .5x (3xtt—1) else if m=1 then —3xtxst else 3 xttl;

go to_ endP;
13; P:=if m=0vm=1 then ((+1—1)x tx P(—1,m)—(+m—1) x P(1—2,m))/(l—m)
i else —2 x (m—1) x t/st x P(l,m—1)—(—m+2) x (14+m—1) x P(,m—2);
endP: end p;
tt:=txt;
ttl: =1.0—tt;
st: =sqrt(ttl);
=103
Im:=1+m;
for i:=1—m+1 step 1 until Im do

€: =e¢Xi3 . B
Q: =sqrt(.0795774715 x (1+1+ 1)/c) x P(1,m)
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end Q;
for k:=1 step 1 until n do

begin
read(s,ctk);
ctlk]: =cos(ctk);
flk]: =s
end k;
read(t,p);
tl:=t—1;
t2e=txt;
pl:=p+1;
p2:=.5xpl x(p+2)—t2;
p4:=pl xpl—t2;
pl:=pl—5x%x(t2+1);
format(‘1211%);
line(4);
if t=p

" then print(‘lLi=",p)
else print(‘lminii=",t,‘Imax=",p);
begin

integer array sub[1:p4];

array a[l:p4,1:p41,cQ,c1Q,sQ,s1Q[1:nl,g[t:p],QO0[t:p,1:n],rh,w[1:p4];

drumpl: =drumplace: =ininteger;
for j:=1 step 1 until p4 do

sub[jl:=j;
for I:=t step 1 until p do

begin

glll:= 12,5663706143/(rf(l+ DxA+1+1);
for m:=1 step 1 until I do

—_begin
" for k:=1 step 1 until n do
——begin Ty o
fk:=mx f[k];

Qlm: =Q(l,m,ct[k]);
sQlk]: =sin(fk) x Qlm;
cQIk]: =cos(fk) x Qlm
end k;
toam(n,sQ[l])
todrum(n,cQ[11);
end m;
for—k:=1 step 1 until n do
QUK =QUOctkD
end I;
for il:=t step 1 until p do
_begin e s - P
Ci=il—tl;
for j:=t step 1 until p do
—Taegin P R
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si=0;
for k:=1 step 1 until n do
s:=s+QO[i1,k] x QO[j,k];
afi,j—til:=g[jlxs
end j;

drﬂplace: =drumpl;
for 1: =t step 1 until p do
begin
13:=5xIx({(—1);
12:=p2+13;
1l:=pl+13;
gl:=2xglll;
for m:=1 step 1 until 1 do

_begin -
sy=sl:=0;
fromdrum(n,sQ[1]);
fromdrum(n,cQ[1]);
for k:=1 step 1 until n do

begin
Qik:=QO0fi1,kl;
s:=s+cQlk] x Qik;
sl:=s14+sQ[k] x Qik
end k;
afi,ll+m]:=glxs;
afi,)2+m]: =—gl x sl
end m
end 1
end T
drumplace: = drumpl;
for al:=t step 1 until p do
begin T
al3:;=.5xalx(al—1);
all:=pl+al3;
al2:=p2+al3;
for be:=1 step 1 until al do

begin i
abl:=all+be;
ab2:=al2+be;
fromdrum(n,sQ[1]);
fromdrum(n,cQ[11);
drumpll:=drumplace;
for jl:=t step 1 until p do

begin
ji=jl1—t1;
s:=51:=0;

for k:=1 step 1 until n do

——begin T
Qik:=QO[j1,k];
s:=s+cQ[k]lx Qik;
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sl:=s14sQ[k] x Qik
end k;
gj:=glill;
afabl,jl:=gjxs;
alab2,jl:=gjxsl
end j;
drumplace: =drumpl;
for 1:=t step 1 until p do

7begin

13s=4x1%0-—1);

11:=pl1+13;

12: =p2+13;

gl:=2xg[l];

for m:=1 step 1 until 1 do

begin

s:=sl:=52:=83:=0;
fromdrum(n,s1Q[1]);
fromdrom(n,c1QJ[1]);

for k:=1 step 1 until n do

?—begin o
clmk: =c1QJk];
slmk: =s1Q[k];
cabk: =cQ[k];
sabk: =sQlkl;
s:=s+clmk x cabk;
sl:=s1+slmk x cabk;
s2: =52+ clmk X sabk;
$3: =53 +slmk x sabk
end k;

IIm:=11+m;

12m:=12+m;

alabl,ilm]: =gl xs;

alabl,l2m]: =-—glxsl;

alab2,llm]: =gl xs2;

afab2,2m]: =—gl xs3

end m
end 1—,—_
drumplace: =drumpll
end be

end al;

for i:=1 step 1 until p4 do

begin

s:=0;
for j:=i step 1 until p4 do

begin
s1:=abs(a[i,sub[;ID;
if s1>s

then
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begin
sv=slz
k:=j

end sl>gt s

end _],_
if s=.0
" then
begin
?nt(‘?macierzu osobliwa’);
go to ENDP
ena—s:_=.0;
11 _=_ subfk];
sub[k]: =subli];
subfi]:=11;
s:=afill];
il:=i+1;
for k:=il step 1 until p4 do
jxegin T -
T:=sub[k];
sl:=alji,I2]:=a[i,12}/s;
for j:=il step 1 until p4 do
*alj,12]:=a[j]2]—al},11]x s
end k
end i;
end .ﬁfsit;

geEin
iEg—er array title[1:100];
 instring(title[1]);
line(10);
outstring(title[1])
end;
NEWDATA:
i: =ininteger;
if =999
" then go to ENDP;
read(V);
format(‘UTIMELI:111234%);
line(10);
print(i);
for il:=t step 1 until p do
—begin P

$:=.0;
for k:=1 step 1 until n do
s:=s+QOlil,kIxVIKl;
rhlil—tl]:=s
end il;

dramplace: =drumpl;
for al;=t step 1 until p do
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begin

al3:=.5xal x (al—1);

all:=pl+al3;

al2:=p2+al3;

for be;=1 step 1 until al do

begm

sl:=52:=.0;
fromdrum(n,sQ[1]);
fromdrum(n,cQ[1]);
for k:=1 step i untll n do

begm
Vk:=V[k];
sl:=s14VkxcQ[k];
s2: =52+ Vk x sQ[k]
end k;
rh[a_li+be]:=sl;
rhlal2+be]: =s2
end be
end a'
for i: i:=1 step 1 untl] p4 do
bcgm
]1:=sub[i];
s:=rhli]: =rh[i}/a[i,l1];
for j:=i+1 step 1 until p4 do
~rhijl:=rh[l—alilllxs
end i;
for i: =p4 step —1 until 1 do

begm
s:=rh[i];
for j:=i+1 step 1 until p4 do
_begin L o
k:=sub[j];
s:=s—al[i,k] x wlk]
end j;
wlsublil]: =s
end i;
line(4);
print(‘
m Re g[l,m] Im g[l,m]
fi),r I:=t step 1 until p do

begin
* format(*21201011201L1—1234,12345");
print(L,O,w[l—t+11);
format(‘121111—1234.1234501 u—1234 12345%);
Im:=.5x1x (1—1);
for m:=1 step 1 untll 1 do

begm
11m:=11m+1;
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print(*? *,m,w[pl+1m]wip2+11im]);
end m;
end 1;
format(*2123U11—123.120111—123.12%);

print(*

HukiypotiimesLiLILIpotLicale
%
drumplace: =drumpl;
for k:=1 step 1 until n do
CsIQKE:=.0;
for 1: =t step 1 until p do
begi—n =
—lin:=.5><l><(lﬂl);
for k:=1 step 1 until n do
CelQkl:=.0;
for m:=1 step 1 until 1 do

begin_

IIm:=1lm+1;
fromdrum(n,sQ[1]);
fromdrum(n,cQ[1]);
sl:=w[pl+1lm];
s2:=w[p2+I1im];
for k:=1 step 1 until n do
" c1Q[k]: =c1Q[k]+cQIk] x s1—sQ[k] x s2
end m; »
gl:=g[l];
s:=w[l—r+11;
for k:=1 step 1 until n do
s1Q[k]: =s1Q[k]+ gl x (s x QO[Lk]+2 x c1QIkD
end I;
5:=.0;
for k:=1 step 1 until n do
begin
sl: =s1Q[k];
Vk:=V[k];
print(k,Vk,s1);
sl:=Vk—sl;
s:=s+sl xsl
end k;
format(“??meantierrorl! =1J11123.12%);
print(sqrt(s/n));
go to NEWDATA

end:

ENDP:
end

end
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COMMENTS

The program has been formulated generally, and it is possible to widen its application for
multipole description of the electric field. This program. has been tested on the Odra-1204 compu-
ter. The input values are those of potentials measured over the sphere. The application of the
above described program to the study on the cardioelectric field became possible due to potential
measurements using the resistor network which reduced the measurement to the conditions of
a sphere.

Practically, there were input the values measured at the points of the sphere corresponding
with the vertices of dodecahedron, icosahedron, icosadodecahedron and 62-hedron being various
modifications of the output of network lead system based on the principle of Platonian dual poly-
hedra [10]. Out of these modifications, the icosadodecahedron output point set can be obtained
by means of numerical equivalent of the diamentoid network as proposed by Paszkowski [12].

Zastosowanie metod numerycznych do badania skladnikéw
multipolowych pola elektrycznego serca

Omowiono badania skladnikéw multipolowych pola elektrycznego serca z uzyciem wielo-
elektrodowych odprowadzen sieciowych skonstruowanych zgodnie' z zasada “figur platonskich”.
Do rozwiniecia potencjalu pola elektrycznego w szereg multipolowy uzyto metod numerycznych.
Wykonane badania wykazuja, ze pole elekiryczne serca ma strukture ztozong i proby opisania
g0 za pomoca aproksymacji dipolowej sa nadmiernym uproszczeniem.

Ilpuvenenne YHCIEHHBIX METOHNOB JiS MHOTOHOJIOCHOTO
OMHCAHUA DIEKTPHUSCKOrO WO Cepua

CraTpsl KacaeICd HCCIeNOBAHMM MyJIHTHHOIBOBBIX MOMEHTOB 3JIEKTPHYECKOIO LOJISI CepALa
IPH WCHOJIH30BAHWKA MHOTO3JIEKTPOMHEIX CETEBBIX OTBOLOB, IOCTPOEHHBIX COIJIACHO TIPHHIAITY
IUIATOHOBOTO MHOTI'OT DAHHUKA.

Jisi pasmoxKeHus MOTEHIHANA 3JICKTPHYSCKOrO TOJIsi B MHOTOIOIIOCHBIX PsII HCIONB3YIOTCS
YHCIEeHHbIe MeTOABL. TTocne Hre ncCneqoBanHus TOKA3aly, YTO JIIEKTPHIECKOE MOJE Cepala HMMET
CIIOXKHYFO CTPYKTYPBI ¥ HONBITKA ONHMCATEH €r0 C IOMOIIBIO JUMOIBHON amIpOKCUMALINY SABIISETCH
YPE3MEPHBIM YIIPOIIEHUEM.
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