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Let G be a point weighted communication graph. Using the Malgrange method for determining: 
a point cutset of a graph as a base, a bivalent programming scheme is constructed for calculating: 
the point outsets of minimum weight in G. 

1. Introduction and definitions 

A central problem in communication graph analysis is the determination of 
point cutsets of a graph. There are several ways for trying to find a point cutset 
of minimum weight in an undirected communication graph, but non of them seems 
to be appropriate to solving this problem as stated in the monograph of Frank 
and Frisch ([2], p. 176). In this short paper we shall translate the Malgrange method 
[4] for determining the point cutsets of a commlnication graph G into finding, 
maximum complete sub graphs of a derived graph G' ' . This translation offers im­
mediately a base on constructing a linear bivalent programming scheme for calcu­
lating the point cutsets of minimum weight in a point weighted communication 
graph. 

In this paper, a communication graph, briefly graph, will be finite, undirected 
and connected, and will contain no loops or multiple lines. If G is a graph, its set 
of points will be denoted by V (G), and its set of lines will be denoted by X (G). 
We assume that the reader is familiar with the central concepts in graph theory;. 
the terminology of graph theory follows that of Harary in [3]. 

By a Boo lean matrix we shall mean a. n x h matrix M = [mij] of zeros and ones. 
A submatrix B of M, in which the elements are ones, is called a complete submatrix. 
of M. A submatrix of M is prime, if it is complete and not contained in any other 
complete submatrix of M . By a maximum prime submatrix B of a Boolean matrix. 
M we shall mean a u x w matrix B for which the sum u+ w reaches its maximum 
in M. 
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A complete sub graph of G is called maximal, if it is not contained in any other, 
and a complete subgraph of greatest cardinality in G is called a maximum com­
plete subgraph of G. 

A point cutset S of a graph G is a minimal set of points whose removal.from G 
separates the graph into two or more non-empty connected components. 

2. A translation 

Let A= [aii] be the p x p adjacency matrix of a given graph G and A= [dii] its 
Boolean complement. By a submatrix B of A, A or matrix derived from these we 
shall always mean a matrix determined by a pair (RB, CB) of rows and columns of 
A (or A) such that bii is an element of B only if there is a row ri and a column ci 
-of A (A), ri E RB and ci E CB, and bii is an element of ri and ci in A (A). As the 
results in [4] show, a prime u x w submatrix B of A determines a point cutset S (B) 
in G if and only if any two points vri> vci represented by row ri and column ci of 
Bin A, are distinct. Furthermore, S(B)=V(G)-{vr1 , • .. ,vr"'vc1 , ••. ,vcw}· Now 
-vri =vci only if the corresponding element in the matrix A is one; this can be avoided 
by putting any diagonal ele!J1ent du of A to a zero: The matrix thus obtained from 
A is denoted by .A*= [d~]. 

Let G be a given graph and A its adjacency matrix. We associate with A* a graph 
G"=(V(G"),X(G")) defined as follows:X(G")=VruV6 where the points 
of the sets Vr = {vr 1 , ••. , vrv} and Vc ={vel> ... , vcv} correspond to the rows and col­
umns of x:', respectively. A line (vri• Vcj) EX (G") only if di~ = 1. Further, for any 
rOW i of.;[':' the-pointS Vcj, VcJ· , ... , Vcj Which COrrespond tO the oneS in this rOW, 

1 2 s 

form a complete sub graph in G"; analagously, if the points vri,, ... , vri, correspond 
to the ones in the row j of A, they determine a complete subgraph of G". There 
are no other lines in G''. The following lemma reduces the determination of point 
<::utsets of G to that of a class of maximal complete subgraphs of G". 

LEMMA 1. Let G be a given graph and x:' a Boolean matrix associated with G. 
For any prime submatrix B of A* there is a maximal complete subgraph GB in the 
graph G" such that V(G~')n Vr#0#V(G~')n Vc, and conversely. Moreover, 
any maximum prime submatrix B of A':' determines a maximum complete subgraph 
among the graphs G~ with V ( G~') n Vr # 0 = V ( G;) n Vc, and conversely. 

Pro of. Let B be a prime u x w submatric of.;[':'. Then any row i (B) of Bin .A* 
<::ontains a one at least with the elements a;'<B)iCBh• d~(B)iCBh• ... , a;'(B)i(B).,' where 
the indices j (B) I> • . • , j (B)w correspond to the columns of B in A*. An analogous 
fact holds for any column j (B) of B in A':'. From the definition of the graph G" 
it follows now that the points vri(B),• ... , vri(B),., vci(B),• ... , vci (B)w induce a complete 
subgraph G; in G". If a point, say vro> can be added to G~' in G". If a point, say 
vro. can be added to G~' such that G~' u {vro} would be a complete subgraph of 
G", then d~(B)s = 1 for any value of s, s= 1, ... , w. But then the elements d~~(B)s can 
be added to B in A*, and B would not be prime, which is a contradiction. The 



On minimum point cutsets Oof a point weighted 91 

proof is similar for a point vco· Hence, G~' is a maximal subgraph of G". Hence, 
G~' is a maximal subgraph of G". Trivially, V(G~)n Vr#0 = V(G~)n Vc. 

The validity of the remaining assertions is obvious according to the proof above, 
and hence we ornit the detailed proofs. 

The methods for enumerating maximal complete subgraphs of a graph [1], 
can now be applied to generating point cutsets of a given graph G. The main diffi­
culties are in selecting away those subgraphs Go for which V(G0

) n Vr = 0 or 
V (G0

) n Vc=0. In addition, ifS divides G into· k connected, non-empty compo­
nents, there are 2k disjoint maximal complete subgraphs G~ which determine S. 

3. A bivalent programming scheme 

If G is a graph and A':' a matrix associated with G, we denote by G* the graph 
with A':' as its adjacency matnx. As well known, the concept of maximal complete 
subgraph of a graph G coincides with that of maximal independent set of G*. As 
noted e.g. in [5], a maximal independent set I of G can be found by a linear process 
in which the complement l, the minimal point cover of G, is determined. Thus the 
reduction of the determination of a point cutset to that of a maximal independent 

set of G"':' allows us to construct a linear bivalent programming scheme for finding 
the point cutsets of minimum weight in a point weighted graph G. 

Let K = [ku] be the incidence matrix (point-line matrix) of the graph G"*, 
when the original graph G is point weighted. We shall call a graph G point weighted 
only if the weight w; of point v; in G is real and Wr > 0, i.e. there are no points of zero 

weights in G. A bivalent variable z; corresponds to the point v; of G"'\ i= 1, ... , 2p . 

. We assume that the points v1 , ... , vp of G"* correspond to the rows of A':' and 
vP+l' ... , v 2 P to the columns. Hence, if in G a point ts corresponding to the row 
and column with label s, S= 1, ... , p, has a weight w~, then vs and vv+s have in 

G"':' the wegihts Ws and ws+m respectively, and w~ = Ws=Ws+p · 

LEMMA 2. Let (z~, ... , z~P) be a solution of the following bivalent programming 
scheme with an object function: minimize 

(1) 

and with constraints i =2p 

,2; kijz;~l, j=l, ... , q (2) 
i=l 

and s=p s =v 

.I; Zs~p-1, .I; Zp+s~p-1, (3) 
s= 1 s= 1 

where q denotes the number of lines in G"*. If (z~, ... , z~P) is an absolutely mini­
mizing point of the function (1) with subject to the conditions in (2) and (3), then 
the points {g1 , ... , g,J corresponding to zeros in (z~, ... , z~v) determine a point 

----------- -- --



92 J'. NIEMINE,J:~ 

cutset Smin of minimum weight in G, Smin= V(G)-{g1 , .•. ,gm}, and any Smin is 
determined by an absolutely minimizing point of the bivalent programming scheme 
of (1), (2) and (3). 

Proof. Let T={v1 crJ, ... , vn(T)} be a set of point of minimum weight in a point 
weighted graph G whose removal separates G into at least two non-empty connected 
components. As the weight of any point' is greater than zero, T must be a point 
cutset of G. 

Let (z~, ... , z~v) be an absolutely minimizing point of (1) which satisfies also 
the conditions in (2) and (3). As shown in [5], since (z~, ... , z~v) satisfies the 

constraints in (2), the points of the ones in (z~, ... , z~P) form a point cover of G"*. 

and hence the points of ~* corresponding to the zeros in (z~, ... , z~v) determine 

an independent set of G"*. According to (3), this independent set has points both 
from Vr and from Vc. This independent set is also maximal, as in other cases by 
chaning a one in (z~, ... , z~v) to a zero, we would further have a solution satis­
fying (3) and (2) with lower value of f(zl> ... , z2v) than before; this is a contra­
diction. So, V(G)-{g1 , ... , g'"} is a point cutset of G according to Lemma 1 and 
the proof above. 

The construction principle of G" was such that a maximal complete subgraph 
G0 of G" cannot have two points such that they correspond to a single point of 
the original graph G. The same fact holds also for any maximum independent 

set of~~, i.e. any two zesros of (z~, ... , z~v) correspond two distinct points of the 
original graph G. But then any point of G is represented by a one in (z~, ... , z~v)• 
and, in particular, if a point td of G belongs to the set V(G) -{g1 , ... ,g111 }, then 
the variables zd and zv+d are ones. 

Let us denote by indices d1 , ... , d11 , p+d1 , ... ,p+d" the variables corresponding 
i=p 

to the points in the set V(G)-{g1 , ... ,g111 }.Th.en f(z~, ... ,z~v)=(1,'wi)+wd,+ 
i=l 

+wd, + ... +wd,, and hence the minimum of the function f(z 1 , ... , z2v) is equal 
to the minimum value of the sum of weights wd,, ... , wd,, the weights of the points 
in the cutset V(G) -{gr, ... ,g,..}. 

The remaining assertions are obvious according to Lemma 1 and the proof 
above. 

Clearly the programming scheme can be used for determining the connectivity 
of a graph G, but for thi5 object there are several rapid labelling algorithms as 
reported in [2]. 

I would like to express my sincere thanks to the referre for his comments and 
suggestions on this paper. 
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0 optymalnych przekrojach grafu wazonego z waga!"i 
przypisanymi w~zlom 

Om6wiono wa:i:ony graf komunikacyjny G z wagami przypisanymi w~z!om. W celu wyzna­
czenia przekroj6w grafu G o minimalnej wadze konstruuje si~ schemat programowania dwuwar­
tosciowego zgodnie z metod<'! Malgrange'a wyznaczania przekroj6w grafu. 

06 onTHMaJibHbiX ceqemmx B3BerneHHoro rpa!J>a c BecaMu 
npunucaHHhiMH yJJiaM 

PaccMoTpeH B3BemeHHbril: TpaHcrropTHhiM rpa<jJ G c BecaMH npHIIHCaHHhiMII y3JiaM. C n;eJiblO 
orrpe)J;eJieHIDI ce'IeHHlt rpa<jJa G c M!IHHMaJihHhiM BeCOM pa3pa6aTbiBaeTCH cxeMa )J;BOH'!Horo 
nporpaMM!IposaHIDI corJiaCHO MeTO)J;y MaJIDrpaH)J(a )J;JIH orrpe)J;eJieHIDI ce'!eH!IH rpa<jJa. 
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