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Control systems defined in Banach space with delayed control action in their dynamics are consid-
ered. The operator acting on the state is only assumed to be the infinitesimal generator of a strongly
continuous semigroup. Necessary and/or sufficient conditions for approximate controllability
only in terms of the operators appearing in the dynamics are sought and established. They gen-
eralise both previous results of Banks-Jacobs-Latina obtained for finite dimensional systems as
well as previous results of the author obtained for in finite dimensional systems but no delays.
The conditions are illustrated throughout by examples of physical interest. Also, a result If Fatto-
rini, reducing the unbounded to the bounded operator case, is extended to the present case of
delays.

1. Introduction

Consider the control system %, (4, By, By)
' % (1)=Ax(£)+Bo u(t)+ B, u(t—Hh)

with time lag in the control action, subject to the following assumptions valid
throughout the paper: X (state space) and U (control space) are separable Banach
spaces; A is (a closed, linear operator, with domain D (4) dense in X) and the
infinitesimal generator of a strongly continuous semigroup of bounded operator
S (), t=0 [2,3,8,11]; B, and B, € 4 (U, X), the Banach space of bounded linear
operators U—X; x (-) (state) and u (-) (control) are X-valued and U-valued functions,
respectively; % is a positive constant.

When B, =0, the approximate controllability problem in finite time of
% (4, By, B;) — which we then denote by & (4, B,) — has been treated in [5,
14]; see also ([4] and [13]). In [5] necessary and sufficient conditions for (in our
terminology) approximate controllability were derived, when X is a Hilbert space,
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of Minnesota, under a National Science Foundation Project, grant number GF 37298.
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A is a self adjoint (or normal with some further properties) and B, is of finite di-
mensional range. The tool used was the ordered representation of a Hilbert space.
In [14] a different viewpoint was taken, aiming at extending to arbitrary Banach
spaces the classical rank condition when U=R™ and X=R"; the obtained extensions
were then illustrated by deriving nice necessary and sufficient conditions, e.g. when
X is a Hilbert space and 4 is normal with compact resolvent, in the form of a se-
quence of rank conditions, using the set of eigenvectors of 4. As far as approxi-
mate controllability in finite time is concerned, that the case when A4 is bounded
on X is all what is needed to investigate was proved in [4] Prop. 2.3 (see Sec. 3 below
for a precise statement) and exploited in [13], where a general analysis was given;
in particular a test was given together with an example involving a first order differ-
ential operator. Such a reduction to the bounded operator case was alsc used in
[14] Sec. 4 to derive an alternative proof of theorem 4.3’. Also, the problem of lack
of exact controlla bility in finite time for & (4, B,) when B, is compact is treated
in [13] Sec. 3.3 and [15].

On the other hand; when U=R™ and X=R" a through investigation of three
concepts of controllability for &, (4, By, B;), all of physical interest, was presented
in [1] Sec. 3.

We can now state the content of the present paper. We first generalise, in Sec-
tion 3 below the finite dimensional theory of [1] Sec. 3 for &%, (4, By, B;) defined
on arbitrary Banach spaces and with the operator 4 acting on the state generally
unbounded. Alternatively, Section 3 below can be viewed as an extension of the
infinite dimensional results for & (4, By) in [14] to the system 7, (4, By, B,),
where also a delayed control appears in the dynamics.

In Section 4, Fattorini’s result — reducing the approximate controllability of
& (A4, By) from the unbounded to the bounded operator case —is extended to
&y (A4, By, By).

Finally, the appendix gives direct proofs of implications arising in the previously
described reduction.

The results are illustrated throughout by mnontrivial examples of physical
interest.

2. Preliminaries and definitions

For reasons explained above, we shall besically adopt the same notation and
terminology used in [1] Sec. 3 in the case U=R" and X=R". Also, for simplicity
of notation, only one delayed control term will be considered in the dynamics:
however, it will be clear that the procedure works also for several delayed control
terms, and the corresponding results will be obvious. So, consistently with [1],
we denote by &, (4, By, By) the system

% (f)=Ax(t)+Bo u()+ By u(t—h)
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subject to the assumptions stated in the introduction. The system
x=Ax(t)+Bw()

is denoted by & (4, B), where A is as above and Be % (U, X).

Without loss of generality, we take the initial time #,=0. Then, if the control u (¢)
is a sufficiently smooth U-valued function on [—#4, #;] (e.g. C), the solution of the
Cauchy problem associated with &, (4, By, By) is (0<t<t) ([11] p. 486):

X(t, X0, ) =S(t) Xo+ [ S(t—s5) [Bo u(s)+By u(s—h)] ds=

t t—h
=S(t) xo+ [ S(t—5) Bou(s) ds+ [ S(t—h—s) B, u(s)ds (1)
0 —h
for x5 € D (4). However, the expression (1) is well defined as soon as u (¢) is Bochner
integrable on [—4, t;], and, moreover for all x, € X. For problems of approximate
controllability, the imposition of smoothness on u (f) is not restrictive; however,
it is restrictive for general optimal control problems, in which case one can either
resort to the existence and uniqueness theory of the differential equation as in [17]
or, alternatively, assume that the control process is modelled directly by the integral
version (1). We shall precisely follow this second route; an admissable control
u(t) on [—h,t,] is, then, following tradition, an L_-function with values in U.
(One can restrict to C* control functions without changing the conditions of approx-
imate controllability below (Sec. 3), since C! functions are dense in the class of
L -functions).
We write explicitely the special case

X(O)=Ax()+bou(®)+b, u(t—h)

with b,, b, € X. Such system will be denoted by f/h (4, b, by). Again, restriction
to just one nondelayed control term and one delayed control term is only for
‘simplicity of notation.

DerINITION 1. Given a control constraint set Q< U, the symbol &} (4, By, B;)
denotes the system &, (4, By, B;) with constraint u(f)e Q, te[—h, t,].

DeriniTION 2. Given a conirol constraint set Q< U and an L -function v, in
[— £, 0] with values on U, the symbol &2 (4, B,, B;) denotes the system &}, (4, By, B;)
with constraints:

u()e2; tel0, ;] and w, =vo, 1,=0
where u, (s)=u (t+5), se[—4 0]

DermNiTION 3. Given a control constraint set Q< U and two L -functions v, and
v, on [—4, 0] with values in U, the symbol &} (4, By, B,) denotes the system
&, (A, By, B;) with constraints

u()eQ, tef0, 1, —A4] and u, =vo, u; =0y, to=0.
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Examples of physical problems and situations where systems of the type &*
occur are given in [1] and so we dispense with further comment.

DerFINITION 4. The system &% (4, Bo, By), i=1, 2,3, is aproximately controllable
on [0, #;] in case, given x, € X, the totality of the solution points x (¢, xo, ) of
(2.1) corresponding to admissible controls u (f) on [—#4, #], is dense in X.

It is no loss of generality to take x,=0 and this will be done henceforth with
no further mention.

The following consequence of the Hahn-Banach theorem will be used throughout
the paper.

ProrosITION 1 ([8] p. 31). Let X be a normed linear space and E an arbitrary set
in X. Then §p {E}=X if and only if the zero functional is the only bounded linear
functional that vanishes on E.

3. Approximate controllability of %, (4, B,, B;)

To make the paper self-contained, we first collect recent results — to which we
shall refer in the sequel — established in the case when no delay is present in the
dynamics. So let & (4, B) be the non-delayed system defined in Section 2. We now
associate to the system & (4, B) the system & (R (1, 4), B)

%=R (A, A) x+Bu

defined on the same spaces X and U; R (-, 4) is the (bounded!) resolvent operator
of A and J, is an arbitrary fixed point in p, (4), the connected component of the
resolvent set p (4) of A, that contains the half-plane Re A>wq,=Ilim ||S (¢)|//t <o
([3] p. 618—619). ki

In particular cases of physical interest when: (i) either U is finite dimensional,
say of dimension m, and hence is (isometrically isomorphic to) R™; or (ii) B is an
operator with finite dimensional range, say of dimension m, & (4, B) can be written
more conveniently as & (4, (by, ..., bw))

m
)’C=AJC+ Z bi U;
i=1

with b; vectors in X and u=[uy, ..., U], u; scalar.
Fattorini showed [4] that if K, (+) denotes the set of attainability from the

origin (with no control constraints Q= U) of the system (-), the following holds:
Cl U Kr(L)=Cl \J Kr(L;), @

o<T<© o<T< oo

(Cl=closure), where L=% (4, B): L;, =% (R (4o, 4), B) Fattorini’s results reduces
the problem of approximate controllability in finite time from the unbounded to
the bounded operator case.
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The case when 4 is bounded. The above reduction was exploited in [13],
where it was shown that, when A is bounded on X (and so the semigroup S () is
a uniformly continuous, analytic group given by

S(f)=exp (4f)= 2 A" "0, —co<f<oo
n=0
with convergence in the uniform topology) approximate controllability of & (4, B)
is equivalent to (Q=U)
sp{A"BU, n=0,1, ..}=X 3

and hence is independent on the time interval length. In the case of the system
F (4, (by;s ..., by)), (3) becomes

sp {A" by, i=1, ..., m; w=0, 1, ..}=X. 3)
Hence, when A is bounded, we have

Cl | ) K,=Cl Ky, T arbitrary and 0<T<oco=sp {4" BU, n=0, 1, ...}.
0<T< 00 E
General case. When the original operator A is only assumed to be an infini-
tesimal generator, a corollary of (2) combined with (3) reads as follows & (4,B)
(tesp. & (A, (B wss b,,,)) is approximately controllable in finite time and only if
(Q=0) 4
sp {R" (Ao, A) BU, n=0,1,..}=X 3"

(resp. sp (B (Ao, A by, i=1, . m; m=0, 1, ..}=X). 3"

Despite the fact that the characterization (3) fully solves the problem (see example
3.2.7 in [13] and Sec. 4 in [14]) an analysis of possible generalization(s) of (3) for
& (A, B) (resp. (3') for & (4, (by, ..., by)) directly in terms of the original unbounded
operator A was explored in [14] and is reported below.

First, let D, (4)= () D(4"). D, (4) is still a dense subspace of X ([2] p. 12).
n=1

Define U,={ue U:BueD,(4)}, ie. U, is the largest subspace such that
BU, <D, (4). U, is non empty, but need not be dense in U. In some of the sub-
sequent results, we shall assume that the subspace BU, is dense in the subspace
BU (resp. the vectors b; € D, (4)). Since D, (4) is dense in X, this will always
hold, maybe after a slight perturbation of the operator B (resp. the vectors b;). Then,
with Q=U, we have:

(i) Appropriate versions of (3) and (3"), namely

E{A" BUco9 }’[,:0, 1, _}:X (4)
p {4 by, i=1,...,m; n=0,1, .}=X, b e D, (4), @)

are still sufficient for approximate controllability on [0, T] for & (4, B) and
&L (4, by, ..., b,)) respectively; however they case to be necessary (see examples
n [14}).
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(ii) Conversely, if the semigroup S (¢) generated by A4 is analytic, >0, then
approximate controllability on [0, 77 (which in this case is the same as approxi-
mate controllability in finite time!)) implies, for & (4, B) and & (4, (by, ..., bw))
respectively:

sp{4A" S (f) BU, n=0,1,..}=X (5

sp{A S(7)by; i=1,..,m; n=0,1,..}=X, (5"

where 7 is an arbitrary positive time.
Another version of the necessary condition for approximate controllability
on [0, 7] is given, under analyticity, by?)

sp{S{{) 4 BU ,, n=0, 1, .. 3=X, 6
when the subspace BU,, is dense in the subspace BU; and

sp{S(f) A" b;; i=1, .., m; n=0,1, ..}=X, By
when b; € D, (4).

For instance, if 4 is selfadjoint with compact resolvent, then (4') and (5""')
are equivalent to each other and also to (5') when b, e D (4) [14].

We can now state the sought for extension. Define the subspace UZ for Bj,
j=0, 1, in the same way as U, was defined for B before.

The following results generalise those in Sec. 3 of [1] from finite infinite dimen-
sional spaces, and also the above conditions (4) and (5) for undelayed infinite di-
mensional systems to the case when an additional delayed control is added in the
dynamics. We first give necessary conditions for the approximate controllability
of &L (4, By, By), i=1,2,3, and sufficient conditions only for i=1, 2. The case
i=3 will be treated in more detail at the end of the present section.

THEOREM 1. Let the semigroup S (z) generated by A be analytic, #>0. Then:
(i) A necessary condition that y,il‘(A, By, By), i=1,2,3, be approximately
controllable on any [0, #;], #;>h, is that 4

5p{A" S(f)B, U, A" S(f)B, U, n=0, 1, ..} =X, (6)

where 7 is an arbitrary positive time.

If the subspaces B; UL are dense in the subspaces B; U, an alternate necessary
condition is given by

5p{S(i) 4" B, U2, S(i) A" B, UL, n=0, 1, ..}=X. (6"

HThat is CI | ) Kr(L)=X.
0<T<oo
2) The difference between the two groups of formulae: (5), (5') on the one hand and (5”) and
(5" on the other hand, is that, under assumptions in fact weaker that analyticity, the operator
A" S (f) is bounded on X, for t>0 ([2] p. 15) and hence can be applied to the whole subspace BU
or any b;. For y € Dy, (4), we however have S () A" x=4"S () y, t=0 ([2] p. 11).
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(ii) Conversely, let Q=U. A sufficient condition that &} (4, B,, B,), i=1, 2,
be approximately controllable on any [0, #,] 7;>#A, is that

sp{A" B, US, A" B, Us; n=0,1,..}=X @)
or, more generally, that, for any 7, {>0:

5p{S(f) A" B, U2, S(f) 4" B, UL; n=0,1,..}=X. 1)

Proof. ;
(i) ¥} (A4, By, B,) approximately controllable implies & (4,(B,, By)) approxi-
mately controliable; this, in turn,,under the present assumptions, implies (6) and
(6"), by applying (5) and (5’’) with B replaced by (B,, B;) und U replaced by Ux U.

(]
(ii) It suffices to give a proof for 2. Let y1=fS(tl—S—h) B, v, (s) ds.
-h
Suppose, by contradiction, that the totality of points {x (¢, 0, u)—y;}, when u
runs over all admissible controls on [—#, #; is not dense in X. Then, by Proposi-

tion 1 there is 0#x* € X* such that (f,>#)

Iy ti—h

[ % (S(ti—9) Bou(s)) ds+ [ Z*(S(ts—h—s) By u(s)) ds=0 ®

(0]
for all u admissible.
This easily implies
%*(S(t,—5) By U)=0, 1, —h<s<ty.
Otherwise, in fact, if £*(S(t;—7) B, #)#0 for some 7 in [t,—h, t,] and e U,

define a control u (¢) on [0, #;] to be identically zero except near 7 and this leads
to a contradiction of (8). The analyticity of S (-) then implies

X*(S(t.—s) B, U)=0, 0<s<t,.
In particular

x*(S(t,—5) Bo Ug)=0, 0<s<t, .
Plugging (9) into (8), one gets

f_ % (S (11 —h—5) By u(s)) ds=0

0
for all u admissible and hence, as before
Z*(S(@t,—h—s) B, U)=0, 0<s<t;—h. (10)
In particular
x*(S(ti—h—s) B, UL)=0, 0<s<t;—h. (109

Now recall that when y e D, (4), S (¢) y is infinitely many times differentiable
and the following holds ([2] p. 11)

d"S(t) yldt"=S () A"y, t=0, n=0, 1, ...
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Consequently dn x* (S (1) y)di=x* (S (1) 4" y) (11)

for x"e X'*.

Differentiate successively in a both (9') and (10"), using (11), and set s=¢,; and
s=t, —h, respectively, at each stage. One then gets x* (4" B, U2)=0 and x* (4"
B, U1)=0, n=0, 1, ... This, in view of Proposition 1, contradicts (7) since %* is
nonzero. The slight modification to prove (7) is obvious. Q.E.D.

CoROLLARY 1. Let the semigroup S (f) generated by A be analytic, £>0. Then:
() A necessary condition that & (4, b, by), i=1,2,3, be approximately

controllable on [0, #{], #;>#, is that
sp{A" S(F)b;, j=0, 1; n=0, 1, ..}=X, (12)

where 7 is an arbitrary positive time.
If ;e D, (A), an alternate necessary condition is given by

spS Y A by, 1=0,1, =X, (129
(i) Conversely, let Q=U. A sufficient condition that &} (4, By, By), i=1,2,
be approximately controllable in every [0, ;] ¢, >4, is that
sp{A* by, =0, 1; n=0, 1, .}=X, (13)
or, more generally, that for any 7, 7/<0:
sp{S(f) A" b;, j=0,1; n=0,1, ..} =X. '

If, in particular, A4 is bounded on X, then S(¢)=exp (4¢) is automatically ana-
lytic for all —co<t<oco (group), so in this case (and only in this case®)) we can take
t=0; moreover D, (4)=X, B, UL=B; U in this case. Hence:

COROLLARY 2. Let 4 be bounded on X.
(i) A necessary condition that &} (4, B,, By), i=1,2,3, be approximately
controllable on [0, #,], #; >/, is that

sp{A"B; U, j=0,1; n=0, 1, ..}=X. (14)
(i) Conversely, let @=U; a sufficient condition that & (4, B, By), i=1, 2,
be approximately controllable on every [0, #,], #,>4, is that (14) holds

CorOLLARY 3. Let 4 be bounded on X.
(i) A necessary condition that & (4, by, by), i=1,2,3, be approximately
controllable on [0, #,], #;>A, is that

. sp{4rb, j=0,1; n=0,1,..}=X. (15)

(i) Conversely, let Q=U; a sufficient condition that i (4, by, b,), i=1, 2,
be approximately controllable on every [0, #,], #,>#, is that (15) holds.

*) Analytic groups generated by unbounded operators cannot exist ([8] p. 278, 477).
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Remark 1. If Q is a proper subset of U, then Theorem 1 (ii), and its Corroleries
1 (ii), 2 (ii), 3 (i) are no longer sufficient, even in the finite dimensional case X=R",
U=R". See examples 7.3 and 7.4 in [1].

RemMARK 2. When the semigroup is analytic for #>0, the necessary conditions for
approximate controllability on [0, #,], #;>#4, delayed system i (4, B,, B,),
i=1, 2,3, as well as the sufficient conditions for i=1, 2 and Q="U are the same as
the corresponding conditions for the system % (4,(B,, B;)) with two nondelayed
scalar controls; in fact, (4), (5) and (5"') applied to the operator B=(B,, By):
Ux U—-X, become precisely (7), (6) and (6") respectively. So, for 4 bounded on X,
the characterization (14) for approximate controllability that of ! (4, B, B,)
for i=1,2, and Q=U conincides with that of % (4, (B,, B;)) on any [0, T].

RemARK 3. Also, if on neglects the time delay and so sets #=0 in the equation de-
fining &, (4, By, B,), one gets the system y(A, (B0+Bl)), whose approximate
controllability on [0, 7], in the analytic case, implies (resp., if 4 is bounded, is

equivalent 10) o () A(Bo+-By) UL, n=0,1, .}=X

with US'=U2 N U* (resp. with U%*=U). This relation, coupled with the obvious
one

sp{S(F) A"(Bo+B,) UL, n=0,1,..}csp {S (i) A" B, U, A" B; UL, n=0, 1},

proves that approximate controllability on [0, 7] of & (A,(Bo +B,)) in the analytic
case implies that of ! (4, B,, B,), i=1,2, for Q=U and T>h. The converse is
of course false (e.g. B, =—B,). Before tackling the controllability problem for
the system &; (4, B, B,), we wish to illustrate the above results concerning the
systems &) and &} with examples of physical significance.

Examples

Bounded operator case. We start with one example involving a bounded
operator on a somewhat unusual Hilbert space, whose choice may appear arti-
ficial at first. However, it will be appearent that such a choice provides the appro -
priate setting for studying a composite system, consisting of subsystems in parallel
connection. In our example, two subsystems modelled by integro-differential equa -
tions of Volterra type are connected in parallel and driven, each, by a scalar control
u (t) and its retardation u (#—#4). See block diagram below.

u(t) w1 (t,')
u(t-h) S1
i
u(t) w(t, )
delay b — u{t=h) " W——
u(t)
S
Rys. 1 vy {8y
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Before presenting explicitly the dynamical system, we need to introduce a spe-
cial Hilbert space.

Let L2 [0, 1] be the Hilbert space [6] consisting of all (real) 2-dimensional vector
functions f(&)={f; (&), f» (§)}, 0<¢<1, with measurable coordinates, such that

I£12= [ (£ @ +1£2(O1) de<oo.

The scalar product {,» is defined on L2 [0, 1] by

K g>=f (11 ©) 81 ) +12(8) 82(0) de=(f1, 8) + (S, 82)

with (,) inner product of L, [0, 1].
Consider now the composite system S:

8 1 \bs :
500 S L 0,9) doo b @ u )5 © =)

a ) s s
S,: l~¥=—fw2(r, 5) ds+B2 (&) u' 1)+ b2 () u(t—h)

consisting of the subsystems- S; and S, operating in parallel, that is, driven by the
same input (the pair u (f) and its retardation u(z—h)) and with output w(z, &)=
=wy (1, O)+w, (¢, £). See above block diagram. Let b’ (-) be L, [0, 1]-functions
and choose the state space X to be L [0, 1]. Let x (¢) be a vector in X, given by
x (t)={W1 (tn ')5 Wj (t9 ')}

One then checks that

x(r):{

[8] (x is the derivative in the norm of X1).
~ Next, consider the following Volterra operator 4 [6] defined on L2 [0, 1] by

owy (¢, +) ow, (1, -)}

o’ ot

4 &
(47) (e:)=[f i) ds,— [ f(9) ds, 0<é<1,

that we write more concisely as

Af)D={rf) ©,—(Vf) (O}
where V is the Volterra operator on L, [0, 1] defined by

3
(Vo) (&)= [ g(s) ds.

According to the definition of A, we have

& &
Ax@)=1 [ w1 (2 s) ds,—fwz(t, 5) ds! .
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Then the system S can be written in the abstract form an %, (4, by, b;) on
2 .
£p BL: x=Ax () +bou(t)+b, u(t—h)
where b;={b%, b}, j=0, 1 and bi=b'(-)e L, [0, 1].

49 "=

One easily realises that the definitions of approximate controllability on [0, 7]
for the system & (4, by, b;) above mean that it is possible to drive simultaneously

the subsystems S; and S, of S (by means of a common admissible control u (¢)

and its retardation u (¢— /%) applied to both of them) from each initial pair of states
wy (0, &) for S, and w, (0, &) for S, fo a pair of final states w, (7, ¢) for S; and
w, (T, &) for S,, each of them arbitrarily close (in the L, [0, 1]-norm) to a prefixed
vector in L, [0, 1].

Claim. If

sp{d" f, n=0,1,..}=L2[0, 1],
then, necessarity
sp{V" fi,n=0,1, . }=5p (V" fo,n=0, 1, ..} =L, [0, 1].
In fact, if say
sp{V"f1,n=0,1,..}<L, [0, 1]
and hence by Proposition 1
(yla anl)=03 I’l=0, 19 sy
for some y;#0 in L, [0, 1], then from
A f={V fi, (=1L Vv £}, n=0, 1, ...
it follows that . )
<y’ A"f>=(y15 an1)+(_1)"+l (J’z: an2)=03 n=0, 13 s
with y,=0 and y={y;, y,}#0. But this contradicts the assumption, again by Pro-

position 1. Q.E.D.
Consequently:
(i) For the vector bo={b}, b2} with
,0<é< 1,0<8<3
by (&)= . BE= :
3, 3<Eé<1 3, i1<é<1

the following holds
sp {V"by, n=0, 1, ...}, [0, 1]

([10], aldo '[9] and [6] and hence, by the above claim,
sp {A" by, n=0, 1, ...} <L, [0, 1]. (16)
(i) Similarly, for the vector b;={b}, b3} with

§

1,0<¢ <
ég

<3
<¢<1

0,
»

2>

P N

bi(é)=[

N O
/AN

b2 <¢>={

T,
2

D=

-}
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we have
sp{V"bi, n=0,1,..}<L, [0, 1]

([10]; also [9] and [6]) and hence, by the above claim
sp 14" by, n=0, 1, .} L2 10, 1], 17
(iii) Yet for the sum of the two vectors

bo+b;={by+b;, b3 +b}}
for which we have
b5 (O)+b; (O=1 and b3 () +b3 (H=1, 0<E<!
the following holds
5p {4 (bo+b,), n=0, 1, .}=L2 [0, 1] (18)
([6]1 p. 351). Since
sp{A*(bo+by), n=0, 1, ..} csp A" by, j=0,1;n=0, 1, ...}

we conclude that
sp it by =0, 13 8=0, 1, .} =L} [0, 1]. (19)

We can now gather our results for the example in question:

(i) According to Corollary 3, (19) says that the above system %, (4, by, b1),
with one delayed control, when interpreted either as &5 (4, by, b,) or 3 (4, by, b1)
is approximately controllable on [0, 7], T'>#h, with b, (§) and by (&) defined as
before and @=U.

According to Remark 2 and (i) the system & (4, (bo, b;)) with two non-delayed
scalar controls is also approximately controllable on [0, T'], (any 7> 0).

(iii) Finally, of the following three one-scalar control systems: & (4, bo),
& (A, b,) and & (4, (bo+b,)), the third is approximately controllable (cf.(18)),
while the first two are not, (cf. (16) and (17)).

(iv) Also, (ii) and (iii) together imply that the system y(A, (2% bl)) with two
scalar controls is non trivially reduced to the system & (4, (bo+b,)) with one sca-
lar control, without loosing its approximate controollability.

Unbounded operator case. To find approximately controllable systems
SFu (4, by, by) on [0, ty], t;>h, we again resort to Remark 2 and to our previous
results for nondelayed system & (4, (bo, b;)) with, say, two scalar (nondelayed)
controls ([14] Sec. 4.1).

- Let X be a Hilbert space and 4 be a selfadjoint operator: X oD (4)—X with
compact resolvent and spectrum bounded above (so that 4 is an infinitessimal gen-
erator). Then, with b; € D, (4), j=1, 2, the necessary condition (12") for approxi-
mate controllability and the sufficient condition (13) are equivalent ([14], Sec. 4.1).
Hence, the delayed system & (4, bo, b;) is approximately controllable on [0, #,],
t;>h, with i=1,2 and Q=U, if and only if the same holds for the nondelayed
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system & (A, (b, bl)) in any [0, ¢;]. This is the case, in turn, if and only if
([14], Sec. 4.1)
(bos Xk1) (b1s Xi1)
rank : =, k=1,2, ..
(b05 xkrk) (bl, xkrk)

where r, is the multiplicity of the eigenvalue A, with associated eigenvectors
Xpe1s +-e» Xgr,» Since, in our particular example, the above ranks are all <2, 4 must
then have eigenvalues with multiplicity not greater than two. This is the case, e.g.
for the heat equation on a disk with zero boundary conditions, Sturm-Liouville
operator etc. ([14] Sec. 4.5).

We now turn to the system &, (4, By, B;) whose response at time #; >h can
be easily checked to be

x(t1, X0, )=S(t:) Xo+ [ S(ti—1)Bou (@) di+ [ +S(t—1)By u(t—h) dt=
0 0

ti—h t,—h
=S(t) xo+ f S(t;—t)Bou(r) de+ J +S(ty—t—h) B u()dt+ y,+yo,
0 0
where

0 [0}
yi= [ S(=5)Bovi(s)ds and yo= [ S(ti—5—h) By ve(s) ds.
—h —h
Now the totality of response points {x (¢, xo, )} are dense in X, when u runs
over all L, —0, 7, —h] — controls, if and only if the translations {x (¢, x,, 4)—
—8(#1) Xo—y1 —yo} are dense in X.
By Proposition 1, this happens just in case, with Q=U
| ti—h
| f x*[S (t, —1) Bo u(t)+S(t, —t—h) B, u(t)] dt=0 -

0

I for all L, —10, t; —h] — controls and all x* e X* @
[ =x*=0

or, equivalently, just in case
x*(S(t,—1)Bo U+ S (t,—t—h) B, U)=0, O<t<t,—h @

=x*=0
(21)<(22): obvious, arguing e.g. by contradiction with 0#X%* € X'*;
(21)<=(22): if, by contradiction,
%% (S(ty—F)Bo i+ S(ty—i—h) By i) #0

for some 0#x* € X*, fin [0, #,—4] and @ in U, then define a controller u (¢) to be
identically zero on [0, #; —A] except near 7, to contradict (21). We can now state the
following:
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THEOREM 2.

(i) The system &, (4, By, B,) is approximately controllable on [0, #,], #; >4,

if (with @=U) and only if (22) holds. ‘

(ii) If 4 generates a (strongly continuous) group, then (22) becomes
x*(S(ty—1)(Bo U+S(—h) B, U))=0, 0<t<t,—h 23
=x%* =0,

(iii) If 4 is bounded on X, we obtain, for 7, >h:

(a) Let &} (4, By, B;) be approximately controliable on [0, #,]. Then

5p{A"(Bo U+exp (—Ah) B, U), n=0, 1, ..} =X. (24)

(b) Conversely, let @=U and let (24) hold. Then ¥} (4, By, B,) is approxi-
mately controllable on [0, #,].

Proof. The proof of (i) was given above, and then (ii) follows immediately.
We now show (iii).

(a) Suppose (24) fails and so, by Proposition 1

%% (4"(By U+exp (—4h) B, U))=0, n=0, 1, ...
for some 0#x* e X*. This obviously implies
%* (exp At(By U+exp (—4h) B; U))=0, =0

which contradicts (ii).
(b) If &; (4, By, By) is not approximately controllable on [0, #,], then, by (ii),
we have
| %*(exp 4 (1, —1) (Bo U+exp (—A4h) B, U))=0, 0<t<t;—h
for some 0#%* e X*. Actually by analyticity of exp Af, the above holds for all

—oco<t<oo. Successive differentiations ‘of the above odentity, setting 7=¢, at
each stage, yields

X* (4" (Bo U+exp (—Ah) B, U))=0, n=0,1,...

which, by Proposition 1, contradicts. (22). Q.E.D.
The case involving the system &; (4, by, b,) with scalar controls is singled out
in the next.

COROLLARY 4.

(i) The system 3 (4, by, b,) is approximately controllable on [0, ¢,], #, >4,
if (with 2=U) and only if

x¥(S(t,—1) bo+S(t,—t—h) b,)=0, 0<1<i;—h
l ((1 ) bo (t: )1) 1 (22
=% ¥=(),
(if) If A generates a (strongly continuous) group then (22') becomes
(23%)
s Fen(),
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(iii) If 4 is bounded on ‘X, we obtain, for ¢, >h:
(@) Let &; (A, by, b,) be approximately controllable on [0, #;]. Then

5p {A" (bo+exp(—Ah) b,), n=0, 1, .}=X. . (4")

(b) Conversely, let 2=U and let (24') hold. Then &} (4, by, by) is approxi-
mately controilable on [0, #,].

ReMARK 4. The dependence on the lag # in the condition (24), (241’) is not illusory,
even in the finite dimensional case: X=R", U=R" ([1], Remark 3.4.) Also, since

sp {A" bo+exp (—Ah) A by} =s5p {4" b,, exp (— Ah) A" b, }
it follows that (24) implies
5P {A" bo, exp (— Ah) A7 B,} =X,

which, in turn, implics (15), since exp — 4% is a 1—1 onto operator on X. Con-
versely, (15) does not imply (24) even for U=R" and X=R" ([1], example 3.2).
Hence the condition (24’) of Corollary 4 is stronger than the condition (15) of
Corollary 3.

4. Reduction of approximate controliability from the un-
bounded to the bounded case in presence of delays in the
control action

In the following, Fattorini’s result — reported in (2) — reducing the study of
the approximate controllability for & (4, B,) from the unbounded to the bounded
operator case, is generalized to the system &, (4, Bo, By), i=1,2, when A generates
" an analytic semigroup.

The notation in the next theorem will be simplified as follows: set
L,=%}(4, By, B,) and L, ()=} (R (%, A), By, B;)

for i=1, 2. Also recall that K, (-) denotes the set of attainability from the origin
(with 2=U) of the system (-) at time 7; also p,(4) is the connected component
of p (A) defined at the beginning of Section 3.

THEGREM 3. Let the semigroup S{f) generated by 4 be analytic, >0, and let
Q=U. Then ‘

¢\ K@h=cl U K(L@)=

h<t<o0 h<<t<co
=Cl Kr (LL())=5p {R"(%, A) B; U, j=0,1; n=0,1,...},

where i=1, 2; 4 is an arbitrary point in p,(4) and T is an arbitrary time >#A.
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Hence, in particular, L} is approximately controllable on [0, 7], 7>, if and
only if the same holds for L (1); and this happens just in case

sp {R* (), A) B, U, j=1,2; n=0,1, ..}=X.

Proof. By the Hahn-Banach theorem, we only need to show that all x* e X*
annihilating | K,(L}) also annihilate () K,(L}(4)), and conversely. Let

h<t<oo h<t<oo

7 (U K(L))=0 for %*e X*. ©5)

h<t<oo

~ Then, as in the sufficient part of the proof of Theorem 1, we have that, because
of the analyticity assumption, (9) and (10) hold. Actually, this same assumption
allows us to extend the argument to the entire sonnegative real axis and hence to
write

£*(S (1) Bo U)=0 and *(S(t) B, U)=0, 0<r. (26)

Now the argument as in [4] can be adopted. From
1 o0
%* (R (Ao, 4) B, U)=(71:W of "~ Lexp (=20 ) XX (S() B, U)dt  (27)

with j=1,2, Re lo>wy, n=1,2, ... [3], using (26) we get

x*(R"(Ao, A) B; U)=0, n=0, 1, ..., Re >w,. (28)
(The case n=0 stems from (26) for =0 .
Using
R(, A = 2 (Ao—A)" R™*1 (A, 4), 2 close to Aq (29)
n=0
d" R (4, A)
= =(=1)"n! R"*1 (1, 4), n=0, 1, ...
di.
[12] yields
#*(R(4, 4) B; U)=0, j=1,2 30)

for all 4 close to 44, and, by analytic continuation, for all A € p, (4). It then follows
by differentiation in A that

Z* (R, ) B; U) 0,58=0, 1, vy j=1,2
for all Aep (4) and hence that

x*(exp R(%, A) t) B; U)=0, 0<r<oo (also —oo<t<o0) 3D
e (U K(Li()=0 (32)
h<t<<00

for all A€ p, (4) and one way is done.
Conversely, let (32) hold for some A=1, € p, (4). Then (32) implies (for such
A=21o) (31) in as much the same way as (25) implies (26).
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Differentiating (31) in ¢ and setting t=0 at each stage, yields (28). Using (29)
again implies (30) for all 1 € p, (4). Hence, from (27), applied for n=1 and Re A>w,,
we get

f exp(—At) %(S(t) B; U) dt=0

0

for all A with Re A>w,.

Therefore by uniqueness of the Laplace transform [3] we finally get (26) (for
every ¢, not merely a.e.) and hence (25). Q.E.D.

REMARK 5. The above argument does not carry over for the system & (4, By, B,)
with 4 unbounded. In such case, in fact, (25) implies the top line of (22) for x*=
=Xx* (and not (26)!), which we now rewrite as

£#(S(1) Bo U+S(i—h) B, U)=0, h<i<ty, 4

and, if we assume analyticity for S (7), #>0, we can extend the validity of (33) to
all > h. We cannot however extend the validity of (33) for all £>0, when 4 is unb-
ounded, since this would imply evaluation of S (-)for negative argument, in fact on.
[—£A, 0]. But S (¢) cannot be an analytic group, if 4 is unbounded [8] which is prec-
isely the case of intereset for Theorem 3.

The validity of (33) for all 7>0 would be required to conclude in analogous
way as to the step from (26) to (28).

For completeness we mention that the above argument does carry over, when
A is bounded on X and so S(f)=exp Ar is an analytic group. In this case approx-
imate controllability of &; (4, By, By) on [0, ¢,],¢,>h, and Q="U is equivalent
to (1€ po(4))

sp {R"(1, A) (Bo+exp (—Ah) B,) U, n=0, 1, ..} =X (34)

which, in turn, in view of Theorem 2, is equivalent to (24). The equivalence between
(24) and (34) can easily be established directly; for instance in the classical case,
X=R" and U=R", it can be easily proved within the linear algebra framework.
What such equivalence says, in this case, is that the two n X (m-n) matrices

C=[B, AB, ..., A"~' B] and [B, R(J, 4) B, ..., R""1 (4, 4) B]

have the same rank n, where R (A, 4) is the nxn nonsingular matrix [A7—A]"?,
for A not an eigenvalue of 4. If 4 itself is nonsingular, this assertion with A=0 fol-
lows simply by multiplying the matrix C on the left by the nonsingular matrix
(—A~1)"'; here one uses the standard fact that multiplication of a matrix on
the left (or on the right) by a nonsingular matrix preserves its rank [5]. The case
when A is singular is nahdled similarly, using the above, coupled with the obser-
vation that the rank of C and the rank of

[B(AI—A)B, ..., (AI— 4)*~" B]
are the same.
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APPENDIX

From the meaning, in terms of controllability properties, of the conditions (3)
throught (5’’), one plainly concludes: '

(i) When A4 is bounded on X, then (3) (resp. (3") and (3"") (resp. 3'"') are
equivalent.

(ii) When A is an unbounded infinitesimal generator, however, then:

(a) (4) implies (3")

(resp. (4') implies (3""")];

(b) conversely, in the analytic case:

(3') implies (5) (as well as (5") if BU,, in dense in BU)

[resp. (3""") implies (5") (as well as (5'") if b; € D, (4))].

Notice that if 7 could be taken zero in (5"') or (5"""), then they would reduce
to (4) and (4') respectively: here the point is, however, that 7 can be taken zero,
only when A is bounded, since an analytic group cannot be generated by an un-
bounded infinitesimal generator ([8] p. 278 also p. 477). We think it is appropriate
then to insert direct proofs of the implications in (i) and (ii) above, based on functio-
nal analysis techniques: this will enable one to realize why the necessary and suffi-
cient condition (3) for 4 bounded, splits, when A4 is unbounded, into two conditions:
the sufficient condition (4) and, when the semigroup is analytic for >0, the neces-
sary conditions (4) and (5""). The reason will be that the operational calculus for
bounded operators fails to have a full counterpart when A4 is simply closed. For
simplicity of notation, we shall consider only the conditions of (a) and (b) in (i)
marked with prime (corresponding to a finite number of scalar controls). The
case (i) will be a special case. :

Proof. (4)=@3"").

By Proposition 1 we must show that

x*¥ (A" by)=0, i=1,..,m; n=0,1, .., x* € X*, b, e D_(4)

i =xF=0 '

implies
x*(R" (Ao, 4) b;)=0, i=1, .., m; n=0, 1, .., x* e X*
=x*=0.

By contradietion, let .
X* (Rn (/"\.0, A) bi):09 n=0, 1, “ee

for some 05 %% € X*. By analyticity of R(/, 4) [12], R{4, 4) 2 (Ao—AD" R**1 (g, A)
n=0

A close to Ao, if follows that £* (R (4, 4) b,—)EO for all 4 close to /4 and, by analytic
continuation, for all A in p, (4). From®)

4) When A4 is bounded on X, we can use the operation calculus formula ([12] p. 289) 4*=
=4 ni) f A" R (4, A) di, n=0,1, ..., (I is the boundary of any bounded Cauchy domain, say
I

a circle enclosing the spectrum of 4) to quickly get x* (4" 5)=0, which is a contradiction. A
-counterpart of this formula (with convergence in the strong topology) does not hold in full gene-
rality when 4 is just closed. For special cases, e.g. when A is selfadjoint, see [3] p. 1196 Theorem 6.
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R(1, 4) b= [ exp (=10) S(t) b, dt,
0

Re A>w,

(A1)

([3] p. 627) it follows, by applying x* € X* on both sides and using the uniqueness
of the Laplace transform ([3] p. 626) that

#* (S () b)=0, t=0, i=1, .., m, (A.2)
Next observe that, since b; € D (4), the following holds [2]
d"S(t) b,
—— =81 Ab,, i=1, ..., m; n=0, 1, ...

dt

and hence
arx*(S@b) | )
—T——=S—* (S(t) A" bi), b=l wens B =20 L (A.3)

Successive differentiations of (A.2), together with (A.3) imply, taking =0
after each step (S (0)=1)

X (A D=0, i=1; .ttty =0, 1,2; .5
which is a contradiction, since ¥*#0. Q.E.D.
Conversely, in the analytic case:
(3""")=-(5") [and (§""") if b;e D, (4)].
By Proposition 1 we must show.that
x*(R* (Ao, A) b;=0, i=1, ..., m, n=0,1, .., x* e X*

oL, =x*=0 Adoep, 4)
implies

\x* (4" S(f)b)=0, i=1,2,..,mn=0,1, .., x* e X*

=x%*=0 f=arbitrary positive time,
as well

x*(S(f) A" b;)=0, i=1,..,m; n=0, 1, .., x* e X*, bye D, (4)
=x*=0 7=arbitrary positive time.
Let by contradiction %* (S(f) A" b;)=0, as well as x* (4" S (f) b;)=0, for
0#£x* e X*. These, coupled with the analyticity of S (¢), >0, formula (A.3) as well as
d"x*(S (1) b)) _
dt a
(2] p. 11) imply x*(S(r) b;)=0 for all 7 in a neighbourhood of 7, hence for all

t>0. Consequently, making use of (A.1), one gets £* (R (4, 4) b;)=0 for all A with
Re A>w, and, by analytic continuation of R (-, 4), for all 4 e p, (4). Using

d"R (., A) )
—— - =(= 1"l R, 4),n=0, 1, ..

x* (A" S(t) b;) any b;e X
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([12] p. 257) and hence

(R G A)

o ( l)n 'x"‘(R"“(A A))

we conclude that: £* (R" (2, 4) b;)=0, n=0, 1, ..., for all 1€ py(4), in particular
for A=/, and this is a contradiction, since X* #0. (More quickly, from x* (S () b;)=0,
t>0, use the known formula

R (4, A)BU:f "1 exp (—At) exp At BU dt (n—1)1)~*~
5 .
([3] p. 623), obtained from the above formulae for R (4, 4) and d" R(4, A)/d\").

Examples

We finish, by illustrating the above results with non trivial examples.
An example of claim a. Let X=L, [0, 1] and let 4 be the simplest integral
operator

g
)= [f(s)ds, f(-) e X.

A is a Volterra operator, i.e. compact and whose spectrum is just the origin
[6]. Moreover, [|[A||=2/m<1 ([7] p. 300) and so we can take A,=1, to verify the
above claim a. We have ([12] p. 291):

&
[T-4)"1gl =8O+ [ exp(&—s) g(s) ds.
o
If b is a vector of X (written as a function b (£)), it is not at all obvious from
the above definitions of 4 and R (1, A)=(1—A4)~* that
sp {A"b,n=0, 1, ..}=X if and only if
sp{R* (1, A) b,n=0, 1, ..} =X as claim a dictates.

We now wish to show this fact directly.
The above expression for R(1, A) reads R (1, A)=1+V, where V is the Volterra
operator defined by

<
V) ©= [ exp (E=9) f(s) ds, (-  X.

It then follows that

(i) R" (1, A).is.a particular linear combination of LV, V% s V% m
conversely.
(ii) V'™ is a particular linear combination of

I, R(1, 4), R*(1, A), ..., R*(1, 4); n=1,2, ...

It
i
)
.
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So, for the vector b in X, (i) and (ii) imply
sp{R*(1, A) b,n=0, 1, ..}=X if and only if
sp{V*b,n=0,1,..}=X.
In order to verify claim a, it remains to show therefore that
5p{A"b,n=0,1, ..} =X if and only if
sp iV h,m=0; L, . }=X.

This follows as an immediate consequence of the unicellularity of both 4 and
V ([6] p. 38, [10] for A and [9] for V), since the kernel k,(&, s)=exp(—s) is C2
and k, (s, s)#0: actually [9] refers to the adjoint operator V*:

V* 1)@= [ k(& ) S(s) ds;
5

but the unicellularity of V* implies that of V, and conversely ([6] p. 36); also, the
invariant subspaces, called reducing manifolds in [9], of V are the orthogonal sub-
spaces of the invariant subspaces of V* ([6] p. 36). Moreover, the only closed in-
variant subspaces both 4 and V are the subspaces L, [@, 1] for all ae [0, 1] ([6]
p- 38, [10], [9]); differently stated, the conditions

sp{A"b,n=0,1, ...}=X and
sp{V"b,n=0,1,.}=X
are both equivalent to the condition: for each §>0, the set
{E€:b()#0 a.e. on [0, d]

has non-zero (Lebesgue) measure.

So we have verified claim a directly, in our particular example.

An example oficlaim b. Let X be a Hilbert space and let 4 be selfadjoint with
compact resolvent. A generates a strongly continuous semigroup if and only if
its spectrum is bounded above; also the semigroup in this case is seladjoint and
analytic for t>0 (more generally, the semigroup of a selfadjoint operator with
spectrum bounded above is seladjoint and analytic for #>0 ([8] p. 588—589).
The following equivalences involving the conditions (4'), (5'""), (3"'") were proved,
in the present case, in ([14] Sec. 4):

(4")=(5""")«(3"")<srank C,=r,, j=1,2, ... with b, e D (4) and

(b4, le.), vees (Bimy X51)

Co= (bl,,ij)’ oy (bma.xJ'Z) )

J
(b]s xjrj)7 sesy (bm’ xjrj)

Here r; is the finite multiplicity of an eigenvalue of A with associated eigen-
VECtOIS X1, «vy Xjr - (Also, the spectrum of 4 consists precisely of these eugenvalues).
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The equivalence (4')<(3"’’) appears directly from the proof of Theorem 4.3’

based on the explicit expression of the resolvent ([14] Sec. 4.2) and relies on the
following formulas

A" b= Z A j b1y x51) x5
=1 k=1

@ Tl

n 5 \ |
R (, A) b= iy D (b X

j=1 k=1

More specific examples are given in [14] Sec. 5.
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System sterowalny w przestrzeni Banacha z opdéZnmionym
dzialaniem sterowania

Rozwazono uktady zdefiniowane w przestrzeni Banacha z op6znionym dzialaniem sterowania.

Zalozono, ze operator oddzialujacy na stan jest jedynie elementarnym generatorem silnie ciaglej
polgrupy, warunki konieczne i/lub wystarczajace sa wyszukiwane i wyznaczane jedynie w funkcji
operatorow zjawiajacych si¢ w dynamice. Sa one uogolnieniem wynikow otrzymanych poprzednio
przez Banksa, Jacobsa i Lating dla ukladoéw nieskonczenie wymiarowych bez opdznien. Warunki
ilustrowane sa przyktadami fizycznymi. Wynik Fattoriniego, redukujacy przypadek operatora
nieograniczonego do ograniczonego, wykorzystano rowniez do problemu z opdZnieniem.
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YHpaBJIﬂeMaﬁ cHCTeMa B 0aHAXOBOM NPOCTPAaHCTBE C 3anas-
AbIBAHUEM YHpaBJICHHI

B craThe pacCMOTPEHBI CHCTEMBI, ONpenessieMble B 0aHAXOBOM HPOCTPAHCTBE, C 3ara3ibi-
BaloOIm¥M JeiicTBueM ynpapienus. IIpenmosiaraeTcs, YTO ONEpaTop BO3IEHCTBYIOLIWHA HA COCTO-
SHHUE SBIISETCS JIMME 3JIEMEHTAPHBIM T€HePAaTOPOM CHIIFHO HENPEephIBHOM nomyrpymmsl. Heobxo-
JUMBIE W/ANHA TOCTATOYHBIC YCIIOBUS HAXOMATCS M ONPEICISIIOTCS TOJLKO B (yKImu OnepaTopos,
NOSBAAONHXCS B IuHamuke. OHM sBISIOTCS 00OOIIEHMEM pPe3yNbTATOB MOJYYEHHBIX paHee
Baukcom-SxkobcoM-JIiTHHOM /Jist Cliydasi OECKOHEYHOMEPHBIX CUCTeM 0e3 3ama3blBaHuil. Y Ciio-
BMsl WUTIOCTPUPYIOTCS npuMepamu u3 ¢usuku. Pesynbrar dartropunu, pelyLUMpYOIui ciaydait
HEOT'PAHMYEHHOT'O ONepaTopa B OTPAHMYCHHBIN, HCIIONL3YETCA TakKe B 3a7ave C 3ara3/IbIBaHACM.






