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The paper presents basic notions and relations in first- and second order performance sensitivity 
analysis of optimal control systems described by models in Banach spaces. Two basic formulations 
of the performance sensitivity analysis problem are discussed: the ideal sensitivity analysis based 
on one mathematical model, and the sensitivity analysis of a control system, based on two mathe
matical models and on the no.tion of a controller in a given structure. Basic lemmas related to the 
notion and properties of sensitivity measure are restated for the general case considered in the 
paper. The notion of second-order sensitivity operators, their existence, and the conditions of 
first order insensitivity are examined. Methods of computing second-order sensitivity operators 
in several control systems structures are given. These methods result in an effective way of comparing 
performance sensitivities of various optimal control structures and of choosing the best (the least 
sensitive) structure under uncertainty of parameters. 

An example illustrates the application of these methods to an environment control problem, 
resulting in the choice of a hierarchical control system structure. 

1. Introduction 

The problem of sensitiVIty analysis of control systems has been formulated 
and investigated relatively early. The main result of the sensitivity analysis consist 
in ~howing that the output of a closed-loop control system is less sensitive to dis
turbances or under uncertainty of parameters than the output of an open-loop 
system. 

The development of the optimal control theory motivated also an extensive 
research in the field of the analysis of performance changes due to disturbances 
or parameter uncertainty. This problem is called performance sensitivity analysis 
of optimal control systems. First particular problem that has been thoroughly 
investigated is the determination of optimal performance, state and control va
riations under known changes of parameter values- see e.g. [5]. This particular 
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branch of sensitivity analysis is called here ideal adaptive sensitivity analysis; in 
the ideal adaptive situation there is no actuall necessity to distinguish between the 
model and the real process to be controlled. The ideal adaptive analysis stimulated 
many techniques of suboptimal control (nearoptimum design technique, optimaly 
sensitive str~ctures etc. see [1], [5], [6]) where the differences between the model 
and the real process are taken into consideration but are compensated with help · 
of measured or estimated parameter changes. The second, basic problem is the 
comparison of performance sensitivity of various optimal control system struc
tures, under the assumption that param.eter changes are not necessarity measured 
nor estimated during systems operation, i.e. under uncertainty of parameters. 
This situation is much more common in practical applications; it is natural to say 
that an optimal control system structure is better than other structures if its per
formance sensitivity is lower without the necessity of estimating parameter changes. 
In this case, both the model and the real process (or, strictly speaking, the actual 
model and a second model representing the parameter uncertainty) must be taken 
into consideration. 

The investigation of the problem of performance sensitivity comparison star
ted early [8], [11], but soon led to the so-called [11] Pagurek-Witsenhousen paradox: 
the first order performance sensitivity coefficients are identical for an open-loop 
and for a closed-loop optimal control system. This result has been since then gener
alized and reconfirmed in many other situations. Kreidler [1 ], [7], accepting the equal 
performance sensitivity coefficients for an open-loop and a closed-loop system, 
prQved that a measure of trajectory sensitivity is lower in the closed-loop case. 
Kokotovic at al. [5] proved more: if the parameter changes can be measured or 
estimated, then sensitivity coefficients of arbitrary order can be made equal for 
an open-loop and a closed-loop structure by a Taylor-series compensation of par
ameter changes. This result, however, is closely related to the ideal adaptive sit
uation. since the ideal adaptive structure based on the knowledge of parameter 
changes gives totally identical results for any open-loop and closed-loop structure. 

Being reconfirmed in many ways, the Pagurek-Witsenhousen result had an 
effect to stopping further investigation of the basic question: is there any difference 
of performance sensitivity of various optimal control system structures, or, equiv
alently, is there any reason for prefering one or another optimal control system 
structure under uncertainty of parameters. Most of sensitivity investigation turned 
to other directions of research [1]. First in [12] a proof was given that the Pagu
rek-Witsenhousen result is an inherent and immediate by-product of the optimality 
of control and is valid for all possible optimal control system structures, hence is 
not meaningful; that at least second-order sensitivity coefficients must be considered 
in order to compare sensitivities of various structures under uncertainty of para
meters, and that there exist rather large differences in performance sensitivity of 
various structures. However, this line of approach has not been followed further. 

In this paper, second-order methods of performance sensitivity analysis are 
developed for a general class of models in Banach space (including ordinary differ
ential equations, difference-differential equations, partial differential equations 
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and many others). and for an arbitrary pre-specified optimal control system s true 
ture. An effective method of comparing sensitivities of various structures is pres 
ented; it is shown that a sensitivity comparison for several given structures requires. 
no more additional computational effort than the determination of optimal control 
itself. It is possible thus to choose at the most effective control system structure 
from a given group of structures under uncertainty of aprameters. 

Because of generality of the Banach spz.ce approach, many basic notions and 
relations introduced earlier for models described by ordinary differential equations. 
are restated or generalized in the initial part of the paper. Therefore, the initial part 
of the paper presents a detailed formulation and basic results of the ideal adapta
tive sensitivity analysis. The performance sensitivity investigation under uncertainty 
of parameters, based on two models (the model and the real process) is called real 
sensitivity analysis; a detailed formulation and basic relations for this case are 
also given. These relations form a basis for the development of comparison methods. 
for performance sensitivity of various optimal control system structures. 

2. The optimal control and ideal sensitivity problem 

Consider the following optimization problem. Let Bx, B .. , BP, Ba be Banach 
spaces. Let Q:Bx x B .. x Ba--+R1 be a "performance" functional. Let P: Bx x B .. x Ba--+BP. 
be a "constraining" operator. The problem 

min Q(x, u, a)=Q(a), (1} 
(x, u) E Q 

where Q is the set of (x, u) such that 

P (x, u, a) = B E BP, (2) 

can be looked upon as an optimal control problem with the state x, control u and 
parameter a, provided the constraining relation (2) determines uniquely an x for 
any given u, a and thus can be interpreted as a state equation. Hence we shall often 
call P the process operator. 

We assume that there exist a unique normal optimal solution of the problem 
(1) for each a in a given subset in Bm without specifying the conditions of existence· 
and normality 1

). Moreover, assume BP, Bx be reflexive Banach spaces; let operator 
P be Frechet differentiable with respect to (x, u) and denote by Px: Bx--+BP the Fre
chet derivative of P with respect to x; let there exist r;; 1 . Therefore, P x is a topo
logical isomorphism of the spaces Bx and BP. Let the functional Q be convex in 
a neighbourhood of the optimal point (x, i/) and Frechet differentiable with res
pect to (x, u). Then the corresponding Lagrange functional has the following normal 
form 

L (17, x, u, a)=Q (x, u, a)+<17, P (x, u, a)) (3) 
1) By a normal solution of an optimal control problem we understand a solution corresponding. 

to a Lagrange functional in the normal form (3), whereas the general form is L (17, x, u, a) = 
=IJo Q (x, u, a)+ <11, P (x, u, a)) . Therefore, a problem is normal if 1/o # 0. For discussion of nor
mality conditions see e.g. [13]. 

------------------- --
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where 11 E B; is a La grange multiplier and < ·, ·) is the duality between B; and BP. 
The necessary conditions of optimality [13] can be written as 

L * Q* ( A A ) p* ( A A ) (l .Cl B* 
11 = 11 x, u, a + " x, u, a , 1 = ~Y E 11 , 

* Q* ( A " ) * ( A A ) " .Cl B* Lx = xx,u,a+Pxx,u,ary = o E x' 

L* = 
" 

P (x, u, a) = 8 EBp, 

(4a) 

(4b) 

(4c) 

where stars denote gradients of functtonals, adjoint operators, or dual spaces, 
respectively. The equation (4a) corresponds to the gradient of the minimized func
tional reduced to the space of independent variables B1, see [13]; (4b) can be inter
preted as the basic adjoint equation; (4c) is the state equation. 

According to the assumptions, the equations ( 4) determine the optimal solu
tion it= 0 (a), x = X (a) and the functional Q (a) =Q (X (a), 0 (a), a). The functional 
Q (a) is the basic optimal pe1jormance characteristics, expressing the dependence 
of the performance on the parameters of the optimal control problem. Similarly, 
0 (a) is the basic optimal control characteristics and X (a) is the basic optimal state 
characteristics. 

Suppose P, Q, are Frechet differentiable with respect to a. For a given optimal 
u = Ct it is easy to estimate the first order variations of x and Q due to a change odd 
parameters &t by 

c5x = - (P_; 1 P.) (.X, it, a) Ja 

where -P; 1 P. = Xa: Ba-+Bx is called the state sensitivity operator, and 

JQ=<(Q:-P.P;-l Q:) (.X, it, a), c5a). 

(5) 

(6) 

These variations represent the influence of. the parameters on the state and 
performance if the optimal control is applied in a control system in the same way 
as it is determined, that is, in so called open-loop structure. If we could measure 
precisely the parameter change c5a and use the knowledge to readjust the optimal 
.control, the corresponding variations of state and performance should be, ob
viously, different; we shall call the situation the ideal (adaptive) structure. To com
pute the variations 2

), let us assume P, Q be twice Frechet differentiable in (x, u, a). 
The variations of optimal (.X, it) due to a change of parameters c5a result from a 
linearisation' of ( 4a) ... ( 4c) 

LIIU c5Ct + LIIX c5x +LUll Jry + Llla c5a = e' 

LXII Mt +LXX c5/( +LXI/ c5J] + Lxa Ja = e' 

(7a) 

(7b) 

1 1111 c5Ct+L,1x Jx+ L,1a Ja=e. (7c) 

These equations are called the basic variational equations; L,11 denotes the ope
rator of second-order derivatives of the functional L with respect to u, evaluated 
at (ry, .X, it, a), etc. Since L,x=Px (x, u, a) is invertible, we get from (7b), (7c) 

c5x= -L,~/ (1,111 c5Ct+L,1a c5a), 
!;"- _ L-l (;> L~ f' -lL~ ) 50" (- - L-1 f' 
UIJ - - Xtl J..,x11- xx J..,IIX 1111 uU + Lxa-L .u 11x J..,lla) Ja ), 

(8a) 

(8b) 
2

) See also [5] for a similar development for problems described by ordinary differential equa
tions. 
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and from (7a) 

where 
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(9) 

(lOa) 

(lOb) 

Since A is the hessian operator of the minimized functional, reduced to the space 
of control variables- see e.g. [13], it is usually a positive operator. Assume .A- 1 

exists; then 

The operators 

(11a) 

(11 b) 

(1lc) 

(12) 

are the optimal control sensitivity operator and the optimal state sensitivity operator 
in the ideal structure, representing the influence of the parameters on the control 
and the state if they are optimally readjusted after each parameter change. Ho
wever, in most of practical applications it is almost impossible to determine the 
operator (12) analytically, when determining the basic variations ou, ox, of) com
putationally, it is preferable not to use the relations (lla, b, c), but to apply a spe
cial procedure. 

Usually, the inversion of L"" is rather simple. We get then from (7a) 

Substituting ou in (7 b, c) we obtain 

where 

lll1 b,~+'2Xz bfJ+SE 1 oa=e, 

'2!3 ox+llr: 01]+SE 2 oa=e, 

\l{l =LIIX- £1111£,:/ Lux; '2!2 =- L,IU L;;u 1 11111; 

SE 1 = 1,111 -1,111 L,:/ Lua; 
\l{3 = Lxx-Lxu 1,:,1 L11x; SE 2 = Lxa + Lxu L;;u 1 Lua . 

(13) 

(14a) 

(14b) 

The equations (14) are called canonical ·variational equations. Their solution is · 
clearly expressed by the relations (11 b, c). Hence there are many linear operators 
K, M whi.ch would satisfy the relation 

01] = Ko.>: +M ba (15) 

but one way of choosing K, lvJ is particularly useful. Setting (15) into (14a), pre
multiplying first of the equations by K':' and summing both the equations we get 

(/(* \l{z K+K*'2!1 +'2!: K+'2X3) bx+(K'-' '2Xz M +'2!: M +KSE1 +SE 2) ba=e (16) 
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and reqm re that 
le:' Q.l2 K+K* Q.l 1 +Q.l'~ K+lll3=8, 

(K:' Q.l2 +Q.l~) M +K* 58 1 +58 2 =8. 

(17a) 

(17b} 

The equation (17a) is called Riccati operator equation. The operator K defined 
by the equation has many interesting properties which can be fully investigated 
only when we define - beside the space of state trajectories Bx- the space of mo
mentary states Bx(t)' take into account the semigroup properties of the process opera
tor P, etc- see [4], [13]. Without motivating more deeply the equations (17a, b) 
nor analysing their properties we shall only note two important facts: 

(a) Solving the equations (17a, b) is very often the ni.ost effective computational 
way to determine c5x, c5 ry , c5u- and thus to invert the hessian A. 

(b) The basic control variation c5u, resulting from (13), (15), (17a, b): 

(18) 

is the linear approximation of the optimal control law in the classical closed-loop 
structure. 

The property (a) is substantiated by large computational experience. The pro
perty (b) can be rigorously proven; since it was proven in many particular cases 
of process operators and a general proof for linear-quadratic case was given in 
[4], we omit here the proof. 

Beside determmg the basic variations c5u, ox, c5ry, it is also important to anal
yse the behaviour of the performance functional Q (a). Its variation has the form 

c5Q=<Q:, oa>+ <Q:, c5x)+<Q:, c5u) = 
*,.... ...... 1* """"l"'f'l:i• ·j: = <Qa-La,1 L;,, Q~+B':' A- (L 1111 J..,.;,

1 
Q~-Q;,), c5a) (19) 

But L11 ,1 L_;,/ Q:-Q;~=B according to (4a), (4b). Hence 

c5Q=<Q: -P: p:- 1 Q:, c5a) (20) 

and the ideal performance variation is the same as in the open-loop structure (6). 
Therefore, the readjustment of optimal control related to parameter changes does 
not apparently result in any gain of pe1jormance. Such a interpretation of-this re
sults is, however, superficial; the only true interpretation is that the first-order 
approximation of optimal p,e1jorman.ce is not sufficient for the comparison of various 

I ~ ~ ~ 
optimal control structures. Moreover, the investigation of U (a), X (a), Q (a) does 
not provide answers for several important problems related to applications of opti
mal control under uncertainty of parameters; therefore, this investigat ion shall 
be called the ideal sensitivity analysis. 

3. Real sensitivity problem 

To achieve practically relevant results, a much more complicated model of 
the sensitivity problem must be formulated (see Fig. 1). In real applications, the 
determination of an optimal control is based on a mathematical model (e.g. 
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Q (x, u, a)=q; P (x, u, a)=8) of the problem, and the model obviously differs 
from the reality. Therefore, the optimal control is seldom applied in the same way 
.as it is determined (in the open-loop structure), though the ideal measurement of 

r·---· a ·-·Mod7~itheQ i-th ~~;~re 1 
of a control syst~m ' 

Real model 

Q(x,u,a)=q ex- • j 
P(x , u,a) zO P~ocess i 

Real controller u' Q x', u ', lX)= q' - · - -;--- . . ( '. . . r:+:r~'(a ,"") ys'(a,~)>0 0 
, ui=Ri(xi,a,<X) P(xi,ui,oc.)=O ~ + -
I I • 

' i ! ! 
L.L-=~-=~=--:--=~-=~-=~_j __ j 

cx·~--ld;;J~~~~---=~ ·, 

.----..1.----.... of a cont roi S!:Jstern 
Ideal model 

Q(x,u,cx)=q 

P(x,u,cx)=O 

Ideal controller ui 

u = R0 (ex-) P Cx, u,<X)~.o 
I • L _____________________ j 

F ig. 1. Global sensitivity model 

the parameters a (the ideal adaptive structure) is usually not possible. Usually, 
several output variables of the r~al process can be measured and utilized in order to 
improve the control which, being optimal for the model, is not optimal for the 
real process. 

Mathematically speaking, we must first define what the "reality" is. The simplest 
assumption is . that the "1·eality" can be represented by another model which differs 
from the original one only in the value of the parameters (e.g. Q (x, u, (/.) = q, 
P (x, u, (/.)=8). In fact, such an assumption is quite general. For example, if 
P (x, u, a) =8 corresponds to an ordinary differential equation, an appropriate 
choice of P and (/. can make P (x, u, (/.) =8 corresponding to a partial differential 
equation (although some boundary layer problems will arise in such a case). 

Secondly, we must define what is to improve the control with the help of variables 
measured in the real process; this definition is much more difficult. 

The opti~al control u= 0 (a) can be represented in various ways, as a function 
of various variables of the real process, i.e. of the second model. The way of repre
senting the control 

(21) 

is denoted by the upper index i and called the control law or the controller in the 
i-th structure of the control system. By i = 0 we denote the open-loop structure, 

-- -- - ~------
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where R0 (x, a, ex)= 0 (a). By i = 1 we denote the classical closed-loop structure, 
where the current value of control depends on the current value of state but not 
on previous nor fuh1re state values- see [4]. The synthesis of the function R1 

is an extremely difficult task except in some fundamental cases, e.g. the linear
quadratic one. However, we can determine the derivatives R!, R; according to 
the relation (18). 

The classical closed-loop str:ucture is by far not the only one possible: for example, 
any linear combination (with coefficients summing up to one) of the open-loop 
and closed-loop optimal controllers results in an optimal controller. The number 
of possible structures is thus uncountable and limited only by the imagination of 
control-system designers. 

The control law (21) results in the following relations: 

P(x1
• R 1 (x1, a, ex), ex) =8 E B1, (22) 

Q(x1
, R 1 (x 1

, a, ex), ex)~ Q1 (a, ex). (23) 

The relation (23) defines the functional Q1 (a, ex), if the relation (22) determines 
x 1 as a function of a, ex. The functional Q1 (a, ex) is related to Q (a), if the control 
law (21) represents the optimal control for a= ex. Hence we impose two axiomatic 
requirements on the nature of the relations (21), (22), (23). 

Axiom of well-setting: Fer a problem of the real sensitivity analysis of a control 
system to be well set, it is necessary that the real process equation in the given system 
structure- the relation (22) - admits a unique solution x 1= X 1 (a, ex) for each 
ex in a neighbourhood of a, and the performance functional -the relation (23) -
is well defined in this neighbourhood. 

Except in some degenerate cases, this axiom implays that the space BP should 
be isomorphic to Bx and the operator Px + P 11 R~ be invertible. Although quite 
natural to postulate, the well-setting axiom was often neglected in the sensitivity 
analysis of optimal control systems 3

) . 
I 

Axiom of optimality: The control law (21) corresponds to an optimal control 
system, that is, R 1 (X (a) a, a)= 0 (a). 

· This axiom implies that Q1 (ex, ex) =Q (ex) and Q1 (a, ex);;::Q (ex) since the control 
u1 can be only worse for the real process than the optimal 0 (ex), if the parameters 
of the real process are not known precisely and a parameter a# ex is used to estab
lish the control law. Hence the functional 

S 1 (a, ex)= Q1 (a, ex)- Q (rt.) (24) 

can be interpreted as the performance loss due to an imperfect knowledge of the 
process parameters ex. The functional is called the sensitivity measure of the optimal 
control system in the i-th structure- see [12]. 

3
) The optimal control problem (1), (2) can have solutions even if the axiom is not satisfied. 

Consider, for example, an optimal control problem with a given final state, and incorporate the 
final conditions in the constraining relation P (x, u, a)= B; let Bx be a Sobolev space and B,, = R". 
Suppose an optimal solution exists; but for a# cx the relation (22) will not be generally satisfied. 
Hence we cannot perform the real sensitivity analysis, although the ideal sensitivity ana:Jysis problem 
is well-defined. This is probably the reason for omitting the well-setting axiom in some approaches; 
see also [1], [6], [12]. 
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LEMMA 1. The sensitivity measure satisfies following relations 

Si (a; cx))!O; Si (a, cx)=O for all a=cx. (25) 

If the sensitivity measure is differentiable, then 

S!* (a, cx)=S!* (a, cx)=6J for all a=cx. (26) 

Lemma 1 is an immediate consequence of the optimality axiom; observe that 
the sensitivity measure is differentiable if the process equation, the control law 
and the performance functional are differentiable and the well-setting axiom is 
satisfied. 

a) 
IM~i-;:-;~:th;;;:ct~-;:;---·-------------~ 
' I 

Real controller . Process I 
oq;=(Q~ , ocx) ? ocx -o 

ox' 
oxi= - V

1 
(P oui +P0 )3<X) t . lox; x u ! 

L __ ______ _________ ____________ _j 

L ________ ____ _______________ _j 
b) 

uo: oq1 =(0~.ox"')+<o:X,6<X) 

ox"'= -P~1 
P"'ocx 

Fig. 2. First order local sensitivity model (change oc1 =a to oc 2 =a+ooc): a) full model, b) equivalent 
model under the assumption of optimality (<Q', ox.,>+ <Q*, l5u) =0 for l5x.,= -P-1 P., l5u, all l5u) 

X U _ X 

LEMMA 2. If the optimal performance characteristics Q (a) and the sensitivity 
measure Si (a; et.) are differentiable, then the first-order approximation of the change 
of the performance Qi (a, oo) due to the process parameters change et.=a+bcx: 

bQi=(Q~*, bcx)=<Q: - P: p;- 1 Q:, oet.)=(Qao ocx)=oQ (27) 

--------------- - - --
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is the same as the first-order approximation of the change of the optimal performance 
-characteristics. Hence, one cannot distinguish various optimal control system 
structures by the first-order sensitivity analysis. 

The proof of lemma is also immediate. Since Q; (a, a) = Q (a) + Si (a, a), ex
panding both sides for a = a+biX and taking into account (26) we obtain (27). An 
interpretation of the lemma 2 is given in _ Fig. 2. 

LEMMA 3. If the sensitivity measure Si (a, a) is twice Frechet differentiable with 
respect to a and IX in an open set containing a = a, and the second-order derivatives 
are continuous with respect to a and IX, then 

(28) 

where the operators of second-order derivatives are evaluated at a = a. 
To prove the lemma, let us take IX=a+ba and expand S!* (a, a+ ba): 

S!"' (a, a + 61X) = s;, (a, a) biX+o (llbal]); S!* (a, a,+ba)= - S~a (a+biX, a + 6a) oa+ 
+o (llbiXII) since both S~* (a, a) = S~* (a + biX, a+6a)=B. By the continuity of S!a 
we get S~, (a, a)= - S!a (a, a). But then s;a (a, a) must be self-ad joint and S~a (a, a) = 
= S!a (a, a). The same argument applied to s;a (a, a + OIX) results in S~a (a, a) = 
= - s~a (a, a). 

The Lemma 3 can be also stated in form of a local relativity principle of sensi
tivity analysis: if the parameters of the model, a, and of the process, a, are suffi
ciently close, the sensitivity measure can be approximated by the difference of 
a - a only, no matter which of the parameters actually changes and which is kept
<:onstant: 

(29) 

An analogous statement is not true globally, since Si (a, a) is not a function of 
(1X-a). 

The conditions of the second-order differentiability of the sensitivity measure 
result from the following lemma: 

LEMMA 4. Suppose the process operator P and the performance functional Q are 
twice differentiable with respect to x, u. Suppose the control law operator Ri is 
differentiable with respect to x, a. Suppose: 

(i) Q: - P~' r;- 1 Q:=e (optimality), 
(ii) (Px+Pu R~)- 1 exists (well-setting). 
Then the sensitivity measure Si (a, a) is twice differentiable with respect to 

a and 
(30) 

where A is specified by (lOa) and 

(31) 

The operator X~ is called the structural state sensitivity operator, U~- the 
structural control sensitivity operator. They determine the structural state and 
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control variations ()ui = U~ ba, ()xi = X~ ba, which are the first-order approximations 
of the state and control changes due to a mistake ba in estimating the real process 
parameters e<, a= IX+ ba. 

Observe that Lemma 4 gives only the conditions of differentiability of Si (a, IX) 
with respect to a; the conditions of differentiability with respect to a are similar. 
The situation where a is kept constant and <X changes is actually of much larger 
practical importance; however, it is much more simple analytically and computa
tionally to investigate the reverse situation, when a changes and <X is kept constant -
see Fig. 3. According to the Lemma 3 and the local relativity principle, both ap
proaches are locally equivalent. 

a) 

b) 

oa•-oo; 6u i ~R1ol-Rlo<X 1°u~ dqi =0.5 (< Lxx0Xi, oxi)·r ~qixAqi - aq 

ox;= P~ 1 Pu oui 
6x' 
~ + < Luu dui, 6u i>+<Lxudui,oxi)) 

Fig. 3. Second order local sensitivity mo1el: a) full model (change Ct: from Ct:,=a to Ct:1 = a+ox); 
b) equivalent model based on the local relativity principle (change a from a1=Ct: to a1=Ct:+oa, 

oa= -oCt:) 

To prove the Lemma 4, we have to determine xi, ui in the given structure by 
solving the equations 

(32) 

Under the assumptions of the lemma we can apply the implicit function the
orem; setting a= IX+ ba we get 

bui ={I - R~ (f\+ P" R~) - 1 P") R! ba= U! 6a, 

bx' = - f3; 1 p" ()ui, 

(33a) 

(33b) 

(33c) 
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where i, u are the optimal state and control satisfying P (:X, u, IX) = e and u = 

= Ri (:X, IX; IY.). Now we have to expand Q (x', ui, IX) - Q (:X, u, a)= Si (a, a) in Taylor 
series with respect to xi-:X, ui-a. In order to suppres the influence of the terms 
o (116all) onto the second-order terms, it is convenient to use the identity Q (xi, ui, 17.) = 
= Q (xi, ui, !Y.)-I-(17, P (xi, ui, 1X))=L (1J, xi, u', IY.). In fact, the first-order deriva
tives of the La grange functional are identically zero at i, u - see ( 4a, b, c); hence 
we get 

S' (a, 1Y.)=0.5 ((X~ oa, Lxx X~ ..5a)+2 <X~ oa, LXII u~ oa)+ 

+(U~ Ja, L"" U~ 6a))+o (11Ja ll 2)=0.5 (U~ 6a, AU~ Ja)+O (11&7 11 2
) (34) 

thus establishing the relation (30) and the conclusions of the lemma. 

As a summary of this paragraph, it is worth while to discuss the basic, con
ceptual difference between the first-order and the second-order sensitivity analysis 
of optimal control systems. The first-order sensitivity coefficients (the gradients 
Q;, Q!'") are equal for all possible structures and express the dependence of the 

t Q (ex) 
Q'(a,O<) 

0 2(a,cx) 

' 
(X 

cx.=a 

Fig. 4. An example of the performance characteristics 

Q (o:) and Qi (a, o:) by given a 

ideal, optimal performance Q (a) on the parameters of the problem. Nevertheless, 
the real performance Q' (a, a) depends strongly on the structure i; the differences 
between the performance in various structures can be astonishingly large- see 
[12]- even for small IY.-a. A simple interpretation of the fact is 'given in Fig. 4. 
Therefore, in order to investigate the sensitivity of various optimal control system 
structures, it is necessary to compute either the sensitivity measures S' (a, IX) = 

= Qi (a, cz) - Q (a), or at least the second-order sensitivity OR_erators S~a = s;". 
A determination of the sensitivity measure S' (a, cz) in i'ln analytical form is an 
extremely complicated task even in the simplest examples- see [12]; hence the 
importance of the Lemma 4. 
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4. Sensitivity operators of several optimal control systems 
structures 

131 

The Lemma 4 provides for a basis for sensitivity computations: if we only know 
the structural variations Jxi and Jui, it is easy to determine the approximation of 
Si (IX+ 6a, IX) given by the relation (34) . 

~a 
Real model 

Q(x,u,a)=q 
!ex P(x;u,a)=O 

qo=Qo(a,.:x) 
Open-loop Process 
controller 

Q(x; u~cx)=q0 
xo 

u0= 0 (a) P (x0
, w~ oc; )= x0 A 

Fig. 5. Open-loop optimal cont rol system 

i = 0 (open-loop) 
In the open-loop structure - see Fig. 5 -we have 

6u0 = 6u; 15x0 = -f>; 1 f>" thl; U~= Oa; X~= -f>; 1 f>u Oa. 

Sometimes it may be useful to determine 15x0
, X,? with the help of bi, .. t: 

~ .o_ ~' p'-·1 p' ~ . xo - x' p'-1 p' 
UX - UX + X a ua, a - a+ x a • 

i = 1 (closed-loop). 

fa 

Real model 

Q(x, u, a) = q 
P(x,u ,a) =O ~ex 

C I osed - loop Process 
q1= Q1(a,<X) 

x1 contro ller 
Q(x\u1,cx)~q1 

~, u1
m R 1 (x~a) P(x\u1,cx)=O 

Fig. 6. Closed-loop optimal control system 

In the closed-loop structure - see Fig. 6 - we obtain 

Ju1 =R~ 6x1 +R~ ba; 6x 1 = -P; 1 f>u 6u1 

where- see (18) 

x1 ... 

~1 ~-1 A L '1 1'-1 I' A 

Rx= -Luu (Lux+ Ill/ K); Ra = - L.,11 (Lua+L1111 M) 

(35a) 

(35b) 

(36a) 

(36b) 

and K, M are determined by (17a, 17b). We can get also closed expressions for 
u;,x; 
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------------------------------------------------------------
1 ( L- 1 - f' (- f' ~ -1 ~ Ua=- f+ 1111 (Lux+L1111 K) L,1x- L 11uL1111 (Lux+ 

- )1"')_1_ ~ + L 1111 K) - L 1111 L,~, (Lua + L,111 M), 

1 (t "' · f'- 1 "' - ) -1 L -- 1 - L ) xa = l/X - L,lll LUll (Lux+ LUll K) 1111 LUll (Lua + 1111 M 

(36c) 

(36d) 

but in most computational applications it is more simple to determine R~, R~ with 
the help of predetermined K, M, and then to solve (36a) numerically. 

i=2 (optimal trajectory tracking). 
If the operator P" has an inverse (or a pseudoinverse in some sense), another 

structure can be applied - see Fig. 7. The structure is called optimal trajectory 
tracking and is denoted by i = 2. The optimal trajectory tracking structure is in 

a 

Real model 

Q(x,u,a)=q 
P(x,u,a)-0 

Optimal 
trajector~ 

x=X(a) 

Cl a ssical 

controller 

Process 

O(x2,u2, o<.)=qz 

P (x2, u 2, o<.)-0 

Fig. 7. Optimal trajectory tracking control system 

a way dual to the open-loop structure: in the open-loop, we keep the optimal con
trol for the model, 0 (a), independently of the process changes, whereas in the opti
mal trajectory tracking we induce the process to realize the optimal state trajectory 
for the model, X(a), independently of the process changes. The structural varia
tions and sensitivity operators are4

): 

2_ •. 2_ --1 - •. 2_.. 2 _ --1 • -<5x -Jx, ou - -Pu Px Jx, Xa -X,, Ua - -Pu PxXa. (37a) 

A much more useful formulae for Ju2
, u; are 

i = 3 (open-loop optimizing feedback) 
Suppose the process equation has the form 

P(x, u, o:)=P1 (x)+P2 (x, u, o:) = e, 

(37b) 

where P 2 (x, u, o:) can be actually measured in the real process. Let the optimiza
tion problem be (locally) convex so that the optimal control can be determined 
by minimizing the Lagrange functional; we may also assume that a maximum 
principle is valid for the optimal control problem and the control can be determined 
by maximizing a Hamiltonian function. Let ~ =N (a) be computed on the basis 

4
) Note that in this case the assumption (ii) of Lemma 4 is not fulfilled. Nevertheless, the Lemma 

remains valid in this special case with slight changes in the proof. 
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of the model. We can require that the control be determined by a peak-holding 
controller, performing the operation 

min L (~, x, u, a) = (1], P 1 (x)) + min (Q (x, u, a)+(~, P 2 (x, u, a)). (38) 
u u 

~a 
Real model 

Q(x,u, a)=q icx 
P(x,u,a)=O Q3(a,o;) 

Optimal ad joint 
A Peak- h olding 

u3 Process 

trajectory ~ Cont r oller - Q (x3, u~ o;) =Q 

~~·~I( a) mJ n (q3+<~. p~)) P,(>2)+P2 (0, ~.cx)=O 1 
t P~= P2 (x~ u~cx) 

-
· q3= Q (x3, u~ ex) 

Fig. 8. Optimizing feedback control system (open-loop determination of optimal adjoint trajectory) 

Such a structure- see Fig. 8- is called the (open-loop) optimizing feedback, 
see [12]. It is not allways applicable, since we must measure not only P2 (x, u, a) 
but also Q (x, u, cr.) in order to construct an optimizing feedback controller. How
ver, in some applications (particularly if a Hamiltonian function can be maxi
mized at each instant of time) the structure is particularly effective. The structural 
variations and sensitivity operators control, are: 

c5u 3 = -(Luu+iux L,~/ L,"')- 1 iw, u; = -(L""+L"x L,~/ L,,")- 1 Lw, Na 
c5x3 =P; 1 PI/ (LI/u+LIIX L,~<1 L,,u)- 1 Lllll ol]; 

x; = L,~" 1 L,,ll ( LI/U + LIIX L,~x 1 L,ll) - 1 Lu,, Na ' 

(39a) 

where oq and Ra are the basic adjoint variation (lie) and the corresponding basic 
optimal adjoint sensitivity operator. Computationaly, we do not use the closed 
expressions (39), but solve the system of equations 

(39b) 

i = 4 (closed-loop optimizing feedback). 
The adjoint variable fj in the optimizing feedback structure can be determined 

as well in the closed-loop, as a function of the current state. Since the basic va
riation o~ is then determined by (15), we get 

0U4 = - (Luu + (LIIX + Lllll K) L,~/ L,,ll) - 1 
11111 M oa; 

u: = - ( Lllll + (LIIX + Lllll K) L,-:,1 L,,,) - 1 Lllll M; 

OX4 =L,~./ 1,111 (Luu+(L11x+L11,1 K)L,~x
1 1,,11)-

1 L,,1 Mc5a; 

x:=L,~x1 L,,u (Luu+(LIIx+L"', K)L,~} L,,,.)- 1 Lw, M; 

or, equivalently, we solve the system of equations 

(40a) 
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Ou4 = -1,~/ ((1ux+1u11 K) ox4 +1w, Moa); 

1,,x ox4 + 1,,11 ou4 =e. (40b) 

The structures presented above are only examples qf many possible structures. 
It is impossible to compare their general sensitivity properties. However, some 
heuristic rules exist. If the performance functional is related mostly to the cost 
of the open-loop structure (or, if applicable, the open-loop optimizing feddback) 
are usually the least sensitive. If the cost related to the state trajectory dominates 
in the performance functional, the optimal trajectory tracking structure is usually 
the best. There are cases when closedloop or the closed-loop optimizing feedback 
are very effective; but we cannot say in general that the closed-loop has lower 
performance sensitivity than the openloop (see e.g. [12]). 

5. An example 

The general approach presented above has been applied to several optimal 
control systems of industrial importance. For example, the optimizing feedback 
structures have low sensitivity when applied to the optimal control of energy supply 
to an arc furnace in steel industry [3]; when investigating the optimal control of 
a natural gas pipe-line supply system, described by. partial differential equations, 
a special structure of optimal boundary conditions tracking system is advantageous. 
However, each optimization problem of industrial importance has its own, spe
cific properties; to present such a problem in full detail would require much space. 
Therefore, we consider here only a very simplified example of an environment 
control problem [2]. 

The problem consists of minimizing the effects of industrial pollution in a geo
graphical area, taking into account the cost of anti-pollution equipement. The model 
has the form 

x(t) = Ax(t)+Bu(t); x(t0 )=Xo, 
r, 

Q(x, u)= J [0.5(u (t)-umY C(u(t)-um)+exp(F x(t))J dt, (41) 
to 

where x=(xt. ... , X 11 ) represents the accumulated pollutants, u=(ub ... , uk) corres
ponds to the industrial waste generated by each factory, and u"' = (u1111 , ... , U 111k) 

is the waste generated without any anti-pollution equipement. The matrix A = 
= diag {a;} reflects the dynamic properties of pollutant accumulation and decom
position. The matrix B represents the content of pollutants in the industrial waste; 
the matrix C = diag { c;} is related to the cost of anti-pollution equipement, and the 
vector h consists of coefficients estimating the social losses related to each type 
of pollutant. 

The problem was solved numerically by a decomposition and coordination 
method [2]. The convergence properties of the optimization procedure and the 
optimal solutions are illustrated in Fig. 9 for n = 2, k = 2. In the sensitivity anal-
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ysis, the parameters umi• ai were considered as the least certain; hence ex:= ( uml> ... 
... , umk> ab ... , a"). Since it was possible to determine the matrices Xa (t), Oa (t), 
Ha (t), K (t), M (t) at the optimal solution, the corresponding matrices of the sec
ond-order sensitivity coefficients s;a were found for several optimal system struc-

+c 

/_ I 

4 

iterations 

~-i- ... -

(ij 
E 

. ~+r--·-----+-----'------'--
1 

I 

0 0.1 0. 2 0.3 0.4 0.5 0. 6 0 .7 0 . 8 0.9 . 1. 0 

t ime 

0 
.::: 
c . 
0 
<.) 

Fig. 9. The convergence of optimization procedure and the optimal solutions for the problem of 
environmer1tal control 

tures by suitable integration. For a given vector Llcx:, the corresponding performance 
loss were determined: 

0.5 
L i--- _ A T Si A --- Q LJ ex: a a LJ Cl. • (42) 

The results obtained for two cases of assumed parameters values are given 
in Table. In both cases the best stmcture was the closed-loop optimizing feedback. 
This rtlsult has the following interpretation for the problem considered: the most 
effective (the least sensitive) control system structure consists of predetermining 
the dependence of the adjoint variables Y/ on the state x, measuring the state in the 
real process and maximizing the Hamiltonian function in the real process: 

H (ry, x, u, t) = ---0.5 (u--- u11,Y C (u--- u111 ) + Y/r Bu + Y/r [Ax--- exp(F x)]. (42) 

But the matrix C is diagonal; hence each factory can minimize its own goal
function 

g;(u;) = 0.5 C; (u; --- Umi) 2--- (Y/T b;) U;, (43) 

where bi is a column of B and Y/ can be interpreted as the vector of shadow-prices 
related to pollutants; they change in time and in dependence of the measured amount 
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of the accumulated pollutants x. The exact dependence of the shadow-prices 17 on 
x may be difficult to determine; however, given x, fj, we can use the approximation 
17 (t)-fj (t)=K(t) (x (t)-x (t)). These considerations result in a hierarchical struc
ture of the control system, presented in Fig. 10. The coordination level defines the 

• 

Global mod~ I 

optimization 

~x fJ ~K 
Closed-loop ~ correction 

'J• ~ +K (x-x) 1-

shadow prices rz 
for gene r ating 

polluting w'a ste 

pollution state 

measurement 

/1 \rz '7 

1-st factory 
r---'L--, 

k-th factory I i- th factorkJ I 
management management management 

m in g1 (u1,rz) I min 9i ( Uj, rz) I m in gj., ( uK•'l) 
u, 

L~--r,,_j 
UK 

u,! !g, X Uj 9i X . uKl l9K 
Environment 

Fig. 10. The hierarchical structure of environmental control (closed-loop optimizing feedback 
structure) resulting from sensitivi ty considerations 

optimal trajectory x, the optimal adjoint trajectory fj (the optimal shadow prices) 
and the Rictati matrix K (the correction coefficients for shadow prices) on the 
basis of a global model. The state x is measured and the corrected shadow prices 
are determined, also in the coordination level. The local controllers determine the. 
actual control ui on the basis of the given shadow-prices, by minimizing the local 
goal-functions gi. 

The example presented here is clearly rather simplified: we could represent in 
the model the accumulation of antipollution investiments by introducing addi
tional state variables, choose more adequate performance functionals etc. How
ever, the main goal _of the example was to illustrate the comparison and interpreta
tion of several control system structures, resulting from the general sensitivity 
analysis approach. 



Table. Sensitivity coefficients and estimators of sensitivity measure for the problem of environment control (t0 =0, t1 = 1, n= 2, k=2) 
I 

A=[2.0 0 l B=[5.0 0 l C=[8.0 0 l h=[0·1 
A=[l.O 0 l B=[0.5 0 l C=[l.O 0 l h=[0.5l 11 =[3.0l x (t )=[2.5] 

0 8.0 , 0 1.0 , 0 2.0 , 0.5 , 

0 1.5 ' 0 1.0 ' 0 1.5 ' 0.8 ' m 4.0 ' 0 3.0 
u, =[4.0l x(to)=e·o] 

1.0 1.0 

A<X = [5 4 30 20]T(in % ) A <X = [5.0 1.25 1.25 5.0]T (in %) 

Control law I S~a I L' in % I SJa ' I V in% 

Open-loop 2.18 -0.34 0.39 0.39 9.89 - 0.03 0.05 0.10 
- 0.34 0.39 0.40 0.70 5.28 - 0.03 10- 4 3·10- 5 2·10- 4 4.40 

0.39 . 0.40 0.94 0.14 -0.05 3 ·10-5 0.03 0.08 
0.39 0.70 0.14 0.22 0.10 2·10- 4 0.08 2·10- 3 

Closed-loop 2.18 - 0.34 0.29 0.22 9.89 -0.03 0.04 0.08 
-0.34 0.39 0.34 0.57 4.26 -0.03 10-4 5·10- 5 7 ·16- 5 4.36 

0.29 0.34 0.63 0.90 0.04 5 · 10- 5 0,03 0.03 
0.22 0.57 0.90 0.13 0.08 7·10- 5 0.03 0.04 

Optimal trajec- 2.18 - 0.34 3.86 3.16 9.89 -0.03 10.3 0.57 
tory tracking -0.34 0.39 -0.41 -0.08 T5.2 -0.03 10-4 0.03 10- 3 12.2 

3.86 -0.41 15.8 1.33 10.3 0.03 1.47 0.19 
3.16 - 0.08 1.33 0.87 0.57 10-3 0.19 3·10- 3 

----
Open-~oop 2.55 -0.82 0.53 0.78 10.2 -1.94 0.02 0.05 
optimizing -0.82 3.22 0.78 1.13 8.80 - 1.92 2.00 0.06 0.01 3.73 
feedback 0.53 0.78 0.84 1.24 0.02 0.06 0.05 0.09 

0.78 1.13 1.24 0.18 0.05 0.01 0.09 0.01 

Closed-loop 0.06 0.15 0.15 0.26 3·10- 4 2·10- 4 9·10- 5 2·10 4 
optimizing 0.15 0.39 0.39 0.66 3.51 2·10-4 10-4 8·10-5 2·10- 4 0.04 
feedback I 0.15 0.39 0.84 1.24 9·10 - 4 8 ·10- 5 5·10- 2 9 · 10- 2 

I 0.26 0.66 1.24 0.18 2·10- 4 2·10- 4 9·10- 2 2·10- 3 __ .. _ 

tJj 
I» 
~. 
() 

... 
(1) 

50" .... g· 
UJ 

5. 
'0 
(1) ... .... 
0 s 
I» 
::s 
() 
(1) 

UJ 
(1) 

::s 
;:! • .... 
§: .... 
'< 

-w 
-1 



138 A. P'. WIEiRZB~C:KI, A. L. DONT'CHEV 

6. Conclusions 

The paper presents a general methodology of the ideal and real sensitivity ana
lysis of optimal control systems in various structures. Processes described by ordi
nary - and partial differential equations, difference, difference-differential and 
integral equations can be analysed uniformly in this general approach. The approach 
has been recently applied by one of the authors to solve two important infinite
, dimensional problems: the problem of changing the structure of a difference
differential model by neglecting small time delays and the problem of neglecting 
small parameters changing a system of differential equations in Banach space -
see [14 ], [15]. 

Moreover, the computational methods of sensitivity analysis resulting from the 
general theory are closely related to the known computational methods of optimi
zation. Once the optimal solution is found, the determination of the basic control, 
state and ad joint variations is equivalent to the solution of a quadratic- linear 
approximation of the original problem. The determination of structural variations 
and thus of the second-order sensitivity coefficients is usually rather easy; a possible 
exception is the computation of closed-loop structural variations for complicated 
(partial differential, difference-differential) processes, where the solution of the 
corresponding Riccati equation is rather a difficult task. However, the local sensi
tivity analysis of closed-loop systems requires less effort than the actual, global 
synthesis of such systems because it is necessary to perform only the synthesis of 
a linear approximation of the control law in order to determine the local sensiti
vity coefficients. Since it is not a priori known whether a closed-loop system would 
be less sensitive than an open-loop or other structures, it may be advantageous 
to perform the local sensitivity analysis before deciding to synthesise the closed
loop control law. Moreover, the local sensitivity analysis can provide data for 
choosing hierarchical control system structures, investigating their feasibility etc. 
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Podstawowe zaleinosci w analizie wrazliwosci optymalnych 
uldad6w sterowania 

Przedstawiono podstawowe poj~cia i zaleznosci w analizie wrazliwosci pierwszego i drugiego 
rz~du optymalnych uklad6w sterowania opisanych modelami w przestrzeni Banacha. Om6wiono 
dwa podstawowe sformulowania problemu analizy wrai:liwosci: idealuej analizy wrazliwosci na 
podstawie modelu matematycznego oraz analizy wrazliwosci ukladu sterowania na podstawie dwu 
modeli matematycznych i poj~cia sterownika w danej strukturze. Podstawowe lematy odnosz~ce 
si~ do tego poj~cia i wlasnosci miary wrazliwosci przedstawiono dla przypadku og6lnego rozwa
zanego w tym artykule. Om6wiono poj~cie operator6w wrazliwosci drugiego rzt;du, zbadano ich 
istnienie oraz warunki niewrazliwosci pierwszego rz~du. Podano metody obliczania wartosci opera
tor6w wrazliwosci drugiego rzc:;du dla kilku struktur uklad6w sterowania. Metody te umozli
wiaj~ efektywne por6wnanie wrazliwosci r6znych struktur sterowania optymalnego i wyb6r struk
tury najlepszej (najmniej czulej) przy niepewnych wartosciach parametr6w. Przyklad ilustruje 
zastosowanie tych metod do problemu sterowania srodowiskiem, co w wyniku daje wyb6r hierar
chicznej struktury uldadu sterowania. 

OcHOBHble 3aBlfCIIMOCTH npn aHamne 'IYBCTBHTeJihHOCTII 

ODTUMaJibHhiX CHCTeM ynpaBJieHIUI 

CTaTbl! COP,eplKliT OCHOBHb!e llOHl!Tlil! li 3aBI1CliMOCTli aHaJIM3a 'fYBCTBMTeJibHOCTH nepBOTO 
li BTOpOTO IIOpl!P,Ka OIITHMaJihHbiX CliCTeM ynpaBJieiDfl!, OllliChiBaeMhlX MOP,eJil!Mli B 6aHaXOBOM 
npOCTpaHCTBe. PaCCMOTpeHbi P,Be OCHOBHbie <iJopMymrpOBKH rrp06JieMbi aHalTM3a 'iYBCTBMTeJib
HOCTH: HP,eaJihHOTO aHaml3a 'IYBCTBliTeJihHOCTH H:l OCHOBe MaTeMaTII'IeCKOii MOP,emr li IJOHHTHl! 
yrrpaBJieHHl! B P,aHHOM CTpyKType. )J:Jil! o6ru;ero CJiy'fal!, paCCMOTpHBaeMOTO B P,aHHOii CTaTbe, 
rrpeP,CTaBJieHbi OCHO BHhie JieMMbi, KaCaKJIIJ:HeCH :HOTO ITOHHTlil! li CBOHCTB Mepbl 'iyBCTBliTeJibHOCTli. 
PaccMorpeHo noHHTne orreparopos 'IYBCTBHTeJibHocrn sroporo nopH.n:Ka, nccJieP,osaHhr ycnosnl! 
liX cyru;eCTBOBaHHl! M yCJIOBHl! He'fyBCTBMTeJibHOCTH rrepBOfO IIOpHP,Ka. )J:aHbl MeTO.LJ:bi Bbl'!HCJieHHH 
3Ha'IeJrnii: OIIeparopoB '!YBCTBHTeJibHOCTll BTOpOTO IIOpHP,Ka P,Jll! HeCKOJibKliX CTpyKTyp CllCTeM 
yrrpaBJieHHl!. 3TH MeTOP,bl II03Bam!KJT 3<iJ<iJeKTHBHO CpaBHHBaTb 'lYBC;Bn:TeJihHOCTb pa3Hb!X CTpyK
Typ onTHMaJibHoro yrrpaBJieHHl! li Bbr6rrpaTh Hanrry'fmHe CTPYKTYPbi (HanMeHee 'Jyscr mnenbHbie) 
npn: Heorrpe.n:eneHHbiX 3Ha'ieHnl!x napaMeTpos. )J:aH npHMep, HJIJIKJCTpnpyKJmHii:: nplli"WeHeHHe 
3THX MeTO.LJ:OB K npo6JieMe ynpasrreHHl! cpe.n:oii:, 'ITO B pe3yJibTaTe .n:aeT B03MOJKHOCTb Bb!60pa 
HepapXH'JeCKOii CTpyKrypbi CHCTeMbi ynpaBJieHHl!. 
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formatu A4 z zachowaniem interlinii i marginesu szerokosci 5 cm z lewej stro
ny. Prace nalezy skladae w 2 egzemplarzach. Uklad pracy i forma powinny bye 
dostosowane do nizej podanych wskaz6wek. 

1. W nagl6wku nalezy podae tytul pracy, nast~pnie imi~ (imiona) i nazwisko 
(nazwiska) autora (autor6w) w porzqdku alfabetycznym oraz nazw~ reprezento
wanej instytucji i nazw~ miasta. Po tytule nalezy umiescie kr6tkie streszczenie 
pracy (do 15 wierszy maszynopisu). 

2. Material ilustracyjny powinien bye dolqczony na oddzielnych stronach. 
Podpisy pod rysunki nalezy podae oddzielnie. 

3. Wzory i symbole powinny bye wpisane na ma·szynie bardzo starannie. 
Szczeg6lnq uwa.g~ nalezy zwr6cie na wyrazne zr6znicowanie malych i duzych 

liter. Litery greckie powinny bye objasnione na marginesie. Szczeg61nie doklad
nie powinny bye pisane indeksy (wskazni:ki) i o·znaczenia pot~gowe. Nalezy ~to

sowac nawiasy okrqgle. 
4. Spis literatury powinien bye podany na koiicu artykulu. Numery po.zycji 

literatury w tekscie zaopatruje si~ w nawiasy kwadratowe. Pozycje literatury 
powinny zawierae nazwisko autora (autor6w) i pierwsze litery rmion oraz do
kladny tytul pracy (w j~zyku oryginalu), a ponadto: 

a ) przy wydawnictwaclh zwartych (ksiqZki) - miejsce i rok wydania oraz 
wydawc~; 

b) przy artykulach z czasopism: nazw~ czasopisma, numer tomu, rok wyda
nia i numer biezqcy. 

Pozycje literatury radzieckiej nalezy pisae alfabetem oryginalnym, czyli tzw. 
grazdankq. • -

Recommendations for the Authors 

Control and Cybernetics publishes original papers which have not previously appeared in other 
journals. The publications of the papers in English is recommended. No paper should exceed in 
length 20 type written pages (21 0 x 297 mm) with lines spaced and a 50 mm margin on the lefthand 
side. Papers should be submitted in duplicate. The plan and form of the paper should be as follows: 

1. The heading should include the title, the full names and surnames of the authors in alphabetic 
order, the name of the institution he represents and the name of the city or town. This heading 
should be followed by a brief summary (about 15 typewritten lines). 

2. Figures, photographs tables, diagrams should be enclosed to the manuscript. The texts 
related to the figures should be typed on a separate page. 

3. Of possible all mathematical expressions should be typewritten. Particular attention should 
be paid to differentiation between capital and small letters. Greek letters should as a rule be defined. 
Indices and exponents should be written with part icular care. Round brackets should not be replaced 
by an inciined fraction line. 

4. References should be put on the separate page. Numbers in the text identified by references 
should be enclosed in brackets. This should contain the surname and the initials of Chris'tian names, 
of the author (or authors), the complete title of the work (in the original language) and, in addition: 

a) for books - the place and the year of publication and the publisher's name; 
b) for journals- the name of the journal. the number of the volume, the year o! the publication, 

and the ordinal number. 


