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The paper presents basic notions and relations in first — and second order performance sensitivity
analysis of optimal control systems described by models in Banach spaces. Two basic formulations
of the performance sensitivity analysis problem are discussed: the ideal sensitivity analysis based
on one mathematical model, and the sensitivity analysis of a control system, based on two mathe-
matical models and on the notion of a controller in a given structure. Basic lemmas related to the
notion and properties of sensitivity measure are restated for the general case considered in the
paper. The notion of second-order sensitivity operators, their existence, and the conditions of
first order insensitivity are examined. Methods of computing second-order sensitivity operators
in several control systems structures are given. These methods result in an effective way of comparing
performance sensitivities of various optimal control structures and of choosing the best (the least
sensitive) structure under uncertainty of parameters.

An example illustrates the application of these methods to an environment control problem,
resulting in the choice of a hierarchical control system structure.

1. Introduction

The problem of sensitivity analysis of control systems has been formulated
and investigated relatively early. The main result of the sensitivity analysis consist
in showing that the output of a closed-loop control system is less sensitive to dis-
turbances or under uncertainty of parameters than the output of an open-loop
system.

The development of the optimal control theory motivated also an extensive
research in the field of the analysis of performance changes due to disturbances
or parameter uncertainty. This problem is called performance sensitivity analysis
of optimal control systems. First particular problem that has been thoroughly
investigated is the determination of optimal performance, state and control va-
riations under known changes of parameter values — see e.g. [5]. This particular
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branch of sensitivity analysis is called here ideal adaptive sensitivity analysis; in
the ideal adaptive situation there is no actuall necessity to distinguish between the
model and the real process to be controlled. The ideal adaptive analysis stimulated
many techniques of suboptimal control (nearoptimum design technique, optimaly
sensitive structures etc. see [1], [5], [6]) where the differences between the model
and the real process are taken into consideration but are compensated with help
of measured or estimated parameter changes. The second, basic problem is the
comparison of performance sensitivity of various optimal control system struc-
tures, under the assumption that parameter changes are not necessarity measured
nor estimated during systems operation, i.e. under uncertainty of parameters.
This situation is much more common in practical applications; it is natural to say
that an optimal control system structure is better than other structures if its per-
formance sensitivity is lower without the necessity of estimating parameter changes.
In this case, both the model and the real process (or, strictly speaking, the actual
model and a second model representing the parameter uncertainty) must be taken
into consideration.

The investigation of the problem of performance sensitivity comparison star-
ted early [8], [11], but soon led to the so-called [11] Pagurek-Witsenhousen paradox:
the first order performance sensitivity coefficients are identical for an open-loop
and for a closed-loop optimal control system. This result has been since then gener-
alized and reconfirmed in many other situations. Kreidler [1], [7], accepting the equal
performance sensitivity coefficients for an open-loop and a closed-loop system,
proved that a measure of trajectory sensitivity is lower in the closed-loop case.
Kokotovic at al. [5] proved more: if the parameter changes can be measured or
estimated, then sensitivity coefficients of arbitrary order can be made equal for
an open-loop and a closed-loop structure by a Taylor-series compensation of par-
ameter changes. This result, however, is closely related to the ideal adaptive sit-
uation, since the ideal adaptive structure based on the knowledge of parameter
changes gives totally identical results for any open-loop and closed-loop structure.

Being reconfirmed in many ways, the Pagurek-Witsenhousen result had an
effect to stopping further investigation of the basic question: is there any difference
of performance sensitivity of various optimal control system structures, or, equiv-
alently, is there any reason for prefering one or another optimal control system
structure under uncertainty of parameters. Most of sensitivity investigation turned
to other directions of research [1]. First in [12] a proof was given that the Pagu-
rek-Witsenhousen result is an inherent and immediate by-product of the optimality
of control and is valid for all possible optimal control system structures, hence is
not meaningful; that at least second-order sensitivity coefficients must be considered
in order to compare sensitivities of various structures under uncertainty of para-
meters, and that there exist rather large differences in performance sensitivity of
various structures. However, this line of approach has not been followed further.

In this paper, second-order methods of performance sensitivity analysis are
developed for a general class of models in Banach space (including ordinary differ-
ential equations, difference-differential equations, partial differential equations
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and many others) and for an arbitrary pre-specified optimal control system struc

ture. An effective method of comparing sensitivities of various structures is pres
ented; it is shown that a sensitivity comparison for several given structures requires
no more additional computational effort than the determination of optimal control
itself. It is possible thus to choose at the most effective control system structure
from a given group of structures under uncertainty of aprameters. '

Because of generality of the Banach space approach, many basic notions and
relations introduced earlier for models described by ordinary differential equations
are restated or gefieralized in the initial part of the paper. Therefore, the initial part
of the paper presents a detailed formulation and basic results of the ideal adapta-
tive sensitivity analysis. The performance sensitivity investigation under uncertainty
of parameters, based on two models (the model and the real process) is called real
sensitivity analysis; a detailed formulation and basic relations for this case are
also given. These relations form a basis for the development of comparison methods.
for performance sensitivity of various optimal control system structures.

2. The optimal control and ideal semsitivity problem

Consider the following optimization problem. Let B, B,, B,, B, be Banach
spaces. Let Q:B, x B, x B,—~R' be a “performance‘‘ functional. Let P: B_x B, x B,—~B,,
be a ’’constraining” operator. The problem '

min Q(x, u, 9)=0(a), (1)
(x,u)eR
where @ is the set of (x, u) such that
P (x, u, a)=0 € B, 2)

can be looked upon as an optimal control problem with the state x, control # and
parameter «, provided the constraining relation (2) determines uniquely an x for
any given u, a and thus can be interpreted as a state equation. Hence we shall often
call P the process operator.

We assume that there exist a unique normal optimal solution of the problem
(1) for each a in a given subset in B,, without specifying the conditions of existence
and normality'). Moreover, assume B,, B, be reflexive Banach spaces; let operator
P be Frechet differentiable with respect to (x, #) and denote by P,: B,— B, the Fre-
chet derivative of P with respect to x; let there exist P;'. Therefore, P, is a topo-
logical isomorphism of the spaces B, and B,. Let the functional Q be convex in
a neighbourhood of the optimal point (£, ) and Frechet differentiable with res-
pect to (x, ). Then the corresponding Lagrange functional has the following normal
form

L (3, x, u,0)=0 (x, u, a)+<{n, P (x, u, a)) 3)

1) By a normal solution of an optimal control problem we understand a solution corresponding

to a Lagrange functional in the normal form (3), whereas the general form is L (%, x, u, a)=

=10 Q (x, u, a)+<n, P (x, u, a)>. Therefore, a problem is normal if #,5%0. For discussion of nor-
mality conditions see e.g. [13].
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where 77 € B: is a Lagrange multiplier and {-, -» is the duality between B: and B,.
The necessary conditions of optimality [13] can be written as

Ly=0; (%, 4, a)+P} (%, 2, a) /=0 € B}, (4a)
LE=Q% (% 4, a)+P% (%, 4, @) H=O € B, (4b)
L: = P(x,u,a) =0O¢€B,, (4c)

where stars denote gradients of functionals, adjoint operators, or dual spaces,
respectively. The equation (4a) corresponds to the gradient of the minimized func-
tional reduced to the space of independent variables B,, see [13]; (4b) can be inter-
preted as the basic adjoint equation; (4c) is the state equation.

According to the assumptions, the equations (4) determine the optimal solu-
tion 1= U (a), =X (a) and the functional 0 (¢)=0 (X (), U (a), a). The functional
O (@) is the basic optimal performance characteristics, expressing the dependence
of the performance on the parameters of the optimal control problem. Similarly,
U (a) is the basic optimal control characteristics and X (a) is the basic optimal state
characteristics.

Suppose P, Q, are Frechet differentiable with respect to a. For a given optimal
u=1i it is easy to estimate the first order variations of x and Q due to a change odd
parameters da by

ox=—(P;* P) (%4, a)da (5
where —P;' P,=X,: B,~B, is called the state sensitivity operator, and
00=Q,—P. P;"* 0)) (%, 4, a), da). (6)

These variations represent the influence of the parameters on the state and
performance if the optimal control is applied in a control system in the same way
as it is determined, that is, in so calied open-loop structure. If we could measure
precisely the parameter change da and use the knowledge to readjust the optimal
control, the corresponding variations of state and performance should be, ob-
viously, different; we shall call the situation the ideal (adaptive) structure. To com-
pute the variations?), let us assume P, Q be twice Frechet differentiable in (x, u, a).
The variations of optimal (%, #) due to a change of parameters da result from a

linearisation of (4a) ... (4c) ;
Lo 0014 L,y 68 +1L,, 57+ Ly 60=06, (7a)
Ly 6ii+ Ly 6%+ Ly, 00+, 0a=0, (7b)
L. 60+L,. ox+ L,.0a=0. (7¢)

These equations are called the basic variational equations; L,, denotes the ope-
rator of second-order derivatives of the functional L with respect to u, evaluated
at (4, %, 4, a), etc. Since L,.=P, (x, u, a) is invertible, we get from (7b), (7c)

of=—L-*(L,, 6a+L,, da), (8a)

nx

(Sﬁ == 1:— : (zxu _Lxx ‘i;,_xl j:uu) 5-’2 + (Z‘xa —j‘xx Ll;;l z‘na) 6‘2), (Sb)

xn

%) See also [5] for a similar development for problems described by ordinary differential equa-
tions.
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and from (7a)

Ast+Bsa=0, ©

where :
A=l Eo b Eee B B~ Fe L% B B =Lt By il (10a)

Bl I L Lot Ll Lx,, Li—L Lt Lyut Lo (10b)

Since A is the hessian operator of the minimized functional, reduced to the space
of control variables — see e.g. [13], it is usually a positive operator. Assume 41
exists; then

dit=—A~"* Boa (11a)
s#=Lt (L A=t B—L,) 8a, (11b)
51/] Lwl ((Lm —Lxx L . f‘nu) A t B (an _Lxx l nx na)) da. (1 IC)

The operators

Ua= "'A 1 B X L 1 (z/m] /i—l B-—‘z’ﬂﬂ) (12)

xn

are the optimal control sensitivity operator and the optimal state sensitivity operator
in the ideal structure, representing the influence of the parameters on the control
and the state if they are optimally readjusted after each parameter change. Ho-
wever, in most of practical applications it is almost impossible to determine the
operator (12) analytically, when determining the basic variations di, X, 6] com-
putationally, it is preferable not to use the relations (11a, b, ¢), but to apply a spe-
cial procedure.
Usually, the inversion of [:,,,, is rather simple. We get then from (7a)

o= . (Lu'c o +Lm] 5’1 +Lua 50) (13)

uu
Substituting dz in (7 b, ¢) we obtain

A, 0X+U, 07 +B, da=0,

. . (14a)
%3 0,{‘-5-9[1 Oﬁ“f‘%z §a=9 &
where

~

Q[1 :f‘n. z’ Vi Aux; SzIZ = -'Z'uu j—’_ . Z‘m];

uu uu

Py P

B, =L, —L, L.t E.; (14b)
g*)13:: %X L‘cuL Lux:B2*L +L Luu Lua'

The equations (14) are called canonical variational equations. Their solution is
clearly expressed by the relations (11 b, ¢). Hence there are many linear operators
K, M which would satisfy the relation

3 = KoxX+ Mda (15)

but one way of choosing K, M is particularly useful. Setting (15) into (14a), pre-
multiplying first of the equations by K* and summing both the equations we get

(K* Uy K+ K*UA, +UF K+0,) 0%+ (KW M+U M+KB,+8,)0a=0  (16)
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and requice that
K* Uy K+K* A+ K+U3 =6, s,

(K* Uy +) M+K* B, +B,=0. (17b)

The equation (17a) is called Riccati operator equation. The operator K defined
by the equation has many interesting properties which can be fully investigated
only when we define — beside the space of state trajectories B, — the space of mo-
mentary states B, ), take into account the semigroup properties of the process opera-

“tor P, etc — see [4], [13]. Without motivating more deeply the equations (17a, b)
nor analysing their properties we shall only note two important facts:

() Solving the equations (17a, b) is very often the most effective computational
way to determine J%, d1], oii — and thus to invert the hessian 4.

(b) The basic control variation J#, resulting from (13), (15), (17a, b):

55): —fﬁ;tl (Lux_'_‘tull K) 5)e—£l;11 (f‘ua+£l‘ll M) (5a (18)
is the linear approximation of the optimal control law in the classical closed-loop
structure. '

The property (a) is substantiated by large computational experience. The pro-
perty (b) can be rigorously proven; since it was proven in many particular cases
of process operators and a general proof for linear-quadratic case was given in
[4], we omit here the proof.

Beside determing the basic variations di, 0%, J7, it is also important to anal-
yse the behaviour of the performance functional Q (a). Its variation has the form

60=(Q,, day+<Q%, 6%y +<0Q,, diy =
:<Q: _Ean i‘,\—-;,l Qi +é* A‘_ 1 (Zun Z‘;p;l Qz _Q:)a 5a> (19)
But L,, L' 0;—0, =6 according to (4a), (4b). Hence
00 =40, —P, P, 03, day (20)

and the ideal performance variation is the same as in the open-loop structure (6).
Therefore, the readjustment of optimal control related to parameter changes does
not apparently result in any gain of performance. Such a interpretation-of this re-
sults is, however, superficial; the only true interpretation is that the first-order
approximation of optimal p\erformance is not sufficient for the comparison of various
optimal control structures. Moreover, the investigation of U (a), X (a), O (a) does
not provide answers for several important problems related to applications of opti-
mal control under uncertainty of parameters; therefore, this investigation shall
be called the ideal sensitivity analysis.

3. Real sensitivity probiem
To achieve practically relevant results, a much more complicated model of

the sensitivity problem must be formulated (see Fig. 1). In real applications, the
determination of an optimal control is based on a mathematical model (e.g.
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QO (x,u, a)=q, P (x,u,a)=0) of the problem, and the model obviously differs
from the reality. Therefore, the optimal control is seldom applied in the same way
as it is determined (in the open-loop structure), though the ideal measurement of

.r_ a Model of the i-th s‘%‘ruc‘;‘ur«::?
of a conirol system

! Real model !
|| “Qlwarg o g
1 P(x u,a)-0 ) Dr'oc‘ess : qi=QI(a ) Si(a )20
! Real controller { u' | Q(x, U, x)=q' : 7"’*@*.3—9
i ‘I_» u' =R (x, a0 P(x, U )=0 —s»—c‘!»—{\ il i
s o
| S i H
[ T TN —
‘rn o> ideal model "E
; of a control sustem ’
Ideal model! ; ;
B iy e q’{}i ;!
, Qx,u,x)=q Y i
P(x,u,x)=0 Process -
; ] ehiled
Ideal controlier{ u' QX 0,x)=q F——O—p
| G= R%x) P(X,0,0-0 2 !

0

Fig. 1. Glcbal sensitivity model

the parameters a (the ideal adaptive structure) is usually not possible. Usually,
several output variables of the real process can be measured and utilized in order to
improve the control which, being optimal for the model, is not optimal for the
real process.

Mathematically speaking, we must first define what the “reality” is. The simplest
assumption is that the “reality” can be represented by another model which differs
from the original one only in the value of the parameters (e.g. O (x, u, @)=g,
P (x,u, 2)=0). In fact, such an assumption is quite general. For example, if
P (x,u, a)=6 corresponds to an ordinary differential equation, an appropriate
choice of P and o can make P (x, u, )=0 corresponding to a partial differential
equation (although some boundary layer problems will arise in such a case).

Secondly, we must define what is to improve the control with the help of variables
measured in the real process; this definition is much more difficult.

The optimal control 7= U (a) can be represented in various ways, as a function
of various variables of the real process, i.e. of the second model. The way of repre-
senfing the control

u'=R!(x, a, «) @1

is denoted by the upper index i and called the control law or the controller in the
i-th structure of the control system. By i=0 we denote the open-loop structure,
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where R° (x, a, 0)=U (a). By i=1 we denote the classical closed-loop structure,
where the current value of control depends on the current value of state but not
on previous nor future state values — see [4]. The synthesis of the function R!
is an extremely difficult task except in some fundamental cases, e.g. the linear-
quadratic one. However, we can determine the derivatives R, R} according to
the relation (18). '

The classical closed-loop structure is by far not the only one possible: for example,
any linear combination (with coefficients summing up to one) of the open-loop
and closed-loop optimal controllers results in an optimal controller. The number
of possible structures is thus uncountable and limited only by the imagination of
control-system designers. ,

The control law (21) results in the following relations:

P(x'. R'(x, a, o), x) =0 € B,, (22)

O (x, R (x', a, @), ) = Q' (4, @) (23)

The relation (23) defines the functional QF (a, ), if the relation (22) determines
x' as a function of a, «. The functional Q¢ (a, «) is related to Q (@), if the control
law (21) represents the optimal control for a=«. Hence we impose two axiomatic
requirements on the nature of the relations (21), (22), (23).

Axiom of well-setting: For a problem of the real sensitivity analysis of a control
system to be well set, it is necessary that the real process equation in the given system
structure — the relation (22) — admits a unique solution x'=X'(g, ) for each
o in a neighbourhood of 4, and the performance functional — the relation (23) —
is well defined in this neighbourhood.

Except in some degenerate cases, this axiom implays that the space B, should
be isomorphic to B, and the operator P,+P, R. be invertible. Although quite
natural to postulate, the well-setting axiom was often neglected in the sensitivity
analysis of optimal control systems?).

Axiom of optimality: The control law (21) corresponds to an optimal control
system, that is, R* (X (a) a, @)=U (a).

This axiom implies that Q (o, «)=0 (¢) and Q7 (a, x)>Q («) since the control
u' can be only worse for the real process than the optimal U (w), if the parameters
of the real process are not known precisely and a parameter a#« is used to estab-
lish the control law. Hence the functional

S'(a, )=0" (@, )0 (=) 24
can be interpreted as the performance loss due to an imperfect knowledge of the
process parameters «. The functional is called the sensitivity measure of the optimal
control system in the i-th structure — see [12].

3) The optimal control problem (1), (2) can have solutions even if the axiom is not satisfied.
Consider, for example, an optimal control problem with a given final state, and incorporate the
final conditions in the constraining relation P (x, u, «)=0; let B, be a Sobolev space and B,=R".
Suppose an optimal solution exists; but for a#a the relation (22) will not be generally satisfied.
Hence we cannot perform the real sensitivity analysis, although the ideal sensitivity analysis problem
is well-defined. This is probably the reason for omitting the well-setting axiom in some approaches;
see also [1]1, [6], [12].
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LemMA 1. The sensitivity measure satisfies following relations
St (a; 0)=0; S (a, «)=0 for all a=a. (25)
If the sensitivity measure is differentiable, then
S (a, 0)=S"" (a, 2)=0 for all a=«x. (26)

Lemma 1 is an immediate consequence of the optimality axiom; observe that
the sensitivity measure is differentiable if the process equation, the control law
and the performance functional are differentiable and the well-setting axiom is
satisfied.

a)
!_Model of the i-th structure I
i Real controller . Process % 7<Q"|5 . )
s . " s = ,O0, 7
oo | o o b auil 69=<QE,8x D+4QL, 8UTDHQE S M 2T e
— 6U'= Ry 6x+R 56! . ) &% -
8x'=~P" (Py8u'+Po,bx) R |
; I Y
&x'

{ Ideal controller Process

| 50 60 | 8G=4Q% 68 +4Q%, 60) +(Q%,, 6&)
50 =R% 6
8% =-Py"(P,8G+Py Sex)

s | 0q'= LQ%, 6xiD+4QE, 6>
dxh = -Pi P 6

o | 69'=<Q%, 8o +<Q%, , 800

S8R = =P Py 6%

Fig. 2. First order local sensitivity model (change oty =a to o, =a+ Jo): a) full model, b) equivalent
model under the assumption of optimality ((Q:, x> +<Q", Su>=0 for dx,= —PZ' P, éu, all ou)

u?

LemMA 2. If the optimal performance characteristics Q (¢) and the sensitivity
measure S’ (a; «) are differentiable, then the first-order approximation of the change
of the performance Q' (a, ) due to the process parameters change o=a-+do:

00! =<0, duy ={Q; — P} Pi~* O, 60y =(0,, ) =50 %))



128 A, P. WIERZBICKI, A, L.. DONTCHEV

is the same as the first-order approximation of the change of the optimal performance
characteristics. Hence, one cannot distinguish various optimal control system
structures by the first-order sensitivity analysis.

The proof of lemma is also immediate. Since O (a, 0)=0 («)+S'(a, ), ex-
panding both sides for «=a+Jde and taking into account (26) we obtain (27). An
interpretation of the lemma 2 is given in Fig. 2.

Lemma 3. If the sensitivity measure S* (a4, o) is twice Frechet differentiable with
Tespect to g and « in an open set containing «=gq, and the second-order derivatives
are continuous with respect to a and o, then

S=80=— 8= — (28)

where the operators of second-order derivatives are evaluated at a=uq.

To prove the lemma, let us take a=a+du and expand S'* (a, a+du):
S (a, a+060)=8!, (a, a) Sat+o (l6al); S (a, a,+u)=—S., (a+ e, a+da) So+
+o0 (|6e]) since both S!* (a, a)=S" (a+dx, a+6x)=60. By the continuity of S,
we get S, (a, @)= — S}, (a, @). But then S}, (4, @) must be self-adjoint and S7, (@, a)=
=S! (d, a). The same argument applied to Si, (@, a+da) results in S, (o, a)=
= S:;oz ((1, (1).

- The Lemma 3 can be also stated in form of a local relativity principle of sensi-
tivity analysis: if the parameters of the model, 4, and of the process, «, are suffi-
ciently close, the sensitivity measure can be approximated by the difference of
o—a only, no matter which of the parameters actually changes and which is kepf
constant:

Si(a, x)=0.5{a—a, S, (a, a) (oc—?z))—{—o (lee—al?). 29)

An analogous statement is not true globally, since S* (g, «) is not a function of
{a—a).

The conditions of the second-order differentiability of the sensitivity measure
result from the following lemma: )

LemMA 4. Suppose the process operator P and the performance functional Q are
twice differentiable with respect to x, u. Suppose the control law operator R! is
differentiable with respect to x, a. Suppose:

() Oy —P; Pr1 0%=0 (optimality),

(i) (Py+P, R~ exists (well-setting).

Then the sensitivity measure S (o, @) is twice differentiable with respect fo
a and »

St=X'L., X +2X'L , U+U L, U=U! AU}, (30)

where 4 is specified by (10a) and
Xi=—(P.+P, R)~" P, R}; Ui=R, X[ +R]. 31)

The operator X! is called the structural state sensitivity operator, U’!— the
structural conirol sensitivity operator. They determine the structural state and
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control variations ou'= U da, 6x'= X! da, which are the first-order approximations
of the state and control changes due to a mistake da in estimating the real process
parameters «, a=o+dd. '

Observe that Lemma 4 gives only the conditions of differentiability of S (a, «)
with respect to a; the conditions of differentiability with respect to « are similar.
The situation where a is kept constant and « changes is actually of much larger
practical importance; however, it is much more simple analytically and computa-
tionally to investigate the reverse situation, when a changes and « is kept constant —
see Fig. 3. According to the Lemma 3 and the local relativity principle, both ap-
proaches are locally equivalent.

a)
doc’ Process in the i-th structure of a control system i
Su' T - T vg'
o_“i.; Aqi= 6§+ 0.5{C Ly 6x', 85" +<Lyy 8, BUDHLosBox, S -2
Sx 5o 3 ; ] {
+(<Lxuéu‘,«§x‘>+<Lxm6u,6x‘>+<Luc,,r(Sof,,<Su'>) ;L,
EY Aol KD _9
. Sox e 0 " % ¢ -
e it Process in an ideal control system
8l e s g B .. » WELLE!
ool AG= 04 +0.5 KLy 8%, 88 >+ <Ly 60, 80>+ (Lo o, G0t 800)+ 49 |
(3% ’
e +< Ly 60, 68D+ Loy 608, 8XD+L o 8%, 33))
b) Xy
I su' 5 : - ; i
Sam-Sor | 6U'= R\ 65-Ridec 1 Ag'= 0.5{< L, Ox/, x>+ Ag'=Aqg'-A§
G . : xi .z T TT St e
dx'=P;'R, 6u Bl +<Lu0U,BUDH L OU L 8x1Y)

Fig. 3. Second order local sensitivity mogiel: a) full model (change o from o;=a to a,=a+9dx);
b) equivalent model based on the local relativity principle (change a from a;=« to a,=u+da,
da= —oa)

To prove the Lemma 4, we have to determine xi, #* in the given structure by
solving the equations

P(xL v, )=0; u'=R'(x', a, «). 32)

Under the assumptions of the lemma we can apply the implicit function the-
orem; setting a=o-+Ja we get

x'—%=0x'+o0 (|al)); ox'=—(P,+PB, R)~1 P, R sa=X!ja, (33a).
ut—i=0u+o (||0dl)),

Sut=(I—RL (P.+P, R)~* P) R! 6a=U} da, (33b)

dxt=—P-1 P, 6u, (330)
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A

where £, 7 are the optimal state and controi satisfying P (£, 4, «)=0 and ii=
=R (£, o, ). Now we have to expand Q (x%, v}, ) —Q (%, &, «)=S5" (@, &) in Taylor
series with respect to x*—%, u*—i. In order to suppres the influence of the terms
o (||0al)) onto the second-order terms, it is convenient to use the identity O (x!, ¢, )=
=0 (x', v}, o) +<{n, P (x4, u', &))=L (y, x', u’, «). In fact, the first-order deriva-
tives of the Lagrange functional are identically zero at X, # — see (4a, b, ¢); hence
we get

St (a, 0)=0.5 (X! 8a, L., X! day+2 (X! 6a, L, Ul s>+
+{U! 6a, L, U 6ay) +0 (|6a]?)=0.5 U 6a, AU 6ay+0 (|64?)  (34)

thus establishing the relation (30) and the conclusions of the lemma.

As a summary of this paragraph, it is worth while to discuss the basic, con-
ceptual difference between the first-order and the second-order sensitivity analysis
of optimal control systems. The first-order sensitivity coefficients (the gradients
Or, OF) are equal for all possible structures and express the dependence of the

4 Q{e)
Q'(a, =)

'OA
- T
2

Fig. 4. An example of the performance characteristics
Q(x) and Q! (¢,%) by given a

ideal, optimal performance O («) on the parameters of the problem. Nevertheless,
the real performance Q! (a, «) depends strongly on the structure 7; the differences
between the performance in various structures can be astonishingly large — see
[12] — even for small «—a. A simple interpretation of the fact is given in Fig. 4.
Therefore, in order to investigate the sensitivity of various optimal control system
structures, it is necessary to compute either the sensitivity measures S’ (a, )=
=Q'(a, x)—Q (2), or at least the second-order sensitivity operators S =SI,.
A determination of the sensitivity measure S'(g, ) in an analytical form is an
extremely complicated task even in the simplest examples — see [12]; hence the
importance of the Lemma 4.
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4. Sensitivity operators of several optimal control systems
structures

The Lemma 4 provides for a basis for sensitivity computations: if we only know
the structural variations dx* and ou!, it is easy to determine the approximation of
St (a+da, «) given by the relation (34).

I

Real model
Q(x,u,8)=q
P(x,u,a)=0 ioc f=@°
Open-loop PR Pq—zaﬁ)o
troll Qb L=
controller QXSS x)=¢° %0
W= 0(a) PG ulox)=x? 0

Fig. 5. Open-loop optimal control system

i=0 (open-loop)
In the open-loop structure — see Fig. 5 — we have

ou®=0i; 6x°=—P;* P, 6i; U’=U,; X°=—-P;* B, U,. (352)
Sometimes it may be useful to determine 6x° X° with the help of J%, X,:
Ox° =08 +P71 P, sa; XO=X,+P;1 B,. (35b)

i=1 (closed-loop).

=

Real model
Q(x,u,a)=q
P(x,u,a)=0 &
q1= Q'(a 0‘)
Closed ~loop Process IR
1 ontroll R T
X 4 controller Q (x’, u1, cx)=-q1 o
u'=R'(x'a) P(x" u! )=0 >
Fig. 6. Closed-loop optimal control system
In the closed-loop struciure — see Fig. 6 — we obtain
Sul =RL 6x'+ R} Sa; 6x' = —P;1 P, out (36a)

where — see (18)
]’éi_—_ _Z‘;;;l (ﬁux +Zu11 K); ﬁ; == _1:1;;;1 (Eua +z/un M) (36b)

and K, M are determined by (17a, 17b). We can get also closed expressions for
U X
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U; = ([+ El;ll (Zlux +z’zm K) (i‘nx _i‘nu 1:1(—1;1 (z’ux o+
+L, K) L) L (Luut Ly M), (36¢)
A/a1 . (Z’nx —il;ll z;‘1 (Z’ux +i‘1111 K))_ % Z’nu I:u_ul (zua +z‘un M) (36d)

but in most computational applications it is more simple to determine R, R} with
the help of predetermined K, M, and then to solve (36a) numerically.

i=2 (optimal trajectory tracking).

If the operator P, has an inverse (or a pseudoinverse in some sense), another
structure can be applied — see Fig. 7. The structure is called optimal trajectory
tracking and is denoted by i=2. The optimal trajectory tracking structure is in

g

Real model
Q(x,u,a)=q i(x
P(x,u,a)=0 2_ 2
: Process q=Q (a,0d
Optimal . - e =0
trajectory Classical o Q(x2 02 x)=g? 52
P ] —
b= %t controller P (x2 W x)=0

Fig. 7. Optimal trajectory tracking control system

a way dual to the open-loop structure: in the open-loop, we keep the optimal con-
trol for the model, U (@), independently of the process changes, whereas in the opti-
mal trajectory tracking we induce the process to realize the optimal state trajectory
for the model, X (a), independently of the process changes. The structural varia-
tions and sensitivity operators are®):

~ ~

Ox?=0%; 0u*=—P;' P, 6%; X2=X,; U2=—-P;' P X,. (37a)
A much more useful formulae for du?, U? are
ou?=0i+P;' B, oa; U=U,+P;' P,. (37b)

i=3 (open-loop optimizing feedback)
Suppose the process equation has the form

P(x,u, 2)=P; (x)+P,(x,u, 0)=0,

where P, (x, u, ) can be actually measured in the real process. Let the optimiza-
tion problem be (locally) convex so that the optimal control can be determined
by minimizing the Lagrange functional; we may also assume that a maximum
principle is valid for the optimal control problem and the control can be determined
by maximizing a Hamiltonian function. Let #=N (a) be computed on the basis

%) Note that in this case the assumption (ii) of Lemma 4 is not fulfilled. Nevertheless, the Lemma
remains valid in this special case with slight changes in the proof.
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of the model. We can require that the control be determined by a peak-holding
controller, performing the operation

min L (@, x, u, @)=<A, Py (x)) +min (Q (x, u, o) +<{A, P> (x, u, 1) . (38)

Ja

Real model
Q(x,u,a)=q io(
P(x,u,a)=0 "
: ' — ~ | Peak - holding 5 Process Q (3:0‘)‘@
O.phn?al adjoint | 7 confroller u 3 3 i
trajectory - > RiE N = Q(x}ux)=q
h=R(a) min (q+<§, p2>) PL(3) +P, (33 B =0
t P3= P, (2 ulcx)
'q3=Q (x% w3 )

Fig. 8. Optimizing feedback control system (open-loop determination of optimal adjoint trajectory)

Such a structure — see Fig. 8 — is called the (open-loop) optimizing feedback,
see [12]. It is not allways applicable, since we must measure not only P, (x, u, =)
but also Q (x, u, @) in order to construct an optimizing feedback controller. How-
ver, in some applications (particularly if a Hamiltonian function can be maxi-
mized at each instant of time) the structure is particularly effective. The structural
variations and sensitivity operators control, are:

5"‘3 = _(i’uu +i‘ux Z’;;_xl Z"nu)— L I:un ) U: = _(Z:uu"'l:ux ]:;;:Vl f‘l]!l)_ 1 Z“un Na
5x3 =p; . Pll (z‘uu_l_z’ux z’}]_xl Z‘II“)— 1 ‘z'll" &ﬁ; (39&)
Xa3 =£n_x1 Lnl‘ (Z:uu-i_i‘ux L};‘xl Llﬂl)_ i i’u,, Nﬂ 3

where Jf and N, are the basic adjoint variation (11c) and the corresponding basic

optimal adjoint sensitivity operator. Computationaly, we do not use the closed

expressions (39), but solve the system of equations

oud=—L-1 (L, 6x*+L,, 00); L, 6x*+L,, su>=0. (39b)
i=4 (closed-loop optimizing feedback).
The adjoint variable /§ in the optimizing feedback structure can be determined

as well in the closed-loop, as a function of the current state. Since the basic va-
riation J7 is then determined by (15), we get

out=—(Ly+L+L, KL, L)t Loy M Sa;

U= Loyt ot Ly Ky L2 By )% Ly M
oxt=L 'L, (Lt @+Ly K) LM L)t L, Méa;
Xi=L ' Ly (Lw+Lux+ Ly )L L)Y Ly M

(40a)

or, equivalently, we solve the system of equations
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out=—Lot (Lie+ L,y K) 6x*+L,, Mda);
L, 6x*+L,, du*=0. (40b)

The structures presented above are only examples of many possible structures.
It is impossible to compare their general sensitivity properties. However, some
heuristic rules exist. If the performance functional is related mostly to the cost
of the open-loop structure (or, if applicable, the open-loop optimizing feddback)
are usually the least sensitive. If the cost related to the state trajectory dominates
in the performance functional, the optimal trajectory tracking structure is usually
the best. There are cases when closedloop or the closed-loop optimizing feedback
are very effective; but we cannot say in general that the closed-loop has lower
performance sensitivity than the openloop (see e.g. [12]).

5. An example

The general approach presented above has been applied to several optimal
control systems of industrial importance. For example, the optimizing feedback
structures have low sensitivity when applied to the optimal control of energy supply
to an arc furnace in steel industry [3]; when investigating the optimal control of
a natural gas pipe-line supply system, described by partial differential equations,
a special structure of optimal boundary conditions tracking system is advantageous.
However, each optimization problem of industrial importance has its own, spe-
cific properties; to present such a problem in full detail would require much space.
Therefore, we consider here only a very simplified example of an environment
control problem [2].

The problem consists of minimizing the effects of industrial pollution in a geo-
graphical area, taking into account the cost of anti-pollution equipement. The model
has the form

x()=Ax(@)+Bu(t); x(t5) =X,

O (x, u)= f [0.5 (u (t) — tm) ™ C (u(t) —un) +exp (A" x ()] dt, (41)

where x=(x, ..., X,) represents the accumulated pollutants, u=(uy, ..., 1) corres-
ponds to the industrial waste generated by each factory, and u, =1, .o t)
is the waste generated without any anti-pollution equipement. The matrix 4=
=diag {a;} reflects the dynamic properties of pollutant accumulation and decom-
position. The matrix B represents the content of pollutants in the industrial waste;
the matrix C=diag {c;} is related to the cost of anti-pollution equipement, and the
vector h consists of coefficients estimating the social losses related to each type
of pollutant.

The problem was solved numerically by a decomposition and coordination
method [2]. The convergence properties of the optimization procedure and the
optimal solutions are illustrated in Fig. 9 for n=2, k=2. In the sensitivity anal-
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ysis, the parameters u,,;, a; were considered as the least certain; hence 0= ( thpiy one
vess Uiy @1, -5 @,). Since it was possible to determine the matrices X, (), U, (),
N, (), K(t), M (¢) at the optimal solution, the corresponding matrices of the sec-
ond-order sensitivity coefficients S;, were found for several optimal system struc-
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Fig. 9. The convergence of optimization procedure and the optimal solutions for the problem of
environmental control

tures by suitable integration. For a given vector Aa, the corresponding performance
loss were determined:

Li=9é—5Ao:T St Aa. . 4

The results obtained for two cases of assumed parameters values are given

in Table. In both cases the best structure was the closed-loop optimizing feedback.

This result has the following interpretation for the problem considered: the most

effective (the least sensitive) control system structure consists of predetermining

the dependence of the adjoint variables # on the state x, measuring the state in the
real process and maximizing the Hamiltonian function in the real process:

H(y, x, u, 1)=—0.5(u—u,)" Cu—u,)+n" Bu+y" [Ax—exph” x)]. (42)

But the matrix C is diagonal; hence each factory can minimize its own goal-

function
gi(u;)=0.5¢; (ui—umi)z_(ﬂT b)) u;, (43)

where b; is a column of B and # can be interpreted as the vector of shadow-prices
related to pollutants; they change in time and in dependence of the measured amount
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of the accumulated pollutants x. The exact dependence of the shadow-prices # on
x may be difficult to determine; however, given £, 7§, we can use the approximation
7 ()= (t)=K (1) (x (f)—% (). These considerations result in a hierarchical struc-
ture of the control system, presented in Fig. 10. The coordination level defines the

Global model
optimization

A

X ’r; K

i

Closed-loop X
correction

n=n+K(x-%) ™4

shadow prices vn
for generating .
poliuting waste £ 1 o
pollution state
measuremém‘
1-st factory i-th factory . k-th factory
management l management i management
rnui1n g7 (uy;n) IL ﬁal‘l’—t—gﬁh,n) I rraixn gk (ue.n)
u g xA Ui gy X b u g
1" 1 1 1 K‘ ¥ K

Enviromnment

Fig. 10. The hierarchical structure of environmental control (closed-loop optimizing feedback
structure) resulting from sensitivity considerations

optimal trajectory £, the optimal adjoint trajectory # (the optimal shadow prices)
and the Riccati matrix K (the correction coefficients for shadow prices) on the
basis of a global model. The state x is measured and the corrected shadow prices
are determined, also in the coordination level. The local controllers determine the
actual control u; on the basis of the given shadow-prices, by minimizing the local
goal-functions g;.

The example presented here is clearly rather simplified: we could represent in
the model the accumulation of antipollution investiments by introducing addi-
tional state variables, choose more adequate performance functionals etc. How-
ever, the main goal of the example was to illustrate the comparison and interpreta-
tion of several control system structures, resulting from the general sensitivity
analysis approach.




Table. Sensitivity coefficients and estimators of sensitivity measure for the problem of environment control (f,=0, #,=1, n=2, k=2)

4=[100 7. 5
0 15

050

]; C=[1.0 0 ]; hz[o.s]; um=[3-°]; x(t0)=[2'5]
0 15 0.8 4.0 3.0

4=[200 1. g_[50
0 80 0

07 =
1.0

[

800 7.
0 20/

n=[01].
0.5

0 1.0 4.07. 20
- i [1.0] Lty [1.0]
du=[5 4 30 20]"Gin %) Au=[5.0 1.25 1.25 5.0]" (in %)
Control law | S, | L'in % Sty | £t in %
Open-loop 2.18 —034 0.39 0.39 9.89 —0.03 0.05 0.10
—0.34 0.39 0.40 0.70 5.28 —0.03 10-# 3.10% 2:-10-% 4.40

0.39 " 0.40 0.94 0.14 —0.05 3.10-5 0.03 0.08

0.39 0.70 0.14 0.22 0.10 2.10-+ 0.08 2.10-3
Closed-loop 2.18 034 0.29 0.22 9.89 —0.03 0.04 0.08

—034 0.39 0.34 0.57 4.26 —0.03 10-* 5.10-5 7.10-% 436

0.29 0.34 0.63 0.90 0.04 5.10-5 0,03 0.03

0.22 0.57 0.90 0.13 0.08 7.10-3 0.03 0.04
Optimal trajec- 2.18 —034 3.86 3.16 9.89 —0.03 103 0.57
tory tracking —0.34 0.39 —0.41 —0.08 152 —0.03 10-* 0.03 10-3 122

3.86 041 15.8 1.33 10.3 0.03 1.47 0.19

3.16 —0.08 1.33 0.87 0.57 10-3 0.19 3.10-3
Open-loop 2.55 082 0.53 0.78 10.2 —1.94 0.02 0.05
optimizing —0.82 392 0.78 1.13 8.80 1,92 2.00 0.06 0.01 3.73
feedback 0.53 0.78 0.84 1.24 0.02 0.06 0.05 0.09

0.78 1.13 1.24 0.18 0.05 0.01 0.09 0.01
Closed-loop 0.06 0.15 0.15 0.26 3.1074 2.10~4 9.10~3 2.10-%
optimizing 0.15 0.39 0.39 0.66 3.51 2.10-* 10-* 8.10-3 2:10-% 0.04
feedback 0.15 0.39 0.84 1.24 9.10-% 8.10-5 5.10-2 9.10-2

0.26 0.66 1.24 0.18 2.10-4 2.10-4 9.10-2 2.10-3
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6. Conclusions

The paper presents a general methodology of the ideal and real sensitivity ana-
lysis of optimal control systems in various structures. Processes described by ordi-
nary — and partial differential equations, difference, difference-differential and
integral equations can be analysed uniformly in this general approach. The approach
has been recently applied by one of the acthors to solve two important infinite-
dimensional problems: the problem of changing the structure of a difference-
differential model by neglecting small time delays and the problem of neglecting
small parameters changing a system of differential equations in Banach space —
see [14], [15].

Moreover, the computational methods of sensitivity analysis resulting from the
general theory are closely related to the known computational methods of optimi-
zation. Once the optimal solution is found, the determination of the basic control,
state and adjoint variations is equivalent to the solution of a guadratic — linear
approximation of the original problem. The determination of structural variations
and thus of the second-order sensitivity coefficients is usually rather easy; a possible
exception is the computation of closed-loop structural variations for complicated
(partial differential, difference-differential) processes, where the solution of the
. corresponding Riccati equation is rather a difficult task. However, the local sensi-
tivity analysis of closed-loop systems requires less effort than the actual, global
synthesis of such systems because it is necessary to perform only the synthesis of
a linear approximation of the control law in order to determine the local sensiti-
vity coefficients. Since it is not a priori known whether a closed-loop system would
be less sensitive than an open-loop or other structures, it may be advantageous
to perform the local sensitivity analysis before deciding to synthesise the closed-
loop control law. Moreover, the local sensitivity analysis can provide data for
choosing hierarchical control system structures, investigating their feasibility etc.
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Podstawowe zaleinosci w analizie wrazliwosci optymalnych
ukladoéw sterowania

Przedstawiono podstawowe pojecia i zaleznosci w analizie wrazliwosci pierwszego i drugiego
rzedu optymalnych ukladow sterowania opisanych modelami w przestrzeni Banacha. Omowiono
dwa podstawowe sformulowania problemu analizy wrazliwosci: idealnej analizy wrazliwosci na
podstawie modelu matematycznego oraz analizy wrazliwoéci ukiadu sterowania na podstawie dwu
modeli matematycznych i pojecia sterownika w danej strukturze. Podstawowe lematy odnoszace
si¢ do tego pojecia i wiasnosci miary wrazliwosci przedstawiono dla przypadku ogdinego rozwa-
zanego w tym artykule. Oméwiono pojgcie operatoroéw wrazliwosci drugiego rzedu, zbadano ich
istnienie oraz warunki niewrazliwosci pierwszego rzedu. Podano metody obliczania wartosci opera-
torow wrazliwosci drugiego rzedu dla kilku struktur ukladéw sterowania. Metody te umozli-
wiaja efektywne pordwnanie wrazliwosci réznych struktur sterowania optymalnego i wybér struk-
tury najlepszej (najmniej czulej) przy niepewnych wartosciach parametréw. Przyklad ilustruje
zastosowanie tych metod do problemu sterowania $rodowiskiem, co w wyniku daje wybor hierar-
chicznej struktury ukladu sterowania.

OcHoBHBIE 3aBMCHMOCTH OpH AHaMH3¢ YYBCTBHTEIbHOCTH
ONTHUMAIBHLIX CUCTEM YHDAaBJICHUHA

CraTbsl COOEPKUT OCHOBHBIC MOHSATHS W 3aBHCHMOCTH aHAJIN3a YYBCTBUTEIBLHOCTH TEPBOTO
¥ BTOPOTO TOPSAKA ONTHMAJIBHLIX CHCTEM YIIPABICHUS, ONMCBHIBAEMBIX MOIEISAMH B GaHAXOBOM
POCTPAHCTBE. PaccMOTpEeHbI JBe OCHOBHBIE (GOPMYIUPOBKU NPOBGIEMBI aHANNW3a YYBCTBHTEE-
HOCTH: WICANILHOTO aHAJK3a YYBCTBHTEIBHOCTH HA OCHOBE MaTEMATHYECKOW MOJEIN W HOHSITHS
yOpaBieHUsl B JaHHON CTPyKType. g oOLIero ciydas, pacCMOTPMBAEMOIrO B JAHHON CTAThE,
MPEICTABIICHBl OCHOBHEIC JIEMMEBI, KACAIOLIMECS 3TOTO MOHSTHA B CBOUCTB MEPEI 4yBCTBUTEILHOCTH.
PaccMOTPEHO HOHSTHE ONEPATOPOB YYBCTBUTEIBHOCTH BTOPOTO MOPSIKA, HCCICIOBAHbBL YCIOBHS
WX CYIIECTBOBAHHUS WM YCIOBHS HEYYBCTBHTEIHHOCTH NIEPBOTO TOPSAKA. JJaHbl METOIBI BEIYUCIICHHUS
3HAYECHMI ONepaToOPOB YYBCTBHTEIHLHOCTH BTOPOTO TOPSAKA ISl HECKONBKUX CTPYKTYD CHCTEM
YApaBIEHUSA. DTU METOIBI ITO3BaANSIOT 3B GEKTHBHO CPAaBHUBATE 4YyBCTBUTEIBHOCTH PA3HBLIX CTPYK-
Typ ONTHEMAJBHOTO YIPABICHHS W BRIOMPATH HAWIIYYIIHE CTPYKTYPHI (HANMEHEE YyBCTBUTE/ILHLIE)
OPH HEOUPEACHCHHBIX 3HAYCHMSIX IapaMeTpoB. JlaH mpuMep, HIIIIOCTPUPYOINUIl NpuMEHEHHE
JTHX METOJOB K npobiieMe ympaBJeHWsi CPEIOM, YTO B PE3yjbTATE JaeT BO3MOKHOCTH BHIGOpA
HEPapXUYECKOM CTPYKTYPHI CHCTEMBI YIpaBIICHWS.
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grazdanka. .
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