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linear and quasilinear equations· of parabolic type 

by 

JAN SOKOLOWSKI 

In the paper a problem of minimization of a cost functional, which is defined on a class of 
the solutions of quasilinear parabolic equation (state equation) is considered. Coefficients of the 
state equation depend on a functional parameter. An optimal parameter corresponds to the "state 
trajectory which minimizes the cost functional over a set of admissible parameters. 

In section 3 sufficient conditions for existence of an optimal parameter are given. 

In section 4 sufficient conditions for differentiability of the cost functional are stated. I1i order 
to determine effectively the gradient of the cost functional so called generalized adjoint state equa
tion is introduced. By such approach we do not need use Green formula to compute the gradient. 

The generalized adjoint state is use to obtain necessary conditions of optimality. 

Introduction 

In the paper we consider a problem of parametric optimization for a class 
of quasilinear and linear partial differential equations of parabolic type. 

Problems of ~uch types appear in technology of solid state devices [6] -where 
coefficients of diffusion equation depend on temperature as a parameter. 

In parametric optimization problem we look for optimal functional parameter 
(changes of temperature) which minimizes a certain cost functional J(B) over a set 
of admissible parameters. Functional J(B) is defined on a class of solution of a diffus
ion equation (state equation). 

In our problem cost functional will depend on parameter e by means of the value 
of the solution at the terminal time of the diffusion process. It means that we are 
interested in final result of the process. In special case of one dimensional linear 
diffusion equation (heat equation) a problem of this tn;e was solved in [6] by applying 
Fourier series technique, but such approach can be used only in the particular 
case. Some more general results for special type of cost functional and for linear 
state equations are given in [5]. The structure of the paper is the following: 

In Section 1 we introduce some basic mathematical concepts which will be 
used throughout this paper. 
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In Section 2 we recall some results from theory of parabolic equation which 
are basic for our purposes. 

In Section 3 a problem of parametric optimization is stated. Then an existence 
theorem for the problem is given. 

In Section 4 sufficient conditions for differentiability of functional J(8) are 
considered. In this section we introduce so called generalized adjoint state equation 
and formulate necessary conditions of optimality. Usually a simple form of the 
gradient has been obtained using the Green formula, which in many cases has 
been applied only formally. The verification of the validity of the Green formula 
is particulary difficult. in the case of weak solutions of parabolic equations. The 
proposed approach allows to avoid these difficulties. 

ACKNOWLEDGEMENTS. The author would like to express appreciation to doe. dr. K. Ma
lanowski for his many helpful comments and his encouragement during preparation of this paper. 

1. Some functional spaces 

Let Q be a bounded domain in R" with smooth boundary T=o!l. For given 
number T> 0 we define the following subsets of R" + 1 : 

Q = Qx [0, T], 

E=rx [0, T], 

S=.EU{(x, 0) E R" +1[x E Q}. 

We start with short recalling of definitions [1] of some basic, for our purposes, 
functional spaces. As usual £2(Q) denotes Hilbert space of functions (equivalent 
classes) u= u(x), x E Q, with scalar product 

(u, v)v (n) = J u (x) v (x) dx. 
Q 

In the same manner as L 2(Q) are defined Hilbert spaces V(Q), V(E). 
Let 

k=(kl, ... , kll) 

be a n-tuple of nonnegative integers, we put 

[k [=kl + ... +kn. 

For given function u=u(x), D~ u denotes its derivative of order [k[ 

c) lkl u 
Dk u= k , x=(x 1 , ••• , x"). 

x c)k•x1 ••. 6"x,. 

We will need some spaces of continuous functions in Q (for sets [0, T], Q, 1: 
such spaces are defined analogously), where Q denotes closure in R" of the set Q. 

C(Q) denotes a Banach space of continuous functions on Q with the norm 

[[ullc (nJ =sup [u (x)[ = [u[~l 
XE!l 
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For given ex, O<ex< 1, ca(Q) denotes Banach space of Holder continuous 
funct ons (with exponent ex) in Q with the norm 

sup 
x, x' E.O 

lx - x'l < ~ 

lu (x) -u (x')l 
---- -- = (u)~\ 

lx -x 'la 
c5>0. 

Let m be an integer m~ 1, C"'(Q) is a Banach space of functions continuous 
m Q tog~ther with all derivatives of order l k l ~m and with the norm 

11 11 I l
<ml "\1 IDk I eo> U cm (D)= U n = LJ x U n 

jk]~ m 

we will need also spaces of functions 

u=u(x, t), (x t) E Q 

having different properties with respect to x and t. 

Space cut 2 (Q), l>O, !#integer. 

Remark: In [1] this space is denoted by H 1
•
112 (Q) but usual H"'(Q) denotes 

Sobolev space of order m. 

DEFINIT!ON 1 [1]. Cl,lf 2 (Q) denotes a Banach space of functions u=u(x, t) con
tinuous in Q together with all derivatives D~ D~ u of order 2r + Is I< I with the norm: 

where 

for O<ex<l 

[ I] 

llu ll c'·' f2(Q)=~u)~lQ+(u);~-~l +}; (u)~l ; 

[/]=en tier (/) 

(u)~l=max iu(x) l = l u l ~l, 
x EQ 

<u)<Q.i) = "\1 ID' Ds ul(o) 
~ I I X Q' 

2r+lsl=.i 

<u)0) = )' (D' Ds_ u)(l- [LJ , 
x , Q ..:.....; l x x,Q 

2r +l sl=l 

.i=O 

c-2r-lsl) 
(u)~~ /~) =0<1-2r- lsl <2 (D~ D:: u) , ,~- , 

(u)~1Q = sup 
(x , r) , (x'. r) E Q 

lx - x'l <~ 

(u);~~ = sup 
(x, r), (x , r')EQ 

!t -r' I< O 

iu(x, t) - u(x, t') l 

lx-x' la 

iu (x, t)- u (x, t')i 

lt - t' la 

For i=2+ex, O<ex< 1, space cl. l;z (Q) we denote by C2+a, l+a f2(Q). 

If in Definition I the set Q is replaced by f we have the same definition for 
spaces c~ z/ z (f). 
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C2•1(Q) denotes a Banach space of functions continuous in Q together with all 
derivatives D~ D~ u order 2r +Is!::::; 2 with norm 

llullc2,l(Q) = 2,; ID~ D~ ul~)· 
2r+JsJ.;2 

2. Quasilinear parabolic equation 

In this section we recall some results from theory of partial differential equa
tions of parabolic type which will be useful for our purposes. 

Let us consider the following quasilinear parabolic equation with associated 
boundary and initial conditions: 

~t; - t au (x, t, u) 0:;

2 

a:i + b ( x, t, u, ::
1 

, .• • , :x~ ) = 0, (2.1) 
l,j= 1 

(x, t) E Q, 

n OU 
2,; au(x, t, u) ox. Yi+lfi(X, t, u) = O, (x, t) Er, 

{, j= 1 ' . 

u(x, 0) = u0 (x), x E Q. 

In (2.2) y= (y 1 , ••• , Yn) denotes the unit exterior normal to T = oQ 

For n-tuple p=(p1 , ••• ,pn) we denote 

p=(.t p~) 1/2, p2 = IP I2. 
<= 1 

(2.2) 

(2.3) 

Now we make several assumptions which will be referred to as Conditions 
Zl, Z2. 

Condition Zl 

(i) for (x, t) E Qx[ 0, T], u ER, ~ER": 

n 

o::::; 2.: au (x, t, u) ~i ;:,j::::; u1 ( 2
; (2.4) 

i , j= 1 

(ii) for (x, t) E QjS, u E R,p ER": 

(iii) for (x, t) EL;, u ER, ~ER~: 

n 

v1 ~2 ::::; 2,; au (x, t, u) ~i ~i, 
i, i= 1 

where u1 , v1 =const. >0, c;=const., i=O, ... , 4. 
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Condition Z2 (2.5) 

(i) for (x, t) E Q, lul ~M, M- given constant, ~ERn, p ERn: 
n 

v~ 2 ~ }; aii (x, t, u) C~i~J1~2 , v>O, 
i, j= 1 

I 
oaij oaij oaij I :< 

ou ' ox • ot "'f1 • 

lb(x, t, u,p)I~J1(l+p2), 

I~; l(l+lpl+/ ~~ 1+1 ~~ l~fl(l+pZ); 
(ii) for (x, t) E E, lui~M : 

I 
Olfl 

If/' ox ' 

(iii) boundary T=oQ is smooth enough- say of class C 2 (definition [1] p. 18) 
The following two lemmas proved in [1] give some a priori bounds for solution 

of the problem (2.1)-(2.3). 

LEMMA 1. Let u=u (x, t) E C 2
•1 (Q) be a solution to the problem (2.1)-(2.3). Assume 

that Condition Zl is satisfied. Then 
I 

max lu(x, t)I~A. 1 eumax{Yc2 , Yc4, max lu(x, 0)1}, (2.6) 
Q 

where constants A- 1 , A. depend only on v1 , J11o c0 , c1 , c3 and boundary T =oQ. Proof 
is given in [1] p. 555. 

LEMMA 2. Let u=u(x, t) E C 2
•
1 (Q) be a solution to the problem (2.1)-(2.3) with 

max lui~M. Assume Condition Z2. Then 
Q 

where 

( 
ou ou) 

ux = ox1'"''oxn. 

Constant M 1 depend only on M, v, fl, lluolb(nJ and boundary T = oQ. 
Proof is given in [1] p. 554. 

(2.7) 

The following Theorem 1 gives sufficient conditions for existence of an solution 
to the problem (2.1), (2.2), (2.3)' 

u(x, 0)=0, x E Q. (2.3)' 
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THEOREM 1. Assumptions: 

(i) Assume conditions Zl, Z2- then for all solution u E C 2
•
1 (Q) of the problem 

(2.1)-(2.3) there exists (from Lemmas L2). Constants M, M 1 such that 

max l u i~ M, max l ux i ~Ml. 
Q Q 

(ii) For (x,t)EQ((x,t)E I'), lui ~M, pER" functions aii(x,t,u), b(x,t,u,p), 
(If/ (x, t, u)) are continuous together with all derivatives which were introduced in 
Conditions Zl, Z2. 

(iii) For (x, t) E Q ((x, t) E I'), l ui~M, IP I ~M1 the following functions are 
uniformly Holder continuous (u.h.c): 

o;~j (.' t, u), b (.' t, u, p)' ( ;: (.' t, u)) u.h.c (exponent fJ), 

Olfl 
ox (x, ·, u) u .h.c. (exponent fJ/2). 

If/ (x, 0, 0)=0 

(iv) Boundary r is of the class C 2 +e then there exists an unique solution 

U=U(X, t) E C 2 +P l +/1 / Z (Q) 

to the problem (2.1), (2.2), (2.3). 

Proof is given in [1] . 

In particular case of linear parabolic equati~n : 

ou 11 o2 u 11 ou 
-;-- " aij (x, t) a a' + " ai (x, t) -;;-::--- + 
ut 

1 
-2

1 
X 1 Xi .~1 uX1 ' )- ,_ 

+ a(x, t) u=f(x, t), (x, t) E Q (2.7)' 

with boundary and initial conditions 

11 ou 
}; C1 (x, t) OX· +If! (x, t)u= rp (x, t), (x, t) E I 
i=l I 

(2.8) 

u(x,-0)=u0 (x), xEQ (2.9) 

for existence we need weaker assumptions then in the case of the problem (2.1)-(2.3). 

THEOREM 2. ([1], p. 364). Assume 

(i) cy>O for (x, t) E I', where c = (c1 , ••• , c,.); 

(ii) for (x, t) E Q, ~ER": 

" 
v~2 ~ ,2; au ~~ ~i~/1~ 2 , v>O; 

i, j= 1 
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(iii) boundary T = oQ belongs to the class C 1+ 2 , for some 1>0; 
(iv) a1j, a;, a, f E Cl,lf 2 (Q) 

1 + l 

c1, If!, rp E C 1
H 

2 (I) 
/ 

Uo E C1+2 (Q) 

25 

and functions f, rp, u0 satisfy to compability condition of order zero, then there 
exists the unique solution 

to the problem (2.7)-(2.9) with an priori bound 

1+1 

llullc'+2, '+'/2 (Q)~ C (llf llc', 112 (Q) + ll rp llc'+l, - 2- (.i:J + lluo llc'+2 (6l) (2.10) 

Proof is given in [1]. 

3. · Quasilinear state equation 

Let us consider a control system described by quasilinear parabolic equation 
(state equation) 

oy n (}2y 
A(B,y) = --;- - }; aij(x,t,fJ, y) (} · ", + 

ut . . -'i OX j 
l, J= 1 

( 
ay ay) 

+b x, t,e,y,~ , ...• --;-:.- =O, 
u.\ 1 u.\ 11 

(x, t) E Q (3.1 ) 

with boundary condition: 

" oy 
B(B, y)= }; au(x,t, f>,y) - 0x~yi+ifi(x,t,e, y)=0, (x,t)EE (3.2} 

i, j=l J 

and initial condi tion: 

y (x, 0) = Yo (x), x E Q , (3.3} 

where au, b, If!, y 0 , 8 are given functions . 

Function 8=8(x, t), (x, t) E Q is a r:crameter which depends on control. In 
particular case parameter e may depend only on t. For a given parameter e we de
note solution of (3.1)-(3.3) (stat,e trajectory) by 

\ 

y(8)=y(8)(x, t), (x, t) E Q. 

Let U denote a given set of admissible parameters. Let I(·) denote a ~n con
tinuous ftnctional o:1 Hilbert space L 2 (Q). We define cost funct ional as 

J(8) = I(y(8)(x, T)), (3.4} 

where y (8) (x, T) denotes terminal state. 
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Functional (3.4) is well defined on the set U if state trajectory satisfies the 
following regularity conditions 

y (E>) (x, T) E L 2 (Q). (3.5) 

The functional J (8) is required to be minimized over the set U. That is, we 
search for a fJ E U SUCh that 

J(B)=min 1(8). (3.6) 
0EU 

An element e E u at which the minimum is attained will be called an optimal 
parameter. Let the set 0!1 c U where 0!1 denotes linear topological space, Sufficient 
conditions for existence of an optimal parameter are for example the following: 

(i) mapping given by the state equation 

0!1 => U 3 8 ~ y (8) (x, T) E L 2 (Q) (3.7) 

is continuous; 
(ii) set U is compact in 0!1 topology. 

In the case where parameter 8 depends on a control v, for example 

E>=Lv, (3.8) 

where v E V c d!t, U is a Hilbert space of control functions, set [J is a given subset 
of admissible controls and L is a given linear mapping from d!t into OZI, we can in
troduce another, cost functional J (v) defined by equality 

](v)=l(Lv), v E V, Lv E U. (3.9) 

If we assume that: 
(i) mapping given by the state equation 

dft => U E v ~ y (Lv) (x, T) E L 2 (Q) (3.10) 

is continuous, 
(ii) operator L is compact as a mapping from V into U and set [J is compact 

in weak topology of the space d!t (we assume, that d!t is a Hilbert space), then the 
conditions (3.7) are satisfied, hence there exists an optimal control v E [J such that 

](v)=minJ(Lv) . (3.11) 
vE U 

Note, that if assumptions (3.10), (3.11) hold then functional (3.9) is continuous 
in weak topology of the space d!t . 

Let us assume that e is a scalar function and denote by KcR the set of all values 
of E>(x, t) for all (x, t) E Q and e E U. Then the following theorem gives sufficient 
conditions under which. (3.7) is satisfied. 

THEOREM 3. Assume 
(i) UcC(Q). · 

(ii) For all parameters e E u state trajectory y(8) E C2 +/J, l+IJ/2 (Q) for some 

/3~0. 



On parametric optimal control for a class 27 

(iii) Assumptions Z1, Z2 are fulfilled for all e E U; For given BE U it means, 
that coefficients of quasilinear parabolic equation 

( 
ay az y ) _ 

A9 x,t,y,~, ~ . ~ . =A(e,y) = O, (x, t)EQ, 
ux, ux., uxJ 

i,j = 1, ... , n 

B-e (x,t,y, ::J=B(B,y)=O, (x, t)EI 
(3 .12) 

y (x, 0) = Yo (x), x E Q 

satisfy Assumptions Z1, Z2. 
(iv) Coefficients of state equation (3.1)-(3.3) are C 1 functions with respect to e 

on the set Kfor all (x, t)EQ, all u,p with [u [ ~M, [p[~M1 , M,M1 are constants 
from Lemmas 1, 2. 

Then the mapping given by state equation 

(3.13) 

is continuous. 
Proof is given in Appendix. 

4. Necessary conditions of optimality 

In this section we assume for the sake of simplicity, that parameters e are functions 
of one variable t only and set U is a convex and bounded subset of Banach space 
C1+ 13(0, T) for some /]>0 . Moreover it is assumed that for any given parameter 
e E u state trajectory y(e) is an element of Banach space cz+/3.1+/3/Z(Q) for some 
/]>0. 

Conditions under which the above regularity condition holds one can determine 
using Theorem 1. 

In order to assure the existence of an optimal parameter it is assumed that U 
is a compact set in C(O, T) topology. 

In the first part of this section we will consider the problem of differentiability 
of functional (3.4). In the next part we will give the necessary conditions of opti
mality for problem (3.6). 

It is easy to see that there exists the gradient of functional (3.4) at a point e E ·u 
if the following two conditions hold: 

(i) functional l(y) 1s differentiable and its gradient at point y(B)(x, T) fulfills 
the conditions: 

dl 
dy (y (B) (x, T)) E L 2 (Q), (4.1) 

(ii) there exists Frechet derivative 

dy - /3 I -de (e): Cl+ (O, T}aoe~---+oy E cz+{J.l+/3 2 (Q) (4.2) 
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of the mapping generated by state equation (3.1)-(3.3) 

Cl+li(O, T)~ U3 eH y(e) E C 2 +1i.1+/II2 (Q). (4.3) 

If the Frechet differential by exists, it is given by the solution of the linear ,Pa
rabolic equation: 

oA oA 
oy (e,y,(e))Jy+ oe (e,y(e))oe =o, (x,t)EQ (4.4) 

with boundary condition: 

oB oB 
oy (e,y(e))oy+ oe (e,y(e))be=o, (x,t)EL' (4.5) 

and homogeneous initial condition: 

by (x, 0)=0, xEQ. (4.6) 

If the above conditions (i), (ii) hold , than the gradient of functional (3.4) at 
point fJ E U is given by 

< dJ _ ) d I _ ( dy _ ) 
-de (e); be = . J-dy (.v (e) (x, T) -de (e) oe (x, T)dQ 

Q 

(4.7) 

where the function 

( 
dy - ) 

oy (x, T) = de (e) oe (x, T) 

is the value at the time t=T of t he solution of problem (4.4)-(4.6) for a given in
crement oe E Cl+/1(0, T). 

To give sufficient conditions for existence of derivative (4.2) of mapping (4.3) 
we use the following general implicit function theorem: 

THEOREM 4 ([3], p. 193). Let X, Y, Z be Banach spaces and let .Yt maps an open 
subset VcXx Y into Z. Assume, that at the point (e , y) E V we have 

£(8, .Y)=O. 

Assume also that £ is continuously Frechet differentiable in some neighbour
hood of (e, y). If there exists a bounded operator ' 

( 
(}£ )-1 
ay ce, .Y) E 2 cz, Y) (4.8) 

then in some open ball B(G, r1 )cX the equation Jlt(e, y)=O generates an implicit 
mapping 
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Mapping F is differentiable at point B and its derivative is given by 

dF ( a:;;r ) - 1 o::lf 
-ce)=- - (e,.Y) o - ce,.Y) 
~ ~ ae 

To make use of the above theorem we define: 
(i) spaces: 

where 

(ii) mapping 

X = {e E cl+n (O, T) le (O)=O}, 

y = {yE C2+1J, 1 + IJ/ 2 (Q) IYit=O}, 

Z = Z 1 X Z 2 X Z 3, 

1+/l 
Z2={Z2 E C 1 +P,~ (L)IZ21t=0 = 0}, 

Z 3 = {Z3 E C2+ 0(Q) IZ3(x) =0, x E £?}; 

::lf(9, y)={A (9, y), B(9, y), Yir=o} · 

29 

(4.9) 

Remark. To assure that (4.9) maps Xx Y into Z we have to assume that 

A(9,y) E Z 1 , VBEUEX, VyEY, 

B(e, y) E Z 2 , V 9 E UcX, V y E Y. 

If nonlinear mapping B(e, y) has the following property: 

{9(0) = 01\y(x,O) = O, xE£?}~B(9,y)(x,0) = 0, xEF, 

(4.10) 

(4.11) 

then to satisfy ( 4.10), ( 4.11) we need only the appropriate regularity of coefficient 
of operators A, B. 

In the case where ::If is given by (4.9) the existence of linear mapping (4.8) is 
equivalent to the existence of the classical solution Jy E Y to the following linear 
parabolic problem 

oA 
oy (e , y(e))Jy = ft, (x,t)EQ, (4.12) 

with boundary and initial conditions 

oB 
oy (e,y(e))Jy=/2, (x,t)EE, (4.13) 

Jy(x,O) = O, xE£?, (4.14) 

for any functions /1 E Z l ,/2 E z2. 

Mapping ( 4.8) is bounded if for the solution y the following estimation holds: 

(4.15) 
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By Theorem 2 condition (4.15) is satisfied if the following regularity conditions 
hold: 

oA __ 
(i) coefficients of linear operator J c(e, y) are elements of space CP·Iii 2 (Q); 

y , 
oB _ . l+{J 

(ii) coefficients of linear operator oy (e,y) are elements of space Cl+P,-. 2- (I); 

oA 
(iii) oe (e, Y) Je E c{J,{J /

2 (Q), _ vJe Ex; 

oB _ l+{J _ 

(iv) oe (e, ji) Je E Cl+P,-2- (L), vJe Ex. 

Therefore from Theorem 4 we obtain the following. 

LEMMA 3. Assume that (4.10), (4.11) and (4.16) are satisfied then mapping (4.3) 
is differentiable and for any given· increment Je EX, its derivative may be obtained 
by solving the linear parabolic equation: 

oA oA 
oy (e,Y)oy+ oe ce,)!)Je = o, (x, t) E Q ~ (4.16) 

with boundary condition: 

oB oB 
oy ce, :Y) Jy+ oe ce, .Y) oe = o, (x, t) E E ( 4.17) 

and initial condition 

by(x,O)=O, xEfl. (4.18) 

From the numerical point of view it is inpractical to use formula (4.7) for com
puting the g;adient of functional (3.4), because it would require solving equation 
(4.4)-(4.6) for every increment oe. 

To avoid this difficulty we will use Lagrangean function of our problem to 
obtain a simple formula for the derivative of functional (3.4). 

We will define Lagrangian in the following way: 

!E(y,e,p,r) = J(f9)+ J pA(e,y)dQ+ J rB(f9,y)dE 
Q ~ 

-· 
where (p,r)E£2(Q)xL2 (E) are Lagrang multipliers . 

To be sure that !E(y, e, p, r) is well defined we have to assume that : 

A (e, y) E L 2 (Q), 

B(B, y) E L 2 -(E ), 

which in particular takes place for 

fJ EUc X, 

y E Y. 

( 4.17) 
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If y = y( e) is the state trajectory then 

.2 (y(e), e,p, r)=J(e), V(p , r) EL2 (Q) xV (J.;) (4.18) 

whence along the trajectory we have: 

/ dJ - ) < d!E - - ' 
""de (e); 6e = de (y(e), e,p, r); oe) ( 4.19) 

Vt5e EX, V (p, r) E L 2 (Q) xL2 (J.;) 

Assume that for any pair of fixed functions (/1 , fJ E L 2(Q) x V(J.;) problem 
(4.12)-(4. 14) has the unique weak solution t5y satisfying the following regularity 
conditions 

t5y E C (0, T; L 2 (Q)) (4.20) 

and 

llt5yllc eo, r; L2 (Q)):( C (ll/1 llu (Q) + 11/z! lu (I)) · (4.20) 

For given e E u we define the normed subs pace of L 2(Q) as the set: 

tP19 = {vEL2 (Q)I :; (e,y(e))vEL 2 (Q), 

oB } oy (e, y(e))v E v (J.;), v (x, O)=O, x E Q (4.21) 

with the norm 

11 
oA 11 1'1 oB 11 llvii<P = -v + -v 

e r OJ L2 (Q) ' OJ L2 (E) 
(4.22) 

From (4.20) it follows that the set @0 is well defined normed space and the fol
lowing inequality holds 

llvl lcco, r; v CDJ):( Cllvii<P0 , C > 0. 
(4.23) 

We define the generalized adjoint state at the point e E u as a function 

(4.24) 

which satisfies the following generalized ad joint state equation: -

[ p( :; (e,y(e))v)dQ+ jr( ~; (e,y(e))v)dJ.;= 

dl 
= - J dy (y (e)(x, T)) v (x, T) dQ, Vv E tP-e · (4.25) 

To obtain sufficient conditions for existence of the solutions to problem (4.25) 
we will use some general results given in [4], which can be formulated as follows: 

Let W be a Hilbert space and tP a normed linear subspace of W. We denote 
by tP' the dual space to tP which is obtained by extension of scalar product in W. 

I 
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Let be given a bilinear form 

E: w X if> ",--+ R, 

which is continuous with respect to the first argument. 
We define a mapping 

M: if>-+M[if>]c W 

by the equality 

(w, Mif>)w = E(w, if>), V wEW, V if> E if> 

Let L be any given element of space if>'. 

THEOREM 5 [4]. Suppose that there exists a real constant C> 0 such that 

then there exists a solution w L to the variational problem: 

and 

E(wL, if>) = L (If>), Vrf> E if> 

1 
l l wLi l w~c IIL II <~>· . 

The element wL is uniquely determined if the set M[if>] is dense in W. 

Proof is given in [4] (Theorems 2.1, 2.21. 

To use the above theorem we assume 

(i ) W is Hilbert space £2(Q) x £2(E) 

(ii) 

with the norm 

l l ri> II <~> = ll ri> II <~>e; 

(iii) functional L is of the form: 

dl 
L(if>)=Le(cfJ) = - J d(y(e)(x,T)) @(x,T)dQ; 

!2 y 

(iv) bilinear form E is defined by: 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

W = (p, r) E W, I[> E if>&. ( 4.34) 

In our case condition ( 4.29) is trivially fulfilled for IIM rf> llw = ll rf> llti>· 
From (4.23) it follows that functional Le defined by (4.33) belongs to if>'. 
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Then the generalized adjoint state (jj, f) exists and is determined uniquely -
it results from the existence of weak solution to problem (4.12)-(4.14), for any pair 
of functions (/1 , / 2 ) E W. Since 

(a; (p, e,ft, f); Jy) = J ft (~~.ay) dQ+ 
Q 

(
aB ) di + jf a Jy dE+ J d(ji(x, T)) Jy(x, T)dQ = O, 

X y Q y 

Voy E cfl-e where ji=y($) (4.35) 

by (4.19) we obtain the following simple form of the gradient 

dJ (oA ) 
(de; ae) = J ft ae (e, y(e)) oe dQ+ 

Q 

+ J f ( !~ (e, y(e)) ae) dE, (4.36) 
X 

where (p, F) satisfy ( 4.25). 
If e is an optimal parameter and functional 1(6) is differentiable at point e 

than the necessary condition of optimality takes on the form 

J ( 0A A A A ) 

ft ae e,y(e)) (e - e) dQ+ 
Q 

J (oB A A A ) + r ae (e, y(e)) (e-e) dE?;O, 
X 

ve E u. (4.37) 

5. Linear state equation 

Consider the problem of parametric optimization for the particular case of 
linear state equation of the form: 

~ n (}2y 
A(6,y)=-;:,- - };aii(x,t,6) 

0 0 
+ 

ut i, i= 1 X; Xj 

n oy 
+ };ai(x,t,e) ox +a(x,t,6)y=f(x,t), (x,t)EQ (5.1) 

i;:;: 1 1 

with boundary conditions: 

n oy 
B(6,y)=}; ci(x, t,e) oxi +1{/(X,t,e)y = cp(x,t), (x,t)EE (5.2) 

i= 1 

and initi'al condition 

y(x,O)=y0 (x), xEQ. (5.3) 



34 J. .SQKOLOWISKI 

In this case sufficient conditions for existence of an optimal parameter and for 
differentiability of functional J(e) are weaker then in general case of quasilinear 
state equation. On the basis of Theorem 2 we can find sufficient conditions for 
existence of the state trajectory 

y(e) E cz+/3,l+/31l-(Q), fJ>O (5.4) 

for all parameters e E U. 

For simplicity let us assume like in section 4 that the scalar parameter e is a func
tion of one variable t only. Substituting a fixed parameter e E u to the coefficients 
of state equation (5.1)-(5.3) we obtain functions of variables (x, t) E Q(L), for example 

iiii (x, t) := aij (X, t, 6(t)), (x, t) E Q, 

for which the assumptions of Theorem 2 should be fulfilled. This way we get the 
following conclusions: for existence of state trajectory which satisfies (5.4) it is 
enough to assume: 

(i) coefficients of state equation and given functions f, rp, y 0 satisfy assumptions 
of the Theorem 2 (with respect to x, t variables); (5.5) 

i+/3 

(ii) UcC 2 (0, T), fJ>O; (5.6) 

(iii) aii(x, t,.), ai(x, t,.), a(x, t,.), (ci(x, t,.), lfl(X, t,.)) are C 1 functions on the 
set KcR for all (x, t) E Q(L). (5.7) 

We state in form of two lemmas sufficient conditions for existence of an optimal 
parameter for the problem (3.6) and differentiability of functional (3.4) in the case 
of linear state equation. 

LEMMA 4. Assume: 

(i) conditions (5.5)-(5. 7) hold, 

(ii) set (J is closed in C(O, T) topology, 
then there exists an optimal parameter for the problem (3.6) with linear state 
equation (5.1)-(5.3). 

Proof. In similar way like in Theorem 3 one can proove that in this case mapping 
(3.13) is continuous. Hence functional (3.4) is continuous in C(O, T) topology on 
the set U which is compact (it follows from assumptions (5.6) and (ii)) in C(O, T) 
topology. 

LEMMA 5. Assume: 

(i) conditions (5.5)-(5. 7), 

aa.. aa. aa 
(ii) a~ (x, t, B(t)), a; (x, t, B(t)), ae (x, t, g (t)) E CP,/ii2 (Q) for some 

fJ>O and all e E U, 
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OC; Olfl l+P -
(iii) oe (x,t,B(t)), oe (x,t,B(t))ECl+P.-z-(I'), VBEU, 

iv) functional I(y) is differentiable, then functional (3.4) is diffe~entiable and its 
gradient 1s of the form (4.36). 
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Appendix 

Proof of Theorem 3. 

'Let Yko k= 1, 2, be the solution of the equation 

(x, t) E Q, (A. I) 

with boundary condition: 

11 

.2; aij(x, t, ek, Jk) fJkj )'; +lf/(X, t, eko Jk)=O, (x, t) E}; (A.2) 
i. j= 1 

and initial condition: 

Yk (x, O)=y0 (x), x E Q, (A.3) 

d d 
. . oyk 

where Pki enotes envattve -- . 
OX; 

By subtracting equations (A.l) for y 1 , Y2 we obtain 

oy1 oyz ~ 02 
Y1 

at- at- LJ au(Bt>Yl) ox· ox. + 
i, i= 1 t_ J 

" 02 Yz 
+ t.£ aii(e2,Yz) ox; oxj +b(Bl,Yt>Pl)-b(Bz,Yz,Pz)=O, 

(x, t) E Q, (A.4) 

I 
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where for simplicity we denote 

similarly substracting boundary conditions (A.2) we get 

11 

..2; a,j(81,Yt)Pu y,+!fJ(8t,Y1)-

'· j= 1 
n 

- ..2;au(82,Y2)P2i Yi-!fl(82,yz)=0, (x,t)EI:. (A.5) 
i, i= 1 

Let us denote ji=YI-Yz· Then we can rewrite (A.4) in the form: 

" (J2 Y2 - ..2 [au(82, Y1) -au(81, Y1)] 
0 0 i,i=1 xi xi 

n az Yz 
- t,~ [au(8z, Y2) -au(82, Y1)] ox; oxi + 

+ [b (81, Y1, P11• ... , Ptn) -b ($1, Y1, Pzt> P12• ... ,Pin)]+···+ 

+[b(81,Y1,P21• ···•P2n-1•Pln)-b(8l,y1,Pzl, ····Pzn)]+ 

+ [b(81, Y1, Pz) -b (81, Yz, Pz)] + [b (81, Y2, Pz) -b(8z, Yz, Pz)] = 0 

(A.6) 

we consider the solution of (A.6) in a neighbourhood of a fixed parameter 8 2 E U. 
We will assume that 8 1 E U is a point belonging to this neighbourhood. 

Since y:(8z) E cz+{J, l+{J/Z (Q) we have 

I 
OYz 0

2 
Yz I Yz,--;--, ') ') :(C,(x,t)EQ, i,j=l, ... ,n. 

uXi uX; UXj 
(A.7) 

By Lemmas 1, 2 the following a priori estimation of the function y 1 = y(8 1) 

takes place : 

(A.S) 

By (A.7), (A.S) and the mean value theorem we can estimate subsequent summants 
in (A.6), for example 

(x, t) E Q 
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and analogicaly 

lb(8t. Yt. Pu, 000
, P1n) - b(8t. Y1, R21, ooo,P1n)l~ C/ft1l n~x I ::

1 
I, (x, t) E Q, 

oy1 oyz 
where p1 = p 11 - p 21 = ---::;--- - -~- o 

uX1 uX1 

Let us rewrite (A.6) in the form 

since 8 2> Yz are fixed and 

we can write 

37 

To use Lemma 1 let us note that function B1 may be estimated in the following 
way 

whence 

B ( - - z) c" I -12 c" I -12 c"lzlz -y 1 x, t, y,p,"'"' ~ 0 y + 1 p + 2 "'"' 

~c~' I.JW+C~' lft i 2 +C~' (max IB[)2
0 

Q 

So the constant C2 from the estimation (2.4) can be chosen as 

C2 = C~' (max 181-82[)2 
Q 

in the similar way we can determine the constant C4 in the estimation (2.4) as 

C4 =C~' (max 181 - 8 2[)2 
0 

Q 

Then from Lemma we have 

max I.YI ~ C max 181 - 82l 
Q Q 

so the mapping (3ol3) is continuous, qoeodo 
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Problem optymalizacji parametrycznej dla pewnej klasy 
liniowych i quasi-Iiniowych rownan typu parabolicznego 

J. SOIKOLOWSKI 

Rozwazono problem minimalizacji pewnego funkcjonalu jakosci, okreslonego na klasie roz
wi<tzail r6wnania stanu, kt6re jest quasi-liniowym r6wnaniem parabolicznym. Wsp6lczynniki 
r6wnania stanu zalezne s~ od pewnego parametru funkcyjnego, zadanie optymalizacji polega na 
wyznaczaniu parametru optymalnego, kt6remu odpowiada rozwi~zanie r6wnania stanu minima
lizuj~ce funkcjonal jakosci na zbiorze parametr6w dopuszczalnych. 

W punkcie 3 podane s~ warunki wystarczaj~ce dla istnienia parametru optym~lnego. 
W punkcie 4 podano warunki wystarczaj'!ce dla r6zniczkowalnosci funkcjonalu jakosci. Dla 

efektywnego wyznaczenia gradientu funkcjonalu jakosci zdefiniowano tzw. uog6lnione r6wnanie 
sprzcezone oraz podano warunki wystarczaj~ce dla istnienia jednoznacznego rozwi~zania tego 
r6wnania. 

Wykorzystuj~c uog61niony stan sprzcezony podan6 warunki konieczne optymalnosci. 

IIpo6JieMa napaMeTpnqecKoii onTnMaJin3al(HII neKoToporo 
KJiacca mmeiinhiX II KBa3nmmeiinhix ypaBuemtif napa6omt
qeciwronma 

B cTaTbe paccMoTpeHa rrpo6neMa MHHIIM:ll3al(HH HeKoToporo <J?yHKI\ROHaJia KaqecTBa, orrpe
.L(eJieHHoro B KJiacce pemel!IDi: ypaBHeHID! COCTOHHIDI - KOTOpoe HBJIHeTCll KBa3HJIHHe:liHbiM rrapa-
60JIHqeCKRM ypaBHeHHeM. 

KoJ<J?<J?Hl(HeHTbl ypaBHeHID! COCTOHHRH 3aBHCl!T OT HeKOTOpOrO <J?yHKI(HOHaJibHOfO rrapa
MeTpa - 3a.L(aqa OIITHMR3al(HH COCTOHT B orrpe.L(eJieHHH OIITRMaJihHOfO rrapaMeTpa, KOTOpOMY 
COOTBeTCTByeT pemeHHe ypaBHeHHll COCTOHHHH, MHHHMH3HPYIOmee <J?yHKI(HOHaJI KaqecTBa Ha 
MHOJKeCTBe .L(OrryCKaeMbiX rrapaMeTpOB. 

B pa3,ll;. 3 .L(aHbi .L(OCTaToqHbie ycJIOBHH cymecTBOBaHRH ornnMaJihHOro rrapaMeTpa. 
B pa3.[(. 4 .L(aHbi .L(OCTaToqHhre ycJIOBRH .L(H<J?<J?epeHI(HpyeMoCTH <J?yHKI(HOHaJia KaqecTBa. ,L(JIH 

::~<J?<J?eKTHBHOTO Bb]qHCJieHHH rpa.L(R.eHTa <J?yHKl(HOHaJia KaqecTBa .L(aHO OIIpe,ll;eJieHHe TaK Ha3h!B. 
o6o6meHHoro corrplllKeHHHro ypasHeHHH H rrpHBe.L(eHbl ,ll;OCTaToqHhie ycnoBHH cyrrrecTsosaHIDI 
O,ll;H03RaqHoro pemeHHH 3Toro ypasHeHHH. 

lJCIIOJib3YH o6o6meHHOe COIIpl!qermoe COCTOHHHe .L(aHbi He06XO.L(HMbJe yCJIOBHll OIITHMaJihHOCTH. 


