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The paper presents an algorithm for constrained dynamic optimization problems and discusses 
its application to the solution of nonlinear planning models, which could be used in formulation 
of development programs for the Polish economy. The algorithm is based on the ideas of penalty 
function, conjugate gradient and adaptive precision principle. The emphasis is made on the con
vergence properties of the algorithm, in the general case and in the case of the planning model. 
The .corresponding theorems are formulated and proved. 

1. Introduction 

This paper presents an algorithm for constrained dynamic optimization problems 
and discusses its application to the solution of nonlinear planning models, which 
could be used in formulation of development programs for the Polish economy. 
The algorithm is based on the ideas of penalty function [2, 5], conjugate gradient 
[1, 7] and adaptive precision gradient method [4]. It is defined in the way to make 
it directly implementable on a digital computer, i.e. each iteration is made up of 
a finite_ number of arithmetical operations and approximately executed function 
evaluations. An emphasis is made on the convergence properties of the sequences 
of approximate solutions generated by the algorithm. The sufficient conditions are 
defined for these sequences to be critisizing or minimizing ones (in a generalized 
sense) and to converge in the weak and the strong sense. 

The planning models considered in the paper are based on the ideas put forward 
by Kendrick and Taylor [3] and adapted here .to the specific conditions of the Polish 
economy. 

In Section 2 we present the adaptive precision conjugate-gradient algorithm 
together with theorems stating its main properties and in Section 3 we describe 
the model and discuss the application of the algorithm to its solution. 

Some proofs are given in Appendix. 
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2. The adaptive precision conjugate-gradient algorithm 

A dynamic optimization problem can be formulated as the problem of locating 
a minimizing (or maximizing) point for some real-valued functional over a subset of 
a Banach space. 

Let us assume that E is a Banach space, f and g1, i = 1, 2, ... , q, are functionals 
over E and Q is a set defined by the formula: 

Q={uEE/g1 (u)=0 for i= l,2, ... ,q and g1 (u)<O 

for i=q+l, q+2, ... , q}. (2.1) 

Now, we seek to minimize the functional f over the set Q. In particular we shall 
be concerned with optimal control problems, where 

E =L;(O,T); (2.2) 

T 

f(u)= J c(x (t),u(t),t)dt, 
0 

(2.3) 
u(t) E E', x(t) E EP for t E [0, T], 

dx 
dt=s(x(t), u(t), t), 

x(O) = x0 ; 
(2.4) 

and 

Q = {uEL;(O,T)Iai<ui(t)<bi for j=l,2, .. . ,r 

and almost all t E [0, T], and xi (T) = di 

forsome jE{l,2, ... ,p}}. (2.5) 

It is clear that the set (2.5) can be put in the form (2.1) be defining: 

gl (u) = llu- ii llz, where 

if u(t)~b 

if a<u(t)<b, 
if u(t)<a 

and 

g1 (it)=!xi1 (T) - d1! for i=2, ... ,q 

jiE {1, 2, .. . ,p}. 

(2.6) 

(2.7) 

To facilitate further considerations we present in the first place an adaptive 
precision gradient algorithm of the Klessig-Polak type, for unconstrained mini
mization. 

Let j be the computation precision index, jj (u) the approximate value of the 
functional fin the point u and hi (u) the approximate value of the gradient of the 
functional f in the point u. 

\ 
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Algorithm 1. 

Step 0. Select an integer j 0 , an u0 E E, and parameters 
Bo>O, o::, fJ E (0, 1), AminE (0, 1]. 
Set j =j 0 , e=e0 and n = O. 

Step 1. Compute hiu,) and [[hj(u11)[[E. 
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Step 2. Select the direction of the minimization Pn (for example one can take 
p, =PEn(i) hj ( (u11 ) ) . 

Step 3. Set A. = 1. 
Step 4. Set LJ =jj(u11 +),p11)-fj(un)+(A./2)<hj(un),p,.>. 
Step 5. If £1 ~ 0 then go to step 9, else go to step 6. 
Step 6. Set ), = fJA.. 
Step 7. If A.;;dmin e then go to step 4; else go to step 8. 
Step 8. Set j =j+ 1, e= o::e and go to step 1. 
Step 9. If jj(u,+),p11)-jj(u,)~ -B then set u,.+ 1 =U11 +Ap,. and n=n+1; else set 

j=j+ 1 and e=o::e. 

Step 10. Go to step 1. 

THEOREM 2.1. Let us assume that the following conditions are satisfied: 
(1) f is bounded below on the set 

W(u0 )= conv {u E Elf(u)~f(uo)}; 

(2) Vf is Lipschitz continuous on W(u0 ), 

(3) {p11 }
00

11 = 1 give an admissible sequence of directions [1]; 
(4) 3M>0, c>0\ln [ [p,[[~M/\ [ [p11 [[ ~c< -Vf(u,.),p,); 

t) . 
(5) \1 u E W(u0)[/(u)-jj(u)[ ~t)i> [[Vf(u) -hi (u)[[~t5j and _J j--> oo-+ 0. 

si 

Then {u11 } is a criticizing sequence, i.e. 
II VJ(u,) JI ~O. 

Now we shall consider the adaptive precision conjugate-gradient algorithm 
for unconstrained minimization, where the search along the line proceeds by means 
of the Algorithm 1. 

Algorithm 2. 

Step 0. Select integers j 0 , m0 , lmax· Select an a E E"' 0 and parameters Bob e02 , 

803>0, o::, [31 , fJz, [33, YE (0, 1), AminE (0, 1]. 
Select an orthonorm.al base {z111},';;'= 1 in E. 

Set jm = jo, nl = nlo, 81 =Bot. 8z =Boz, B3 =So3, 
m 

· u0 =}; ai z;, n = O. 
i;:::::; 1 

Step 1. Compute hj (u,) and !lhj (u11)IIE· 
Step 2. Compute h7 (u,.) =PE,. llhj (u,.) ll and llh;' (un) II Em· 
Step 3. If l l h~'(u,.) IIEm<Y IIhi(un) IIEm then set m=m+1 and go to step 2. 
Step 4. Set h'"c,u= - h~'(u11) and 1=0. 

Comment h'" c,i is the direction of minimization. 
Step 5. Set h = h"' c,.)[[h"' c,.j iiEm· 
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Step 6. Set x=O. 

Step 7. Set z=un+xh. 
Step 8. Compute e~(x)=(hi(z), h). 

Comment. The function e (x) is defined by the formula: 

B(x)= f(un+xh) - f(u 11). 

It follows that B'(x)=(Vf(u"+xh), h)=(V/(z), h) 
e~ (x) is taken as the approximation of e' (x). 

Step 9. If 1 Bj(x)l/ l lhi(z) ll£~e2 then go to step 17. 

B. TOLWIN&KI 

Comment. Start of the minimization of the function e (x) by means 
of the algorithm 1. 

Step 10. Set A. = 1 
Step 
Step 
Step 

11. Compute L1 =Bi(x-A.e~ (x)) -8i(x)+!A.B~(x)2 • 
12. If LI~O then go to step 16. 
13. Set A.=/31},. 

\ 

Step 14. If A.;;:,c;1 }, min then go to step 11. 
Step 15. Set j=j+ 1, t: 1 = 81 CJ. and go to step 1. 
Step 16. If ej (x-J,e~(x)) - ej (x)~ -c:1 then set x = x- A.e~ (x) and go to step 7; 

else setj=j+ l, t: 1 =t:1 tY.. and go to step 1. 
Comment. End of the minimization along the line. 

Step 17. Compute h;' (z). 

Step 18. If ll h~'(z)I I E,~Y IIhi(z)ll£ then set m=m+1 and go to step 17. 
Step 19. Set U 11 +1 =z. If l=lmax then set n =n+ 1 and go to step 4; else set 

b"i =<hi (z)- hi (u")' hi (z))/llhi (z)l l ~, 
h111 

C11 + li = -h~' (z) +b11i hm C11i, 

l=l+ 1, n=n+ 1. 
Step 20. If< - hi (u11), h"' cni);;:, t:3 llhi (u11)ll·l lh111 cni ll then go to step 5; else set t:2 = t: 2 /32 , 

t:3 =c:3 /33 and go to step 5. 
Comment. The purpose of the operations in step 20 is to find an t:2 which 

is compatible with the convergence of the algorithm (see [6] 
p. 307). 

THEOREM 2.2. Let the assumptions (1), (2) and (5) of the Theorem 2.1. be satisfied 
and let: (6) the set W(u0 ) be bounded. Then the sequence {un} generated by the 
algorithm 2 is a criticizing one. 

By using the penalty-function method it is possible to apply the Algorithm 2 
to the constrained minimization, i.e. to minimize a functional f over the set Q given 
by (2.1). Let us define: 

1 q q 

fv (u)= f(u) + 2 KP (}; [max (0, g1 (u)))Z + i=t-
1 

[g; (u)JZ) (2.8) 

and assume that Kv v-+ oo ->- oo . 

Now, the adaptive precision conjugate-gradient algorithm for constrained mi
nimization can by defined in the following way: 
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Algorithm 3. 
Step 0. Perform step 0 of the algorithm 2. 

Select real numbers K0 >0 and s>O. 
Set K = K0 ·and p= 1. 
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Step 1. Apply the operations of step 1 of the Algorithm 2 to the functional JP. 
Step 2. If l lhj(un)ll~1/K then set uP = u"' K=Ks, p =p+1 and go to step 1. 
Step 3. Perform steps 2-7 of the algorithm 2. 
Step 4. If l lhj(z)II~1/K then set Un=z, K=K~, p =p+1 and go to step 1. 
Step 5. Perform steps 8-20 of the algorithm 2. 

THEOREM 2.3. Let us assume that the following conditions are satisfied: 
(1) Sets WP(uv_ 1)=conv {u EE/f(u)~fP(uv _ 1)}. 
(2) jp are bounded belOW On the SetS WP (Up_ 1); 

w 

(3) Vf and Vgi i=1, 2, 3, ... , q are Lipschitz continuous on U WP; 
p=l 

Jj 
(4) \fuEWv(up_ 1)lJ;,(u)-fvj(u)j~Jj; IIVJP(u)-hpj(u) j j~ Jj and --+0 . 

ct.j 

Then the Algorithm 3 is well defined and 

II VJP(up) ll P-->ro 
4 0. 

THEOREM 2.4. If in addition to assumptions (3) and (4) of the Theorem 2.3. the 
(/J 

set l_) Wp(up_ 1 ) is bounded, fv are bounded below onE, f and g;, i= 1, 2, ... , q, 
p=l 

are convex, and f is Lipschitz continuous in a neighbourhood of the nonempty 
set Q, then 

lim sup f(uP)~ inf f(u), 
p--+oo ll EQ 

lim sup g; (up)~O for i= 1, 2, ... , q, 
p--> ro 

and 

lim g,(up) = 0 for q+ 1, ... , q . 
V-> ro 

Furthermore, if for i = 1, 2, ... , q the constrains defined by g; are correct [1, 5] 
and q = ij = 1, or at least one of the sets 

Q; = {ujgJu)~O} 
I 

is bounded then 

lim supf(up) =inff(u) 
p --+ oo uEQ 

and 

p(uP, Q) = inf lluP - ull p--. oo+O 
uEQ 

(i.e. {up} is a generalized minimizing sequence for f). 
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Let us consider the application of Algorithm 3 and Theorems 2.3. and 2.4. to 
the optimal control problem defined by (2.2)-(2.5). In this case to compute values 
off and V fin any point u it is necessary to solve two systems of differential equations. 
It can be done approximately by means of some numerical procedure, for example 
Runge-Kutta or interpolation-extrapolation method [8]. According to adaptive 
precision principle the accuracy to the numerical integration will be variable. We 
shall assume that the condition (4) of the Theorem 2.3. is satisfied (of course, in 
practice it is possible only to a certain limit). 

For the optimal control problem (2.2)-(2.5) two following lemmas are valid: 

LEMMA 1. If the functions c(.,.,.) and s(., .,.) are continuously differentiable in x 
and u and they are piecewise continuous in t, furthermore, if the matrix-valued 

a a a a 
functions --;;- c (.,.,.), --;;- c (.,.,.), --;;- s (.,.,.) and --;;- s (., .,.) are Lipschitz continuous 

uX uU uX uU 
00 

in x ·and u, piecewise continuous in t and bounded for all u E U WP (u v _ 1) , all 
00 p=l 

x E {x (t, u) E C(O, T)/u E U WP} and almost all t E [0, T], then the assumption (3) of 
p=l 

the Theorem 2.3 is satisfied. 

LEMMA 2. If for i = 1, 2, .. . , r functions a;(t) and b1(t) are finite, and for some real 
numbers m 1 , mz T . 

J c(x(t), u(t), t) dt~ -m 1 -m2llullz, 
0 

then assumptions (1) and (2) of the Theorem 2.3 are satisfied. 
In the next theorem we shall formulate sufficient conditions for {uP} to be a ge

neralized minimizing sequence for the functional (2.3) over the set (2.5) . 

THEOREM 2.5. Let us assume that the following conditions are satisfied: 
(1) c(.,.,.) is continuously differentiable in x and u, piecewise continuous in t and 

a a 
convex in (x, u), --;;- c (.,., .) and--;;- c (.,.,.) are bounded, Lipschitz continuous 

uU uX 

in x and u and piecewise continuous in t. 
(2) s(x, u, t)=A (t)x+B(t)u, where the matrix-valued functions A (t) and B(t) are 

continuous for t E [0, T]. 
(3) a, (t) and b, (t) are finite for i = 1, 2, ... , r and t E [0, T]. 

T 

(4) J c(x(t), u(t), t) dt~ -m1 - m2 llull2 for some numbers m1 and mz. 
0 

(5) The set (2.5) is non empty. 
clx 

(6) The system dt = Ax+Bu is nonsingular 
B':'y#O). 

(. 'f dy A' d 0 h Le . 1 - = - ··'y an y# t en 
dt 

Then {uP} is a generalized minimizing sequence for the functional (2.3) over 
the set (2.5). 

If we slightly modify the condition (2) of the above theorem, by assuming the 
strict convexity of c(.,.,.) in (x, u), we shall obtain a stronger result. In this case the 
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optimal control problem has a unique solution u* and {up} converge weakly to 
u*. Furthermore, we can ensure the strong convergence of {uP} to u* by assuming 
the uniform convexity of c(.,.,.) in (x, u). 

3. The planning model 

Kendrick and Taylor [3] have defined a four sector, discrete planning mode. 
and identified its parameters for the particular case of the South Korean economyl 
Here the modified, continuous version of this model is considered. In computational 
experiments the parameters of the model have been specified in line with data con
cerning the Polish economy. The basic structure of the model, defined in the form 
of an optimal control problem, is to maximize a welfare functional over a certain 
period of time, subject to constraints in the form of distribution relations, produc
tion functions, capital stock accumulation equations, terminal capital stock values 
constraints and bounds on the investment levels. 

Let n be a number of sectors. The production of each sector is described by 
the CES function: 

for i=l, 2, ... , n (3.1) 

where y1 is the efficiency parameter, z 1 is the rate of neutral technological changes, 
/31 is the distribution parameter, p; = 1/u; -1 (u; is the elasticity of substitution of 
labour for capital), V; is the degree of returns to scale, and k; and /1 are the capital 
and labour inputs. The variables l;(t) and k;(t) for i= 1, 2, ... , n are considered 
as control and state variables respectively. The state equations can be in the form: 

k, = o;(t)- h1 k 1(t), (3.2) 

k 1(0)=k10 for i=1,2, ... ,n 

where c51 is the investment level in sector i and h; is the depreciation coefficient in 
sector i (linear case). 

Or in the form: 

k;=fl;k;[r-(1+ :~ ~:rlf'']-h;k; (3.3) 

k 1(0)=k10 for i=l, 2, ... , n 

where /1; and e, are some positive numbers (nonlinear case). 
Now, let A be a Leontief matrix, B a capital coefficient matrix, c5=(c51 , ... , (jn), 

V=(fl> ... , V,,) and c=(c1 , ... , en), where for i= 1, 2, ... , n c1 is the consumption 
level of goods produced by sector i. The consumption vector is defined by the dis
tribution relation: 

c=(l-A)V-Bc5. (3.4) 

We seek to maximize the welfare functional 

f(r'5, l) = J e-;.r ( j; a1 c~~ (t)) dt 
0 i~ 1 

(3.5) 
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where T is a planning horizon, a;~O, O~b;~ 1 and A. is consumption discount rate, 
over the set Q defined as : 

Q={(b,l)EL~"(O,T) j O ~b~M, l~O , _2; l;(t)=L(t) and k(T)=F}. (3.6) 
i=l 

Our optimal control problem is now completely stated. Using the Theorem 2.4 
together with Lemmas 1 and 2 and Theorem 2.5 it is not difficult to obtain the 
following results: 

THEOREM 3.1. If the parameters v; in CES production functions (3.1) are less or 
equal zero and functionals fv(b, l) are defined according to (2.6), (2.7), (2.8) and 
(3 .6) then the algorithm 3 applied to the optimal control problem defined by re
lations (3.1) (3.2) or (3.3), (3.4), (3.5) and (3.6) generates a sequence {bP, zv} and 

II VJ;, (JP, fP) II : ... :-~o. 

THEOREM 3.2. If the assumptions of the Theorem 3.1 are satisfied then Algorithm 
3 applied to the optimal control problem defined by relations (3.1), (3.2), (3.4), 
(3.5) and (3.6) generates a generalized maximizing sequence for the functional 
(3.5) over the set (3 .6). Furthermore, this sequence converges weakly to the unique 
solution of the problem. 

For computational experiments we have identified the parameters of the CES 
production functions for five sectors of the Polish economy 1951-1972: (1) industry, 
(2) construction, (3) agriculture and forestry, (4) transportation and communica
tion, and (5) commerce. It is worth to say that for all sectors v; have turned out 
to be less than 1. The matrices A and B, the coefficients h;, 'the function L(t) and 
the values of k;o were evaluated on the base of data published in the year books 
of the Poli~sh economy. The remaining parameters of the model have been selected 
arbitrarily. The computations have been carried out for models with various number 
of sectors and for the planning horizon T from four to twenty years. The suboptimal 
solutions have been obtained after a reasonable amount of the computer time, 
in spite of the rather small and not very up to date computer we have used. It appears 
that the computation time increases the most rapidly with the length of planning 
horizon. 

Some results have been also obtained for models including the foreign trade. 

4. Conclusion 

We have presented here the numerical method of the dynamic optimization and stated 
its properties ih the case of the general funct ional defined over a Banach space and in the 
particular case of the optimal control problem. The method has been tested on a rather 
important practical problem taken from the theory of economic growth. The results obtained 
demonstrate that the method is of a considerable practical interest. For example, it can be 
useful as a tool for the analyses of multisectoral nonlinear plann ing models of the national 
economy. It seems that further experimentation along these lines can be quite interesting. 
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Appendix 

Our purpose here is to outline the proofs of the principal theorems given in the 
paper. The more detailed proofs of these theorems together with the proofs of 
Lemmas 1 and 2 can be found in [9]. 

Proof of the Theorem 2.1. 

It is easy to show that from the assumption (5) we have 

and 

(Notice, that n and j are interdependent). 
since 

(A.l) and (A.2) yield 

f(u~~)- f(u"+2p,) 

(- Vf(u")' p") 

h (un)-h (u" + ),pn) 

( -hj(u")'p") 

;.__, w -* 1 ' 

and we see that the Algorithm 1 is well defined. 
Now, we have that for all n 

jj (u")- fi (u11 + 1) >0. 

Because of the assumptions (1) and (5) 

and one can show, that (A.5) together with (A.6) yields 

f(u,)- f(u"+ J;:::O 

for all n greater than some ii. 

(A. I) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

Because of the assumption (3) to complete the proof it is enough to show, that 

< pll) 
-Vf(u11),-1 , -~1 ,_,"'->0. 

IP" I 
(A.8) 

(From this point the proof is similar to the proof of Theorem 4.6.2 in [1]). 
If the inequality from the step 5 of the algorithm is satisfied for ), = 1 then 

1 l < . p, ) ] ( 1 ) ' f(u,) -f(ull+1)):2 -Vf(u,), W I I P~~ II -:-:-. 2+ 2M oj. 

\ 
If it is not the case there exists an integer k such that for 

u" + 1 = u" + fJk P" 

(A.9) 
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and 

we have 

(A.lO) 

and 

. ( ') 1 <- hi(un),pn) 
IIPn ll jj (un)- fJ (un) < [fun- u" [[ 

2 
· (A.ll) 

By transforming these inequalities and using assumptions (2), (4) and (5) we 
finally obtain that 

fJ < Pn >2 

4
L -Vf(un), -

11
-

11 
~f(u,)-f(u11 + 1)+constc5i. 

.Pn 
(A.12) 

Because of (A.7) together with the assumptions (1), and the assumption (5) 
(A.12) yields (A.8) and the proof of the theorem is complete. 

Proof of the Theorem 2.2. 
Let {xk} be a sequence of numbers generated by the algorithm 1 applied to the 

minimization of the function e (x) with Pk= -e~ (xk). Because of Theorem 2.1 
it is clear that B'(xk)-tO. 

Since j 
11

_. "'-+ oo for every c; 2 > 0 there exists k such that 

(A.13) 

Therefore the Algorithm 2 is well defined. 
The second part of the proof can be performed by contradiction. Let us assume 

that there exists a positive number c; such, that 

[[hi (un) [[ )oc;. 

Assumptions (2) and (6) together with (A.14) yield 

[[b"i h"' s;,j [IR"' ~D[[ hi (u" + 1)[[ 
for a number D > 0. 

(A.l4) 

(A.l5) 

Let for every U11 rx11 be a first number xk which satisfies (A.l4). It is possible tv 
show that because of the assumptions (1) and (2), the inequality (A.l5) yields 

rx11 )o(>0 for a number (. (A.l6) 

Now, it is easy to proove that for c;2 sufficiently small, n sufficiently large and 
some 0<~~( we have 

f(un+ 1)~j(u" +~hm S11j). (A.17) 

Because of (A.l4) and (A.l7) it is possible to show, using the Taylor's formula 
for first-order expansions, that there exists a> 0 such that 

(A.18) 
for almost all n. 
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It means that f(u11) 
11

_,
00
-+- oo and ISm contradiction with the assumption (1). 

The Theorem 2.3 follows directly from the Theorem 2.2. 
Proof of the Theorem 2.4. 
Since the convexity of the functionals f and g;, and the boundness of the set 

00 

U Wn the inequality 
n=l II 'VfvCuv) II :::;;IX11 yields 

fv(uv):::;;inffv(u)+const . IXv · 
u E E 

(A.19) 

(A.20) 

The sequence {uv} generated by the Algorithm 3 satisfies (A .19) for p=1, 2, .... 
with !Xv-+0. 

Now, it is easy to show that all assumptions of Theorem 11.1 in [5] are satisfied. 
Therefore, the Theorem 2.4 is true. 

The Theorem 2.5 follows from the Theorem 2.4 and Lemmas I and 2. 
It is also obvious that Theorem 3.1 and 3.2 are valid as conclusions from the 

theory presented in Section 2. 
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Zastosowanie zasady adaptacyjnej precyzji oraz gradientu 
sprz~zonego do analizy nieliniowego modelu planowania gos
podarki narodowej 

Przedstawiono algorytm rozwi~zywania zadafl optymalizacji dynamicznej z ograniczeniami 
i przedysku towano mozliwosc jego zastosowania do analizy nieliniowych modeli planistycznych ,. 
kt6re mogiyby bye wykorzystane przy formulowaniu program6w rozwoju gospodarki narodowej. 
Definicja algorytmu wykorzystuje znane poj~cia funkcji kary, gradientu sprz~zonego oraz zasady 

· adaptacyjnej precyzji oblicze11. Szczeg61ny nacisk polozono na okresienie warunk6w zbie2:nosci 
algorytmu, zar6wno w przypadku og6lnym jak i przypadku modelu planistycznego. Odpowiednie. 
twierdzenia dotycz~ce tego zagadnienia zostaly sformulowane i udowodnione. 
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flpnMeHeHIIe DpHHI.IIIDa a,n:anniBHOH TO'IHOCTII If conpmKeH

HOrO rpa,n:HeHTa K aHaJUI3Y HeJHmeHHOH MO,n:eJIH DJiaHHpOBaHHH 

Hapo,n:uoro X03HUCTBa 

B. TOL WIN.SKI 

B CTaThe rrpe,!\CTaBJTeH aJTrOpHTM perneHHJI 3a)l;a'! ,!\HHaMH'ieCKOH OIITHMH3a~HH C orpailli'!e

HllliMH H paCCMOTpeHa B03MOJKHOCTb ero IIpHMeHeHHll K aHaml3y HeJTHHe:liHbiX M O,!\eJTe:li IIJTaHH

poBaiDill, KOTOpb!e MOryT 6biTb HCIIOJTb30BaHbi IIpH <!JopMyJTHpOBKe rrporpaMM pa3BHTHJI Ha

pO,!\HOrO X03liHCTBa. Ilpll orrpe)l;eJieHHH aJTrOpHTMa llCIIOJib3YIOTCll H3BeCTHble IIOHHTHJI <!JyHK~ 

mTpa<!Ja, conpliJKeHHoro rpa,!\IieHTa n rrpRHrrnrra a,!\arrTHBHOil TO'!HOCTH BhPillCJTeiDill. Oco6oe 

BHHMaHHe y,!\eJieHO OIIpe,!\eJieHHIO yCJIOBHH CXO,!\HMOCTH aJirOpHTMa KaK B 06]]JeM CJJy'lae, TaK 

H B CJJyJJae MO,!\eJIH IIJiaHHpOBaHHll. )J;aHbl orrpe)l;eJTeHHJI ll ,!\OKa3aTeJThCTBa COOTBeTCTByiO]]JHX 

TeopeM, Kacmo]]JuxcJI :noro aorrpoca. 

/ 



Wskaz6wki dla Autor6w 

W wydawnictwie "Control and Cybernetics" drukuje sit; prace oryginalne nie publikowane 
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