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In the paper the coordination of the large real system is discussed. It is assumed that the available 
model of the system is not precise. A new two-Jewel method (Interaction Balance Method with 
Feedback - IBMF) is proposed. 

The coordinability by IBMF is defined and proved in some cases. This is followed by a short 
discussion of suboptimality of IBMF. Next the coordination strategies are dissussed in a general 
case and the detailed presentation of them is given for the linear-quadratic static optimization 
problems. The method is illustrated by a computational example. 

1. Introduction 

The interaction ·balance method of coordination ·(see ·section 2 of this paper) 
finds the optimal controls for the system upon the base of the mathematical models 

· of all subsystems. Such model-optimal conttols applied to real system will yield 
the truly optim~l value of the system pe'tfomance generally only-in the case, when 
the mathematical models ate the ideal description of reality. 

In practice however the models are always less or more precise, but never the ideal 
iniage pf reality. There are numerous reasons of such situation. 

First when mathematical model is being built some simplifying assumptions 
are alwys made. It is well known too that many of model coefficients are taken 
from experiments. At last the real l?rocess is influenced by various disturbances, 
which cannot be exactly foreseen. In successive sections one possibility. of coupling 
the interaction balance method using mathematical models with the real system 
will be analysed. The aim is to find some suboptimal controls. This method was 
first sugested in [3], [4}. 

2. Presentation of IBMF 

Assume that there are given: the mathematical models of the objects (subsystems) 

y 1=JI(c1,u1), i=l, ... ,N (1) 
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'·th~ 'system' stfticture ecftiations 
N 

u1=M1 y = _2; Mj yi, i= 1, ... ,N (2) 
j=l 

.and the system perfomance 
N 

Q (c, u) =}; Q1 (c1
, u1

). (3) 
i=·l 

We assume that c1EC1', u1 E U 1
', y 1 E Y 1', where C 1', U 1' , Y 1

' .are locally convex 
topological spaces and jl: C 1'x U~'-+Y1, Q1: C 1'x U 1'-+R, Mj: yi'-+U 1' (Mj
linear continuous). For compactness of notation we denote c=(c\ ... , eN), similiarly 
·with u and y. . . 

Also for convenience we wiH write, when needed, the equations (1) and (2) in 
1ht compact form 

y =f(c, u) 

.and 

u = My · 

The real subsystems are assumed to be described by operator equations which 
.are different from (1) (and of course unknown) 

'where 
f: ct'x ut'-+yt'. 
* 

(1 ') 

We assume that the structure equations in the real system are the same as in the 
U?-athematical description (eq. (2)). Controls c1 and inte;ractiollll u1 (inputs), yl (outputs) 
·should also satisfy the constraints 

(4) 

where H~: C" x U1' x Y1' -+Z1' (Z1' -linear space). The set of (c1, u1, y 1) satisfying 
· {4) we denote by CUY 1• We assume that for every control c, .where c1 E Pet• (CUY1) 

{Pet• - projection on C 1), i=l, ... , N, there exist unique u, and unique u* such 
. ·that 

u = Mf(c, u) and u* =Mf*(c, uJ 

If we substitute equations (1) into (4) we will obtain constraints for (c1, u1
), I.e. 

(5) 

The set of (c1, u1) satisfying (5) we denote by CU1• SimJliary the set of (c1
, u1

) 

·satisfying · 

. we denote by CU 1
• Of course in a general case CU 1"#-CU 1, butif the constraints 

* * ( Jf~ in (4) do not depend on yl, then cu; = cu~. ' 
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l&EFINITION 1. We say that c=(cl, ... ,eN) is a model-optimal control if (c1, £1 1) E 

ECU 1,where£11 =Mf(c,£1), and Q(c,u):(Q(c,u) for every (c,u)ECU=CU1 x ... 
... x CUN such that u=Mj(c, u). 

DEFINITION 2. We say that c* =(c~, ... , c:) is a real-optimal control if (c*, u) E 

ECU. = CU 1 x ... xCUN where u =Mf (c ,u.) and Q(c.,ftJ:(Q(c,u) for every 
.Ji; * **>,\: ** 

(c, u) E CU such that u=Mf (c, u). 
* Since the operators J! are unknown the real-optimal control cannot be found 

unless experimental optimization on the real syEtem is applied. In the case of a com
plex system with many controls the extremal regulation can hardly be supposed 
to be successful. On the other hand the model-optimal control can be found through 
application of a suitable minimization procedure. But if this model-optimal control 
c is applied to the real p1·ocess, then it will be nonoptimal in general. It may also very 
easily happen that the pai1 (c, u), where u=Mf* (c, u), does net belong to CU* 
even in the case; when CU = CU. In ref. [3 ], [4] it had been suggested to look for 

* another control c through the specific coordination method. To explain tlus idea 
we must remind that thank<> to the special structure of the system model the model
optimal control c can be found through the so called interaction balance method 
(ref. [7]). This is a two-level method: on the lower (infimal) level the intimal decision 
units solve independently their local problems: 

I) given p=(p\ ... ,pN), p 1 E U1'* find 
N 

min [Q1(ci, u1)+(p1
, u1

)-}; (pi, MJJ 1(c 1
, u1)) 1 1 > 

(c\u') j=l 

where (c1, u1) E CU 1• 

The set of solutions of all intimal problems we denote by CU (p). Of course 
CU(p)cCU for every p. On the upper (supremal) level the coordinatu task is: 

II M) find ft E U'* such that CU(p) is nonempty and 

u-Mf(c, u)=O (6) 

for every (c, u) EPM (CU(p)), where a ~election mapping pM: 2c'xu'---+2c'xu' 

(ref. [6]] has the property, that for every A cC' x U': pM (A) c A and A =10 => 

=>PM (A)#0. 

If there exists a solution ft of the supremal problem, then every c such that 
(c, u) E pM ( CU(ft)) is model-optimal and we say, that the model of the system 
is coordinabl.;! by the interaction balance method. 

Now the Interaction Balance Method with Feedback (IBMF) can be proposed. 
Let the infimal decision problems be the same as above (i.e. of the form I). But the 
coordinator taskJ on the supremallevel is modified: 

II R) find j5 E U'* such that CU(j5) is nonempty and 

(7) 

1
) To distinguish continuous linear functionals we denote the value of yE X* (X- linear 

top. space) on x EX by <Y, x). 

2 
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for every (c, u) EPR(CU(p)) where u*(c)=Mf*(c, u* (c)) and a selection mapping 
PR: 2c' x u· -+2C' x u' has the similar properties as pM, u (c) is the value of interactions 

* in the real system when control c is applied. According to previously made uniqueness 
assumption u* ( ·) is well defined mapping. We a.'ssume of course that the values 
of interactions in the real system can be measured. It is evident that a p0int c((c, ii)c 
cPR ( CU CP))) is in general case neither model-optimal nor real-optimal. This point 
may also not belong to the set CU . However, in the case, when CU = CU (i.e. 

* * when the constraints H~ do not depend on yl) we know that (c, u* (c)) E CU*, which 
is very important. 

The IBMF is applicable in the sense that when the models are ideal, i.e. f = f*, 
then every c((c, u*(c)) EPR(CU(p))) is real-optimal. 

So the first question that arises is when there exists the solution p of IBMF 
supremal problem. We shall try to answer this question in the next section. 

The second queation that may be asked concerns the suboptimality of c. 
Tl1is problem will be briefly discussed in section 4. 

Finally, one should know the way to look for ji. This question about possible 
coordination strategies is considered in sections 5 and 6. 

3. Coordinability by IBMF 

Now we shall state and prove the basic coordinability theorem. 

THEOREM 1. Let the set CU= CU 1 x ... x CUN beconvex and compact in C' x U'. 
Letj i andf; be continuous on CUi. Denote by U the set of such s E U' that for some 

* (c, u) E CU we have Mf* (c, u) - Mf(c, u)=s. Suppose that for every sE U the 
model of the system with equations (1), (2) replaced by 

u=Mf(c, u)+ s (8) 

is cooridnable by the interaction balance method . Suppose also . that model-optimal 
control c5 for the above "s-shifted" system is unique for every sE U, so that the 
mapping c ( ·): U 3 s-+ c (s) = cs is well defined . We assume that th is mapping is 
continuous on U as well as the mapping a(. ): U -+ U' defined by a(s) = Mf(c (s), 
a (s))+s. The set CU is assumed to be independent on s (rei. (5)). 

Then there exists the solution p of IBMF (supremal problem IIR) with pR =PM_. 

Proof. We shall construct a certain mapping W: CU-+CU. 

For this let us take any point (c, u) E CU and define s E U' as 

s = Mf*(c, u) - Mf(c, u) . 

Then s E U and according to the assumptions made there exists fts E U'':' such 
that 

(c (s), a(s))=PM ( CU(fts)) 
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and 

u(s)-Mf(c(s), u(s))=s=Mf*(e, u)-Mf(e, u). 

Let us define the mapping W as W = W2 o W1 

where 

wl: CU3 (e, u)-'>s=Mf.(e, u)-Mf(e, u) E u 
W2: U 3 S-'>( C(S), fi(s)) E CU. 

19 

Since M_ is a Iiear continuous operator and /*, f are continuous then W1 is 
· continuous on CU. W2 is continuous from the assumption and so W is continuous. 
Now we can apply the following theorem (ref. [2]): 

If X is a compact convex subset of a locally convex topological space X and F: X__, 
__,X is continuous mapping then there exists at least one point x 0 E X, such that 
F(x0 )=xo. . 

In our case the set CU and the mapping W fulfil the assumptions of the above 
theorem. So there exists at least one point ( e0 , u0 ) E CU such that W ( e0 , u0 ) = 
=(e0 , u0). It means that 

where 

If we denote Pso by j5 then 

and 

From this we have I 
u0 =Mf* (e0 , u0 ). 

So e0 = c and the theorem is, proved. Q.E.D. 

The above theorem is founded on two basic assumptions. One of them is the 
coordinability of "s-shifted" model (8) by the interaction balance · method. The 
question of coordinability by this method is exhaustively analysed in [5], [6], · [7]. 
In [5] the following theorem has been proved. 

THEOREM 2. Assume that Ci', ur are reflexive Banach spaces, the set CU= 
= CU 1 x ... x CUN cC' x U' is bounded, closed and convex, operators P and 1: 
are weakly continuous on CUi, i= 1, ... , N, Q is weakly lower semicontinuous and 
bounded from above on CU and · -

(i) there exists K 1 >0, K 1 ER, such that for every hE U', llhii~K1 exists 
(e, u) E CU such that u=Mf(e, u)+h; 
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(ii) for every (c, u) E CU we have 

[[Mf (c,u) - Mf(c,u)[[:;(K2 , where 0<K2 <K1 ; 

* 
(iii) for every p E U'*, [[p [[ :(r, where 

K'-K'' 
0 0 ( ' ' " . )) r ~ K - K K0 =sup Q(c, u), K0 =mmQ(c, u 
1 2 cu cu 

the infimal problems I have unique solutions; 
(iv) the mappings c ( · ), u ( ·) (see Theorem 1) are well defined and weakly 

continuous on the set ll = {sE U': Ifs[[ :(K2 }. 

Then there exists the solution p of IBMF suptemal problem liR with PR=J 
(I - identity mapping) and lift! I::( r. 

The second vital assumption made in theorem 1 is about existence and continuity 
of c ( ·) and u ( · ). It is difficult to give general conditions on which this assumption 
is fulfilled. We shall consider here two particular cases. 

Assume that C 1', U 1', i=1, ... , N, are Banach spaces, operatorsj1 are continuous 
and affine and the assumptions (i) and (ii) of Theorem 2 are fulfilled. 

Now we can formulate two lemmas: 

LEMMA 1. Suppose that the above assumptions hold, the set CU is convex, 
closed and bounded, spaces U' and C' are finite dimensional and Q is strictly convex 
and continuous on CU. Then the mappings c ( ·) and u ( ·) are well defined and con
tinuous on the set tl = {sE U': Ifs if ::::;; K2 }. 

LEMMA 2. Let the assumption of Lemma 1 hold with the change that U', C' 
are any reflexive Banach spaces, Q is strongly2

) convex, weakly lower semicontinuous 
and bounded from above on CU. Then the mappings c (. ) and u ( ·) are well defined 
and norm-continuous on the set ll={s E U': [[s[[::::;; K2 }. 

We shall omit the proofs of these lemmas because they are rather lenghty. The 
proof of Lemma 1 can be found in [5]. The proof of Lemma 2 is similar and only 
a bit more complicated. 

4. Suboptimality of IBMF 

Suppose now, that CU=CU* and the assumptions of Theorem 2 are fulfilled. 
Then the solution p of problem IIR exists and yields some control c. Of course we can 
\vrite 

Q(c, u)+(ft, u-Mf(c, u)> ::::;;' Q(c, u )+(ft, u -Mf(c; u )) 
* * * * * 

2
) Functional g defined on a convex subset X of Banach space X' is strongly convex on X 

if for every xr.x2 EXandforevery).E[0,1] we have 

lg(xl)+(l-l)g(xz);,.g(1xl +(1-1) Xz)+cx1(l - 1) [[xl-xzll, cx>O. 
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Because CU= CU* then evidently 

Q(c, u)-Q(c*, u) ~ o. 
From the above inequalities and from Theorem 2 it follows, that 

O~Q(c, ii)-Q(c, u )~(fi,(u -Mf(c, a ))+(ii-Mf(c, ii)))= 
* * * * * 
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K' -K" 
=(p,(Mf*(c*, u*)-Mf(c*, u*))+(Mf*(c, ii)-Mf(c,ii)))~2K2Ko -Ko. (9) 

. 1 2 

ln the above upp~r bound for the performance loss in the teal system all coefficients 
except K2 do nOt depend on the differences between the model and the real system. 
So it is evident that if K2~0 then performance loss Q(c, ii)-Q(c, u )~0. Of 

···: ' . ' ' .,· . ·* * 
'course the upper bound (9) is rather excessive. ln partiCular we can easily see from 
inequalitie~ ' (9):· that in th~ cas~, when for every (c, u) E CU: Mf (c, u)-Mf(c: u),;, ' ' ··.· " ' "' ' .· . . ' * ·. 
=/3 (/3 does not depend ol:i (c,u)), 11/311 ~K2 , we hawe . . 

Q(c, ii)-'--Q(c*, u) =0. 

It means that in such case c is the real-optimal control generated by IBMF. It 
should be noted ·also, that iri this situation the model-optimal control c is not 
r~al-optinial in · gertetal. ·In ref. [5] a comparison between the control c generated 
by IBMF arid model-optimal control c was made for a special· class of differences 
between P. arid 1.:. It was assumed, that 

and 
jl(ci, ui)=fr.;(c, ui, Q() 

f~(ci, ui)=fr.;(ct, ui, 1)(+61)(). 

Under rather restictive smoothness assumptions the comparison was in favour 
of IBMF. 

We do not present here full considerations because they would requier to 
much spa e but state only the final conclusions : 

1. Linear with respect to JQ( increment of optimal value 3) of the real system per
formance is ,the same as the line~r with respect to 61)( increment of the real , system 
performance when this system is coordinated by 113MF. 

2. When the model-optimal control c is applied to the real system then either 
the constraints on (c; u) ate forced or the linear with respect to 61)( .increment of the 
real system performance is notless than the linear with respect to 61)( increment 
of this performance when the system is coordinated by IBMF. 

5. Coordination strategies, a general discussion 

In this section we shall give an indication of the problems connected with the 
coordination strategies for the coordinator of -IBMF. 

3) It is the difference between the value of Q in the real system when 001:;60 and the value of 
Q in the real system when oa=O (the model-optimal value). 
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Assume, that for every p E U'* the infimal problems I have unique solutions. 
Then as in the Theorem 2, we can take the identity mapping I as the selection mapping 
pR in IIR). If we denote the infimal solutions by (c(p), u(p))=CU(p), then the 
task of the coordinator will be the following: find the solution p of the operator 
equation 

(10) 

If can be easily proved that if the set CU is a compact subset of Banach space, 
operators Ji are continuous and Q is lower semicontinuous, then the mappings 
c ( · ) and u ( ·) are continuous. If in addition u ( ·) is continuous (which is a quite * . 
natural assumption in almost every real-system), then the operator F* defined above 
is continuous. 

Since a very little more can be said about F* in a general case without making 
explicit assumptions on c ( ·) and u ( ·) it is difficult to propose any general strategy 
for the solution of (10) except possibly, the following one: 

min I IF* (p)ll. 
pEU'* 

(lOa) 

Here we assume, that U' is a Banach space. There exists the solution of the above 
minimization problem if the solution of (10) exists. But we can not say more about 
this minimization problem than about (10) in general. There still remains the 
question of possible minimization procedures for solving (lOa). It should be noted, 
that local extrema of IIF* ( • )11 can be the cause of serious troubles. The task of finding 
the solution p of (10) or (lOa) may be simplified by starting the coordination strategy 
from the functional ft being the solution of IIM. 

Assume now, that: 
1) c (· ), u ( ·) are Frechet differentiable mappings (C', U'- Banach spaces) 

.on some closed convex set Pc: U'* with nonempty interior and derivatives c' ( · ), 
u' ( ·) are continuous on P; 
' ·. 2} the · operators f and f* have continuous Frechet derivatives J:, J:, J:c, f:u 
with respect to c and u; 
· 3) the operators [I-Mf:u(c, u* (c))] and [T-MJ: (c, u* (c))] are invertible and 
'the iriverses are continuous on C'; under the above assumptions F* is continuously 
. ~rechet differentia"le operator on P and 

· F~ (p)=u' (p)- [I- Mf:u(c(p), uJ c(p)))l- 1 o Mf;c (c(p), u* ( c(p))) o c'(p). 

Since we cannot calculate f;u and f;u it seems reasonable to approximate F;(p) 
by A (p), where . 

A(p) =u' (p)- [I- MJ: (c(p), u* ( c(p)))l- 1 o MJ: (c(p), u* (c(p))) o c' (p) 

and then propose the coordination strategy: 

Pn+1 =pn- [A(p")]- 1 F*(pn), n=O, 1, 2, .... 

This strategy is well defined if the operators A (Pn) are invertible. 
'Le; ;·:To sh,ow that tjle proposed strategy ·can be succesful in some cases we grvethe 
following theorem 
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THEOREM 3. Suppose that the above assumptions 1, 2, 3 hold and let 
(i) for every P1, P2 E P 

IIF:(P1)-F:(P2)11~C( IIP1 -P211; 

(ii) p0 E P and A(p0) is invertible with 

II[A(po)]-1 F*(Po) II ~1J, II[A(po)]- 1II <P; 

(iii) for every p E P 

11{[/- Mf~u(c(p), u* ( c(p)))]- 1 o Mf:e (c(p), u* (c(p))) + 
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- [/-MJ: (c(p), u* (c(p)))J- 1 o MJ; (c(p), u* (c(p)))} o c'(p)ll~o, 

where o~O; 
(iv) 3PJ<1, 

and 

B(p0 , ~) E P, where B(p0 , ~) = {p E U' *: liP-Poll<'} 

1-VI=2Y 
where ~ = C(P (1- 3Po). 

Then the sequence {Pn} generated by the proposed strategy starting from the 
point p 0 exists in B (p0 , ~) and converges to the solution p of (10). This theorem 
is proved immediately by application of theorem 3.2 of ref. [1]. 

Assumptions of the above theorem can be comparatively easily satisfied for 
the class of linear--quadratic optimization problems. Since it seems that IBMF can 
find practical applications mainly in the coordination of steady state process we 
shall not discuss here the ·linear-quadratic processes in general. In the next section 
the coordination strategies for the linear-quadratic static optimization problems 
are presented in a detailed fashion. 

6. Strategies of coordination. The linear-quadratic static case 

Consider a linear system given by 

(11) 

where inputs u E Ru, outputs y E Ry, controls c E Re and R"' Ry, Re are finite di
mensional spaces. 

Assume that we have the approximate model 

(12) 

parameters Yn Yu, y 0 of which may differ from the real Y.,e, Y,~"' y~ but the struc

ture M is determined property. We introduce the notation x=.[~]. The cost func-
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tion Q is supposed to be of the form Q=t x' Wx+q' x, where the matrix W is 
symetric and positive definite (superscript' is used in this section to denote conju
gation). Let the set of admissible solutions be the non void polyhedron X= { x: H1 x = 
=hl> H2 x~h2 }. In such situarion the costmctive method of solving (10) can 
be developed . 

Basing upon the model (12) we can foresee the left-hand sides of (6) and (7) 
in the form ii(p) - My(c(p), ii(p))=Gx(p)-g and ii(p)-u(c(p))=Dx(p) 
-d, where G and Dare certain linear transformations, u(c(p)) satisfies the equation 
u = M Ye c (p) +MY., u + Myo and :X (p) denotes the solution of the lower level 
optimization problem 

min [L(x,p)=t x' Wx+q' x+p(Gx-g)]. (13) 
X E X 

In the real system there will be ii(p)-u,:,(c(p))=D* x(p) - d* where D*=f.D, 
d* =f.d in general, and ii (p) - My* ( c(p), ii(p)) = G* x(p)-g*. 

The equation (10) can be written n~w in the form 

. · D*f(p) - d,:,=O.. (14) 

We shall prove that on certain conditions the iterative proc~dure 

pk+l =pk + eE(D* x(pk) - d~J 

in which 

E=(DAG') - 1 

.. (15) 

(16) 

A is hermitian, nonnegative definite such that JV (A) n rJ£ (G') = {0} (% ( '), R ( ·) 
denote the null space and the range of a linear transformation ) and ~ is a sufficiently 
small constant, converges to the solution p of (14). . · 

We assume that the equations of the interconnecte~ system .are _linearly ~ndepen
dent(i.e. ~ (G) = R,) . 

Before passing to the investigations of the_ convergence of this algorithm we shall 
verify thatDAG' is nonsingular. Indeed, let for z=f.O be DAG'z=O. Thus AG'zEJV (D) 
whence, since the conditions Dx-d=O and Gx-g=O are equivalent, AG' z E JV (G) 
..L rJ£ (G'). From this if follows that AG'z..L G' z, wghich contradicts the assumption 
JV (A) n fJ£ (G') = {0}. 

We assume that the real system satisfies the condition (A):. exists X 0 such that 
G*x0 -g* = 0, H 1 x 0 =h1 and H 2 X

0 - h2 <0. 

Then the real system is coordinable by the Interaction Balance Method and the 
function L* (x,p) = Q (x)+p' (G* x - g*) has a saddle point. 

THEOREM 4. If Ye= Y*c and Y.,= Y*" then there exists a constant e0 such that 
for O<e<eo the algorithm (15) converges to the solution j3 of (14) and i(ft) mini
mizes Q in the real system (11), no matter how great the difference yo - y: is. 

-
Proof. Consider the assumptive Lagrange function for the precise model 

L* (x,p)=tx' Wx+q'x+p' (Gx-g*). The solution x(p) of (13) does not depend 
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on g and is the same as it would be if the models were precise. Thus the gradient 
of L~Jp)=minL,;, (x,p) is equal to 

XEX 

VL,;,(p) = Gx(p)-g,:,. 

Let p be any solution of (14). For brevity we introduce the following notations:: 

xd(P) =x(p)-x(ft), Lk=L* (pk), sk=EDxipk) . 

According to' the mean value theorem thesre exists 0 ~ r ~ 1 such that 

Lk+ 1 -Lk=ex~(pk+resk) G' EDx(pk) =ex~(pk) G' ED xlpk)+ 

+s (x~ (pk+usk) -x~(pk)) G' ED xd.(pk). (17} 

We note that for any xd we ca_n find z such that 

Dxd = DAG'z 

and for the same xd, z there is 

(18} 

(19} 

Indeed, from (18) it folloWs that the projections of AG' z and xd on the hyperplane 
.AI (D).L are equal. But .;V (D) ~.;V (G) and, consequently (19) holds. Thus the first 
summand of (17) is equal to 

cx = ex~(pk) G' ED xd(pk) = ez' GAG~ (DAG)- 1 DAG' z=ez' GAG' z. 

Since .a1. is positive semi definite and .;V (A) n fllt (G') = {0}, there exist a constant 
.v such that 

(20} 

We shall estimate the second summand of (17) 

• /PI =e/ (xd(pk+usk)-xd(pk))' G' EDxd(pk)/~ 

~e /IG' E/l·/lDxd(pk)/1·/lxd(pk+rssk) - xd(pk)/l. (21} 

It is easy to see that the function x(p) satisfies the Lipschitz's inequality. Indeed,. 
x(p) is the orthogonal projection of ~(p) on X in the sense of inner product <x, x)w= 
=x' Wx, where ~(p) minimizes L(x,p) on RcxR11.)t is easy to show that ~(p)= 
= - w- 1 (q+G' p) and so 

where B~/ I W- 1 G'llw· 
Therefore from (21) we obtain 

IP/~e /IG' E/1·11 Dxd(pk)/l·reB /lsk/l~e2 B /IG' E/l· /IE/1 ·11 Dxd(pk)/12
• 

Form (17), taking into account (20) and (22) we conclude that 

" (22)1 
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Set 
V 

eo= 2B IIG'EI/ · IJEIJ · II DAG' II 2 

For 0<e~e0 we obtain 

ev 
Lk+l_Lk~ 2· IIDAG'I Izi1Dxd(pk)llz. 

Since L* (p) is bounded from above, it follows from the last inequality that the 
sequence {Lk} converges, and 

{IID.Xd (pk)ll}--+0 as k-+oo. 

From (15) we have 

k+l-1 k+l-l 2IIDAG'IIz 
llpk+l_pkll ~e iiEII _2; IIDx(p 1)-d*ll~eiiEII _2; · ev (V+ 1 -L1)~ 

i=k l=k 

Thus {pk} is the Cauchy sequence. Hence pk-+ft and Dx(ft)-d* =0, since x(p) 
is continuous. According to the Theorem 2 we have .x(ft)=x* what completes the 
proof. 

Having established the convergence of the method for D=D*, our next 
step is to investigate the behaviour of the new algorithm in the general case with 
both D .and d being approximate. Before proceeding to this problem we shall make 

,. . 
some preliminary remarks. We denote by H the matrix whose rows are the rows of 
H 1 and those rows of H 2 which correspond to the inequalities active in x(ft). If 
there were no other constraints in the problem it would be 

x(p)= -BG' p+x0 (23) 
where 

B= W- 1 ...~.. W- 1 H' (HW- 1 H')- 1 HW- 1 • (24) 

We shall prove that transformation B defined by (24) is nonnegative definite 
and ..¥(B)=~(H'). For any z, veRx we have oc=(z+v)' w- 1 (z+v)~O and 
equality holds only for z+v=O. Set z= -li(HW- 1 H')- 1 HW- 1 v. We obtain 

oc=z' w- 1 z+v' w- 1 v+z' w- 1 v+v' w- 1 z= 

=v' w- 1 v-v' W- 1 H'(HW- 1 H')- 1 HW- 1 v=v' Bv. 

Suppose that v E PJl (H') . Thus there exists v1 such that v=H' v1 and Bv=O, 
since BH' = 0. On the other hand, if v rf= PJl (H') then z + v # 0 and v' Bv = oc = 
=(z+v)' w- 1 (z+v)>O. 

THEOREM 5. Suppose that 

(i) The solution jJ of (14) has the . neighbourhood U(ft) such that if p e U(ft) 
then in x(p) the same constraints are active as -iil.X(ft). ' 

' 
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(ii) The rows of H and G form the linear independent §et. 
Then there exists a positive constant e0 which has the following property: for 

any 0<e<e0 we can choose J,>O and the neighbourhood U,(p) such that if 
IID-D*II~J. and p 1 

E U,(p) then the algorithm (15) with the step length ~ 
converges top. 

Proof. We consider the operator V(p)=p+eE(Dx(p)-d*). For pell(p) 
equatiOI).S (23) and (24) are valid and V(p)=(l-e(DAG')- 1 (DBG})p+v. We 
first establish that C=(DAG')- 1 DBG' has positive eigenvalues. Let p e RP (dim 
Rp=m) and x E Rx (dim Rx=n, n>m). We introduce in Rx the ortonormal base 
x 1, x 2 , ••• , Xn such that for i~m x1 E f!ll (G'). We define in the subspace f!ll (G') of 
the space Rx the transformation B1 as follows 

m 

B1 x1 = .2; (Bx;, x1) x1 , i = 1, 2, .. , m. 
1=1 

m 

Take any x e f!ll (G'), x= 2 r:;1 x1• We have 
i=l 

m m m m m 

B1 x= .2; r:;1 B1 x1= .2; .:;,_2; (Bx~>x1)x1 = .2; .2; r:; 1 (Bx~>x1)x1 • 
1=1 i=l 1=1 i=l i=l 

m 

For y= 2 IJi x1 we obtain 
i=l 

m ( m ) m m 

(y, B1 x) = 
1

-J; 111 
1

-J; r:;; (Bx;, x1) = 
1

-J; .Jl. r:;; 111 (Bx;, x1) = 

=(y, Bx) =(By, x) =(B1 y, x). 

Therefore the transformation B 1 {s hermitian and positive definite, since according 
to (ii) (.!V(B)=f!ll(H'))n!!ll(G')={O}. In a similar fashion we introduce the opera-
tor A1 m 

A1 x1 = .2; (Ax1, x), i= 1, 2, .. :,m 
J=l 

which is in f!ll (G') hermitian and positive definite. We define nonsingular operators 
D1 and G1 in f!ll (G') as follows: D1 x =Dx, G1 x=Gx if x e f!ll (G). Thus C= 
=(D1 A 1 G~)- 1 D1 B1 G~ =(G~)- 1 A1 1 B 1 G~. The eigenvalues 11.1 of Care equal to 

2 
the eigenvalues of A1 1 B1 which are. positive. We choose e0 =---,. Then for 

max~~.1 
0<e<e0 all eigenvalues of 1-eC will lie in the interval (-1, 1). Thus there exist 
a norm 11-11. and a constant p.< 1 such that for any Pt> p 2 e U (.P) IIV(Pl) - V(pz)ll.~ 

~P. IIP1-Pzll,. Let us turn to the algorithm (15). It can be written in the form pk+ 1 = 
V* (pk), where V* (p)=p+eE(D* x(p)-d*). We have for any p1,p2 

!IV* (p1)- V* (pz)II. = IIV(P1)- V(pz)+eE(D-D*) (x(p1)-x(pz))IJ •. 

As it was shown in the proof of the Theorem 4. x (p) satisfies the Lipschitz's ine
quality. Thus there exists a constant e. such that llx(p 1 ) -x(p2)II.~B.I IPt -vziJ •. 
Therefore 



28 K. MALJ.NOW.SK·I, A. RUISZCZYNSK·I 

1-p. 
Set o1.= 

888 
JIEJi:". Then for IID-D*II.<o1 B we obtain . 

IJV*(Pf) - V:,(P2)11B~ a i 1Pt-P~ II 8 ' (25) 

and 

e<=p.+BfJe IIEIIe·IID-D*IIe <1. 

Since all norms in a finite dimensional space are equivalent, there exists a.>(} 
such that (IID-D*II<o.)=>(IID-D* II. <o1.). Also, it is posible to choose f3>0 such 
that 

Ue (p)={p: llp -ft ll. ~fJ}cU (p). Therefore, if p1 E U. (p) then by virtue .of the 
formula (25) 

IIPk-.PII.~ (a)k- 1· llp1- .Pile and the sequence {pk} converges top. Q.E.D. 
The theorem has. been proved. 

CoROLLARY. If there are no inequality constraints in the problem (i.e . . X= 
= {x: Hx=h }), then the whole space RP can be ta}en as U.(jf) in the above theorem. 

7. Some computational results 

The following example of the system has been considered. 
Subsystem 1 : 

Subsystem 2: 

Subsystem 3 : 

Y1 =Cu -c12 +2ul +y~, 

Ql =(ul -1)2 +(c11)2 +(c12 -2)2. 

Y21 =C21 -c22 +u21 -3Uz2 +Y~1, 

Y22 =2c22 -c23 -u21 +2u22 + Y~2, 

Qz =2 (c21 -2)2 +(c2z)2 +3 (c23)2 +4(u2t)2 +(u22)2. 

Y3 = Zc 'c3 +4zu u3 + y~' 

Q3 =(c3 + 1)2 +(u3 - 1)2, 

CU3={(c3, u3):c3+u3?!: -0.5}. 

Fig. 1 
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zc and z~ are certain variable parameters. The structure of the above system 
is shown on Fig. 1. Three real systems have been tested: 

I. Thenondisturbed system with y~ =y~ 1 =y~ 2 =y~=0. 
and Zc = z~= 1.0. 

II. The shifted system . with y~ = -1.0, y~ 1 = 1.0, y~ 2 =- 3.0, y~ =2.0. Still 
Zc =Z11 = 1.0. 

Ill. The disturbed system with y~ the same as in the system II and zc = 1.0, 
Z 11 =0.5. 

A FORTRAN subroutine based upon the algorithm (15) and the model I has 
been written and tested extensively. In order to reduce the number of iterations in 
the interior of X the choice of A = W- 1 has been made. Indeed, if there were no 
·constrainsts in the problem, A=W-t, s=l.O and D=D,,, then the algorithm (15) 
would terminate in 1 iteration, no matter how great the difference d- d* would be. 
Three values of the step lengths have been tested for each system: 0.80, 1.00, 1.25. 
The discoordin~tion. norm Jiu(p) -u* (c(p))I I=N was calculated at each iteration 
and the algorithm terminated when N~ I0- 6 . The results of the tests indicate, that 
rhe advantages of the new method which had been hoped for have been realized. 
The real-optimal controls for the system II have been found by the new algorithm 
{basing upon the model I) and no difference between the speed of convergence for 

N 

1 0'7L-------5--~ - ---:10:----------:1::--'i --

Lte-ations 
N 

10' 

10 0 ::-.........._ 
'""=:-·-·-·--- <- 1.25 

',......_::::-... ·-·-·-·-·-·-----

11)-5 

10'6 

,r;-?L--'------'--L--,-5-~-----;-,o;;----------"'ts-

itera tions 

Fig. 2 
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the system II and for the system I has been observed. The new method proved 
succesful with the system Ill too, although considerable difference between D and 
D* had been introduced. The process of the discoordination norm minimization for 
the disturbed systems is illustrated with Fig. 2- system II above, system Ill below. 

Next the comparison between various methods of controlling the real system Ill 
has been drawn. The results are shown in Table 1. 

Table 1 

I Control I Cost in the real system Ill 

Model I - optimal control 129.27918 

Model 11 - optimal control 2.82109*) 

IBMF based upon model I 2.65420 
--

I Real-optimal control 2.65415 

*) Constraints forced in the real system 
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Zastosowanie metody rownowazenia interakcji do ·koordy
nowania procesow rzeczywistych 

Om6wiono koordynacj<e wielkich system6w rzeczywistych przy zalo:i:eniu, ze istniejqce modele 
matematyczne system6w nie sq dokladne. Zaproponowano nowq dwupoziomowq metod~ koordy
nowania: metod<e r6wnowazenia interakcji ze sprz<ei:eniem zwrotnym (ffiMF). Okreslono warunki 
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koordynowalnosci w sensie metody IBMF i dowiedziono ich spelnienia dla kilku konkretnych przy

padk6w. Nast~pnie om6wiono suboptymalne wlasnosci zaproponowanej metody. Rozwazono· 

r6wniez strategie koordynacji dla przypadku og6lnego a dla zadan liniowo-kwadratowych opty

malizacji statycznej przedstawiono ich dokladn!! postac. Metoda zostala zilustrowana przykladem 

numerycznym. 

llpuMeueuue MeTo~a ypaBHOBemuBaHJrn B3aHMo~eiicTBHH 

~JIH KOOp~llHaquu peaJILHbiX IlpoqeCCOB 

PaccMaTpHBaeTCH KOOp,ll,liHal.\.lffi pealThHDIX 60JihiiiiiX CRCTeM ITpH yCJIOBHH, '!TO Cy.II(eCTBy

IO.II(He MaTeMaTR'IeCKHe MO,[(CJIH HaJIHIOTCH He TO'!HbiMH. flpe,[(JIOJKeHO HOBhiH ,[(ByxypOBHCBOH 

MCTO,[( KOOp,[(RHaiJ;H.H- MeTO,[( ypoBHOBemRBaHRH 3BaHMO,[(eHCTBRX C o6paTHO:ii CBH3hiO (IBMF). 

Onpe,[(enem.r ycnoBRH ,[(JIH KOOp,ll,liHall,1m B CMhiCJie MeTo,[(a IBMF n: ,[(OKa3aHo n:x ncnoJIHe

rme ,[(JIH HeCKOJihKRX KOHKpeTHbiX CJIY'IaeB. 3aTeM paCCMOTpem.I cy60IITHMallhm.Ie CBOil.CTBa. 

ITpC,[(liO:lKCHHOfO MCTO,[(a. PaCCMOTpeHhi TaKJKe CTpaTerHH KOOp,ll,liHa~HH ,[(JIH 06.1I(ero CJiy'!aH. 

a ,[(JIH JIRHCHHO-KBa,[(paTR'!HhiX 3a,[(a'! CTaTH'!eCKOH OITTHMH3a~HH npe,[(JIOJKeHa RX TO'!HaH cPOpMa. 

M~TO,[( HJIJIIOCTpHpyeTcH '!HCJieHHhiMH npHMepaMH. 




