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This paper discusses the methods of digital control of a linear stochastic system. The sampled-time 
model is considered. The goal of control is to minimize the variance of the output signal. A simple 
model is proposed for which the least-squares method of identification gives the consistent estima
tors of parameter. The control policy is also included. 

Next the simultaneous identification and control is discussed. It is shown, that it is possible 
to find the optimal control policy for the one-step-ahead criterion. The on-line identification algo
<rithm is also described. As it converges and produces consistent estimates, the control policy goes 
!tO the known parameter case for increasing amount of measurements. 

However, in the initial period of control, overshoots due to bad initial estimates are very likely 
1o occur. Some modifications of control in this period are discussed. 

Then the extension of the identification algorithm to the time-varying case is attempted. The 
torgetting of the part measurements is considered. Finally some possibilities of divergence of iden
fification algorithm are pointed out. 

1. Introduction 

It is well known that a sampled-time linear dynamic system with lumped para
meters can be described by the difference equation. Using the shift operator 
z- \ z- 1 U 11 = U11 _ 1, the one.:input one-output stochastic system with k-step pure 
delay and coloured additive· noise can be represented by the following equation 

(1) 

where 

A (z- 1)= 1 +A1 z- 1 + ... +Ar z-r l 
B(z- 1)=B0 +B1 z- 1 + ... +Brz-r 

C(z- 1)= 1 +C1 z- 1 + ... +Cr z-r 

(2) 

and {en}, n= 1, 2, ... ,is a sequence of stochasticindependent normal N (0, J) variables 
(see [1 ], [2]). 
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The problem of sta:bilization of the system Js 

(3) 

subject to the relations (1) and (2). This is called N-steps control policy. In the case 
when the parameters A;, Bi, Ci in (2) are known the control policy for (3) is equi
valent to N steps of one-step control policies 

minE {y;+k}. (4) 

The solution of the problem (the control policy) for the minimum-phase sy
stem was given by Astrom [3] in the form 

G(z- 1) 

where 
F(z- 1)= 1 +F1 z- 1 + ... +Fk- 1 z-k+ 1

,} 

G(z- 1)=G0 +G1 z- 1 + ... +Gr- 1 z-r+ 1 . 

(6) 

Satisfy the polynomial equation · 

C(z- 1) = F(z - 1) A (z- 1)+z- k G(z- 1) (7) 

and A (z- 1 ), B (z- 1) are defined in (2). The output of the system subject to control 
policy (5) is equal to 

(8) 

Furthermore, the solution for the nonminimum-phase system [1], [4] was also 
'provided. . . ·. .· · 

In this paper only the minimum-phase case is considered. It is also assumed that 
the zeros of poiynomial C lie strictly outside the unit citcle. 

When dealing with the unknown parameters system the case of time-separated 
identification and control is usually considered. That is on the basis of some data 
the parameters of the model are estimated and then the optimal control policy is 
evaluated. The assumption that the estimates lie near the true values of parameters 
is made. Unfottunately, the bias-free methods of estimation of' the equation (1) 
parameters \ire recursive, time-consuming and difficult for on-line applications. 

This. p:;tper presents a model for which the least-squares identification produces 
consistent estimators. The resulting control policy is approximately equivalent 
to the Astrom policy. Based on these resuits the stimultaneous identification discus
sed. 

2. "Least-squares" model 

As a result of definite arithmetic operations it is possible to find a 
model 

(9) 
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where 

R(z~?:R0 +R1 z~1
1 + ... +Rrz_-rr + ... , l 

S(z )-S0 +S1 z + ... +Srz + ... , 

F(z- 1)= 1 +F1 z- 1 + ... +Fk- 1 z-k. 

(10) 

It may be noticed that the output of the model at step n depends only on the 
inputs and outputs at steps n- k and earlier. The disturbance V 11 = F (z- 1) en is a mo
ving average and depends only on the values of e," ... , en-k+ 1 • 

As in the case of model (1) theN-steps and one-step control policies are equivalent 
and have the from 

R(z- 1) 

u" = - S(~-=-1) Ytt (11) 

or, in time domain 

1 ( CJ) . CJ) ) 

Un =-So i-l; S; Un-1 + i~ R; Yn-i • (12) 

Let us show thai essentially the policy (11) and Astrom policy (5) are equivalent. 
Applying the control policy (11) to the system (l)'and inserting (8) for Yn the following 
polynomial identity can be found 

B( -1) R( -1) F( -1) 
A ( - 1) F( - .1) -k z z z = C( -1) z z +z S(z- 1) z . 

Since C (z_- 1) and _F(z- 1) A (z- 1) are the polynomial of finite degree then 

· B(z- 1) R(z- 1) F(z- 1) 

G(z-1) ~ S(z-1) 

is also a polynomian of finite degree. Thus (13) and (14) form an identity 

C(z-})=F(z- 1) A(z- 1)+z-k G(z- 1). 

(13) 

(14) 

(15) 

It is seen that the . degree of G (z- 1) have to be r- 1 and th~n the identity (15) 
is the same as (7). Thus G (z- 1) in both identities aw equaL 

However, multiplying and deviding by B (z-1 )-F(z- 1} and using _ definition 
(14) the policy (11) can be expressed in the form 

B(z- 1) R(z- 1)F(z- 1) 

S(z- 1) G(z- 1) 

y"=- B(z-1)F(z-1) Yn (16) 

which is the Astrom policy (5). 
Moreover it may be seen that 

R(z- 1)=G(z- 1)D(z- 1), } 

S (z- 1) =B(z- 1) F(z- 1) D(z- 1), 
(17) 
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where B(z- 1), F(z- 1), G(z- 1) were defined earlierd and D(z- 1) is an polynomial 
of infinite degree. 

In practice the polynomials R (z- 1
) and S (z- 1

) have to be truncated. After 
possible cancellation of equal zeros it is possible in this way to find a good appro
ximation of the policy (5). See Fig. 1 and Table 1 for comparison of control results 
for the model (1) with maximum likelihood and model (9) with least-squares iden
tification method. 

Table 1. Comparison of input nad output signal variances for 'models (1) with maximum likeli
hood and model (9) with least-squares identification methods 

No control, Un=O, n=1, 2, ... 

Model (1) 

Model (9) 

Variance of input signals 

a 2 =.2_ ~ u~ 
"N2..;' 

i=1 

0.00000 

0.08200 

0.08636 

Variance of output signals 
2 1 N 2 

ay= N .2,; Yi 
i= 1 

1.7197 

1.0284 

1.0383 

Actual system: Yn-1.3Yn-l +0.4Yn-2 =2un_ 1 -1.6un_ 2 +On-0.8en-l +0.15en-2· 

/.·a 

Fig. 1. Comparison of the autocorrelation function 
for the same case as in Taole f 

.0.5 

T-0.01 r 
0 1 2 3 4 5 6 

Fig. 2. Estimates of the variances of out
put signals versus number of model para
meters for different ·sampling intervals. 

Tp=1, Tn=10, o.=o.=1 

When R (z- 1) and S(z- 1) are finite then the least-squares method of identifi
cation provides consistent estimators of paxameters. The proof is a slight generali

'~a.,tion of the proof given by Goldberger [5] for one step delay and can· be found 
in ·(6]. . • . ' · . · 
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The numerical tests indicate that very often the 4-8 parameters model is suffi
ciently good, see Fig. 2 which portrays the plot of the criterion values versus number 
of parameters for the first order system described formally by the equation 

1 1 
y(s)=---u(s)+--- e (s) 

Tv s+ 1 T,, s+ 1 
(18) 

and sampled at equal time intervals T. The stepwise control was used. 

3.· Simultaneous identification and control 

The case of "simultaneous" identification and control is now considered. This 
means that at every step of control the control policy with adjusted parameters is 
used. An adjustment is made on the basis of on-line identification. The method 
uses the dual control approach of Feldbaum [7] and derivations follows these given 
by Aoki [8]. 

To make the formule more concise the following definitions are made. 

aT= [a0 , al> ... , a2 r+ d 6. [S0 , ... , S, R 0 , •.• , Rr], } 

sliT= [un, ... , un-r> Ym ... , Yn-r ] . 

Then the equation (9) can be put in the form 

(19) 

Yn+k =ao Un + ··· +ar Un-r+ar+ 1 Yn + ··· +a+ 2r+l Yn-r+vn =aT Sn +v" · (20) 

Unfortunaly, due to some mathematical problems the N-steps simultaneous 
control policy cannot be obtained in closed analytical form (in connection with 
this see example in Aoki [8] pp. 111-116). Thus in every step n, the one-step control 
which is now called one-step-ahead control, is considered. The optimal control 
policy can be expressed in the form 

r r 

_2; [ao at +cov (ao at)] U11-1 + _2; [ao ar+i+l +cov (ao, ar+t+ 1)] Y11- 1 
i= 1 i=l 

un= - --~------------------~~---------------------
a~ +var(ao) 

(21) 

where a1 and cov a0 , at> i=O, ... , 2r+ 1, are the estimates of the parameters a1 

and the covariance respectively. The deduction of the policy [9] can be found in 
[9]. Actually the policy (21) is a generalization of the policy (12) and is equal to (12) 
when the parameters estimates are equal to parameters and covariances estimates 
are equal to zeto. 

It is assumed that the disturbance variance 62 v is known and a priori distribution 
of parameters estimates is normal with known mean a0 and variance P 0 , the esti
mates satisfy the following equations 

an =a11-1 +q11-1 (y"-a"-1 S11-r), l 
P" =Pn-1-g11-1 s:_r P11-1, 

gn-1 =Pn-lSII-r(J~+ s,;_lpn-lSII -r) - 1 , 

(22) 

with initial values P0 , a0 and {~0 , u_ 1, ... , u-(k+r-1)• Yo, Y1, ... ,y_(k+r-1)}· 
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The above estimation algorithm provides the consistent estimators of parameters 
even for the closed-loop system, see [10]. Moreover, the estimates sat~sfy the equa
tions 

a;=a;+o(~ )• 

cov (a0 , aJ=o ( ~), 

var(a0)=o(~ ), 
and plim n • o ( : ) = 0 . 

l 
I 

i~O, , 2,+ L I (23) 

... . . 

Thus as n-too the control policy (21) goes to the known parameters policy (12). 
Since the policy (12) is optimal for arbitrary number of step N in the criterion (3) 
then in the limit the policy (21) equals to the N-steps one. 

4. Initial period of control 

Although in the steady state period the control policy (19) produces satisfying 
results, the initial period depends strongly on initial conditions. Moreover, at the 
end of this period large overshoots are likely to happen, see Fig. 3 where the control 
policy for the system (18) was evaluated on the basis of an arbitrary chosen model 

with initial values for the regulator 

0 

100 

0 

0] 0 . 

100 . .. 

Fig. 3. Input and output runs. One-step-ahead control policy. TP= l, 
.Tn=2, T=O.Ol 

(24) 
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See [10] for more examples. The overshoots appeare when estimates of the 
covariancies decrease to small values. In this time parameters estimates are usually 
still comparatively far from exact values and the regulator (21) is usually unstable: 
This effect especially likely happens when the zeros of the nominator S (z- 1) in (9) 
lie near the unit circle. Then the regulator can easily be unstable for even small 
changes of parameters in S (z- 1 

). 

Thus at the initial period a different control policy is needed. The simple idea 
of finding better initiaJ values is practically difficult to perform. Comparatively 
good results can be obtained after bounding the input signal, see Fig. 4, where the 
control of the same system (18), (24) is achieved. However, the slow convergence 
of parameters and long initial period can be produced, see Fig. 5. 

-? 

Fig. 4. Input and output runs. One-step-ahead control policy, boun
ded input. T.=1, T,=2, T=O.OI 

The other possible solution could be the application of N-steps-ahead control, 
policy where in every step n, the control policy minimizes the criterion 

(25) 

In the step n+ 1 the policy results from similar minimization and u,.+ 1 is in 
general different from u,.+ 1 . As in the case of N-steps control policy the N-steps
ahead control policy cannot be found in closed analytical form and therefore an 
approximation is necessary. An example of suboptimal openloop feedback control . 
policy ([9] pp. 241-246) is included. Due to complicated arithmetical transfor
mations involved, the two-steps-ahead open-loop feedback control policy, only, 
is presented. The input signal u,. for the system (18), (24) is evaluated in every step 
n from the equation 
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([ 
(ao a1 az) ] [ (ao a~) ] ) 

= - ( 2 2 ) Un-1 + ( 3 3) Yn-1 a0 a1 a2 +a1 a2 +a0 a1 a0 a2 +a0 a2 +a1 a2 

(26) 

where (·)is the conditional mean value operator, that is ( ·) = J {.} p (alu"- 1 , y") da. 
a 

The performance of the control is presented at Fig. 6 and Fig. 7. The latter indicates 

rr 

2 

Fig. 5. Input and output runs. One-step-ahead control policy, bonu
ded input. Tp=1, Tn=1, T=0.01 

t 

Fig. 6. Input and output runs. Two-steps-ahead open-loop-feedback 
control policy. T.= 1, Tn=2, T=O.Ol 
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that for the regulator with the poles lying near the stability boundary the overshoots 
are still possible. In this case the use of three (or more)- steps-ahead policy is 
necessary. 

0 

2 

~ /LrJ t 

~as ~ rv r- rv ·v-v-

I! l!!d " 1 

Fig. 7. Input and output runs. Two-steps-ahead open-loop-feedback control 
policy. TP=l, Tn=-0.001 

5. Time varying systems 

When dealing with the varying parameters system it is often assumed that para
meters form the Gauss-Markov sequence 

a,.= 0a,._ 1 + w,. . (27) 

The control policy for this case is the same as for the constant parameters system, 
i.e. policy (21). The suitable identification algorithm can be produced provided 
0 is a known matrix [11]. As practically, the matrix 0 is scarcely known the algo
rithm relying on· forgetting the past measurements is considered. As an example, 
the exponential forgetting (weighted least-squates) algorithms is presented. However, 
it is believed that argumentation also matches other forms of forgetting, like moving
-window algorithms etc. 

In the exponential forgetting method th~ minimization of the following criterion 
is considered 

where 

X = n 

min (y,.-x,. a)r w,.(y,.-x11 a) (28) 
a 

y~ = [y1 , • •. , y,.] -vector of outputs 

Uo ' ... , u_r ' Yo ' .. . , Y- r 

ul ' ... , U-r+l> Yl y +1 . 
' • • . , -r -matrix of measurements 

Un-1, ... , un-r-1, Yn-1, . .. , Yn -r-1 
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W"= -weighting matrix, 0~ IX~ 1. 

The estimates can be expressed in a reccurent from similar to (22) 

(29) 

If IX differs only slightly from 1 (as it often happens) then (29) is an approximate 
solution for the special case of (27) where 

(30) 

The covariance matrix can be evaluated in one more form which is .of special 
interest in the Appendix 

n-1 

P -1 n p-1 + ~ i T " 
n ==et.. o LJ C/.. Sn-i-1 Sn-i-1" 

i=O 

t 

Fig. 8. Estimates of parameters and covariances. One-step-ahead 
control policy, exponential smoothing. Tp=1, T.=l, T=~, .5=0.83 

(31) 

Unfortunately, with groving n the matrix P,~ 1 becomes singular and the identi
fication algorithm diverges, see Fig. 8 and [10] for more details and mathematical 
-derivation. Thus a different solution is necessary. 
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A simple and convienient algorithm is obtained after fixing the first parameter 
is the vector a, i.e. a0 . Then the control policy has the form similar to the known 
parameters case (12) 1 r r 

u, = - ~ (J; a; u,_1 + 
1

J.; a,+ 1 + 1 Yn-t) (32) 

and the identification algorithm has the form (29) exept that all is now (2r+ 1)
vector instead (2r+2) like previously, that is ai =[a1 , ... , a2 ,+ 1 ]. The regulator 
working on the basis of this policy is called self-tunning regulator [12], [13]. The 
convienient properties of the regulator and industrial applications prove it could 
be a very useful tool in control practice. 

However, as in the optimal one-step-ahead control policy the initial period 
·of control has to be treated with some care as the overshoots are likely to happen. 
The bounding of the input signals often gives good results unless the situation 
pictmed on Fig. 5 occurs. In such a case a prolonged constant input may once more 
cause the singularity of the covariance matrix and dovergence of the identification 
.algorithm. The mathematical argumentation for this case is presented in Appendix. 

·6. Conclusions 

This paper motivates the use of a simple recursive algorithm for automatic 
adaptive control of unknown linear system. Although the algorithm is not optimal 
for the canonical model of the system, the advantages of recursive form, which 
include the small amount of computer store needed and high speed of computation, 
make the algorithm attractive for practical applications. The behaviour of control 
in the steady state period is satisfactory and only the initial period needs a more 
detailed theoretical argumentation and possibly better control policy. 

Further research can include: generalization of the algorithm to multi-input 
multi-output systems, the more practically relevant solution for nonminimum-pha[e 
systems and also a discussion of the choice of sampling interval. All these problems 
are very important for practical application of the algorithm. Moreover, the nu
merical examples indicate that the sampling interval has a strong influence on the 
dosed-loop characteristics such as the input and output signal variances or the 
gain in output variance in closed~loop in comparison with the same variance subject 
to zero iilput signal. 

7. Appendix 

Let us look at the structure of matrix s1 s[ for soma i> r. It has the form 
- 2 

U1 , ... , U; Ut-r , , U; Yt , ... , U; Yt-r 

s1 s[ = 
Yt U; ' ... , ·Yt Ut-r' 

Ut-r Y;, . . . , U;-r Yt - r 

Y~ , ... , Yt Yt-r 
(33) 

_Yt-r U;, ... , Yt-r U;_, Yt-rYt, ... , Yf-r 
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Assuming that at least for r steps the input was constant and equal to u, that 
is ui=u, j=i-r, ... , i, then 

u2 ' ... , uy; , ... , UY;- , 

u2 ' ... , ' ... , UJi-r 

, ... , Yt Yt-r 
s1 sf = 

uy; ' ... , uy;' 
(34) 

_UYi-r> ... , UJi-r> Yt-rYi> ... , YZ-r _ 

As r first rows are equal, the mattix s1 sf is singular. Letj be the step from which 
the input is constant and n > j + r. Then from (31) 

n-1 

P;; 1 =Cl." r;; 1 t }; 
But 

n-j-r-1 

n-i-r-1 

tl.
1s;,_t-1 s:-1-1 + }; 

i==O 

i T 
Cl. Sn-i-1 Sn-i-1 • 

}; t/.
1 
Sn-i-1s;_i-1 = 

i.:::O 

' ... , 

u2 X:t~.i , ... , u2 X:t~.i uX:t~. 1 Yt , ... , uX:t~. 1 Yt 
uX:t~. 1 Yt , ... , uX:t~. 1 Yt , X:t~. 1 Y~ , ... , X:t~. 1 Yt Yt-r 

and the matrix is singular. Now 

t~."P;;1 n-->oo40, l 
n-1 

}; t/.
1 Sn-i-1 s;_i-1--;;=-i-->oo4 0 . . 

i=n-j-r 

(35} 

(36) 

(37) 

When the two first terms on the right hand side of equation (35) are negligible 
then P;; 1 is almost singular and its inverse in (29) diverges. 

8. Nomenclature 

a -vector of system parameters, eg. (19) 
- components of a 

an - vector of system parameters estimates, eg. (22) 
A, B, C, -polynomials in z-I, eg. 2 
A 1, B1, C1 -coefficients of A, B, C respectively 
D -polynomial in z-1, eg. (17) 
en - stochastic normal variable, eg. 2 
E - mean value 
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-polynomials in z- 1, eg. (6) 
-coefficients of F, G respectively 
-vector, eg. (22) 
-pure delay of the system, eg. (1) 

.n -present step of control 
- horizon of control, eg. (3), (25) 
- covariance matrix of estimates, eg. (22) 
- number of measurements of input and output in the vector S11 

-polynomials in z- 1 , eg. (10) 
- coefficients of R, S respectively 
- vector of measurements, eg. (19) 
- input signal at step n 

'VII 

.wn 
- stochastic normal variable, eg. (20) 
- stochastic vector, eg. (27) 
- eweighting matrix, eg. (28) 
- matrix of measurements, eg. (28) 
- output signal at step n 
- vector of output signals, eg. (28) 
-back-shifting operator 
- weighting factor, eg. (28) 
- transfer matrix, eg. (27) 
- variance of the sequence {en} 
-variance of the sequence {vn} 
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Stabilizacja cyfrowa liniowego ukladu stochastycznego 

Rozpatrzono metody sterowania cyfrowego dla stochastycznego ukladu liniowego. Rozwazono 

model o pr6bkowaniu czasowym. Celem sterowania jest minimalizacja wariancji sygnalu wyjscio

wego. Zaproponowano prosty model, dla kt6rego identyfikacja metodq najmniejszych kwadrat6w 

daje zgodne estymatory parametr6w. Uwzgl«dniono r6wniez syntezte sterowania ukladem. Nasttepnie 

rozpatrzono jednoczesnq identyfikacjte i sterowanie. Pokazano, ze dla takiego post~powania jest 

mozliwe wyznaczenie sterowania optymalnego przy kryterium z jednym krokiem wyprzedzenia. 

Opisano taki:e algorytm sterowania on-line. Ze wzrostem liczby pomiar6w algorytm wykazuje 

zbieznosc. Wyznacza on oceny zgodne, natomiast otrzymane sterowanie optymalne dqzy do wyli

czonego na podstawie znajomosci parametr6w. Jednak w poczqtkowym okresie sterowania zle 

wst~pne oceny mogq powodowac przeregulowania. Om6wiono wi~c metodte modyfikacji metody 

sterowania dla okresu poczqtkowego. W dalszej cz~sci pracy podano pr6bt< rozszerzenia algorytmu 

identyfikacji na przypadek zmiennosci w czasie. Rozwazono przy tym mozliwosc zapominania 

cztesci pomiar6w. Uwagi koncowe zawierajq wskazania eo do mozliwej niezbieznosci algorytmu 

identyfikacji. 

I.(m}lpOBaH CTa6HJIH3a ... HH JIIIIieiiHOH CTOXaCTH'IeCKOH CIICTeMbl 

B CTaThC paCCMOTpCHhl MCTO.D;hl l\HcPPOBOfO ynpaBJICHIDI CTOXaCTII'ICCKOH mrHCHHOH CHCTC

MOH. PaCCMaTpHBaeMaH MO.L(CJih HBJUICTCH 3a.L(a'ICH C BpCMCHHhiMH Bbi60pKaMH. IJ;eJihiO yrrpaB

JICHHH HBJIHeTCH MHHHMH3al\HH .L(HCIICpCHH BbiXO.L(HOIO CHI'HaJia. IJpe.L(JIOlKCHa IlpOCTaH MO.L(CJih, 

.L(JIH KOTOpOH H,L(eHTHcPHKal\HH MCTO,L\OM HaHMCHbffiHX KBa,u;paTOB ,u;aeT .L(OBCpHTCJihHbie 01\CHKH 

rrapaMCTpOB. Y'ITCHO TaKlKe CHHTC3 yrrpaBJieHHH CHCTCMOH. 

3aTeM paCCMOTpCHhi H.L(CHTHcPHKal\HH H yrrpaBJICHHe O,L\HOBPCMCHHO. IJOKa3aHO, 'ITO B 3TOM 

crryqae B03MOlKHO orrpe.u;eJIHTh orrTHMaJihHOe ynpaarreHHe .L\mi rroKa3aTeJUI c onepelKeHHeM Ha 

O.L\HH mar. OnHCaH TaKlKe Herrocpe.u;craeHHbrl1: arrropHTM ynpaarreHHH. C yaerrll'IeHHeM 'IHcrra 

H3MCpCHHH o6eCIIC'IHBaCTCH CXO,L\HMOCTh arrropHTMa, KOTOpbiH orrpe,u;eJIHCT .L\OBCPHTCJibHbiC 

01\CHKH, a IIOJIY'ICHHOC OIITHMaJihHOC ynpaBJICHHC CTPCMYTCH K paCC'IHTaHHOMy Ha OCHOBC H3-

BeCTHblX napaMeTpOB. 

O.u;HaKO B Ha'faJihHhlli rrepHo.u; yrrpaarreHH nrroxHe rrpe.u;aapll.TCJihitbie Ol\CHKH Moryr rrpH

-BecTH K OTperyJIHpOBKC. PacCMOTpCHbl 3aTCM HeKOTOphiC MO.L\HcPHKal\HH yrrpaarreHHH .L(JIH Ha
qaJihHOIO rrepHo.u;a. 

):(arree IlpC.L(JIOlKeHa IIOIIbiTKa paCII!HTpHb arrropHTM H,li;CHTHcPHKal\HH Ha CJIY'faH H3MCHCH!lli 

so apeMeHH. IIpH 3TOM paccMorpeHa B03MOJKHOCTh or6pachrBaTh 'facn H3MepeHHll:. B 3aKJIIO

' qeHHe IlpC.L(JIOlKCHO 3aMe'faHIDI KaCaiOII(HCCH B03MOlKHOH HCCXO.L(HMOCTH arrropHTMa H.L(CHTHcPH

Kal\HH. 


