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An algebraic test for checking observability of a constant time-lag-lag system is is derived. 
The test is of the form of a finite-step algorithm with coefficients of the system as initial data 
and depends on the length of an observation interval. Two types of observability are considered 
one with initial function in the space L\ second with continuous initial function. 

1. Introduction 

The purpose of the paper is to give computable criteria for observability of 
time-lag systems. Such criteria were recently obtained only for very special defmi
tions of observability. In [6] an observability problem for the system 

x (t) =Ax(t) +A 1 x(t- h), y(t) = Cx(t), 

x(t) ERn, y(t) ER"', 
(1.1) 

is studied. The problem is to determine initial point x (0) = x 0 provided that the 
initial function x (t) =0 on [ -h, 0), the point x 0 = Hz for some z ER', His a given 
matrix, and the output y (t), t E [0, t 1 ] is known. The solution is obtained by so 
called defining equation 

(1.2) 

X 0 (j) =I if j = 0 and zero matrix otherwise. 
Each x 0 of the given ftom can be determined if and only if 

rank{HYk(j), O~j~k-l, O~k~n-l}=rank H. 

Some minor generalizations of this problem are done in [7] where the initial 
function is assumed to be a polynomial with unknown coefficients to be determi
ned. This formulation is more reasonable from practical point of view since it prac
tically never occurs that the initial function is known with unknown jump at t = O 
only. Some special cases of two dimensional systems were studied in [8]. 
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Since the state space for (1.1) is infinite- dimensional it is possible to introduce 
an equivalent differential equation (without delays) defined in Banach space [15]. 

However the infinitesimal generator of the corresponding strongly continuous 
semigroup is unbounded in this case and the general observability theory for such 
cases is not at the satisfactory level. The closest to practical applications seems to 
be the results of [12] expressed in terms of an infinite sequence generated by the 
infinitesimal and the output operator. The paper [14] contains duality result between 
the controllability of a system with delays and the observability of its adjoint in 
Banach space. 

Another approach is related to evolution equations in abstract spaces, defined by a 
given time-lag system. The general duality results with possible relevance to functional
-differential equations were obtained in [3], [5]. The result& of [3] were utilized by 
the authors in [4]. Observability conditions are obtained in terms of integral sym
metric matrix (operator if x (t) EH- a Hilbert space) constructed with the aid 
of fundamental matrix (resolvent map). Both the restricted definition of observability 
similar to that of [6] and the general case are considered. 

In this paper we restrict our attention to constant systems of the form (1.1) 
although the method presented is applicable to systems with many commensurable 
delays and analytically depending. on time coefficients. The main idea is to transform 
a given time-lag system to a system without delay but with state space of greater 
dimension (R"k instead of R") and additional two-points boundary condition. Accor
dingly the observability problem is reformulated and preliminal'y lemmas are given 
in section 2. In section 3 the algebraic criteria for observability are proved. Both 
the case of integrable and continuous initial function are considered yielding two 
types of observability (strong observability and observability). The criteria for these 
two types differ slightly. All the terms appearing in the criteria are computable 
from given coeffitiens of the system, either directly or thmugh an algorithm converging 
in finite number of steps. The con:>truction of an algorithm is given in section 4 
where also illust1ating example is computed. 

Notation. For an operator (matrix) A the image, the kernel, the adjoint and 
the generalized invefse will b .~ denoted respectively by im A, ker A, A*, At. For 
given n x n and n x m matrices A and B the controllability subspace we denote as 
{AIB} = im [B; AB; ... ; An-l B ], where [B; A] is th;; matrix obtained by writing the 
columns of B and then the columns of A from the right. If .@ = im B the controlla
bility subspace will be also written {A[.@}. 

2. Definitions and preliminary results 

The system considered is of the form 

x(t)=Ax(t)+Bx(t-1), t~O 

y (t)=Cx(t) 
. (2.1) 
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with initial conditions 

x(t-l)=f(t), tE[-1,0]. 

The trajectory of the system x (t) ER", the output y (t) E RP. Matrices A, B, C 
are constant and of suitable dimension. The initial function f E V (0, 1) in general. 
In practical applications this function satisfie<> as a rule the system equation i.e. 
it is a piece of trajectory of (2.1) for t~O. Therefore the case of continuity off at 
t=O will be distinguished in the definitions below by assuming jE C (0, 1). 

Recall that usually a function x1 :[-1,0]HR", xt(8)=x(t+8), 8E[-l,OJ 
is taken as a state for (2.1) at timet. Such definition is simple and conveniant but 
cannot serve as far as observability problem is considered and ker B=!-0. In this 
case one may add any function g with g (t) E kcr B to an initial func1ion f and the 
trajectory will be the same as that corresponding to f This fact is rather rarely 
employed by the authors [9]. The true ,;tate which contaim necessary and sufficient. 
information to solve equation (2.1) is the following. 

DEFINITION2.1. A pair (x(t),Bx1)=(x(t),Bx(t+8), 8E[-1,01) is said to be 
a state of system (2.1) at instant t. 

In contradistinction to thaL x1 will be called redundant state. 
Proceed to definitions of observability. 

DEFINITION 2.2. An initial state (x (0), Bf) of system (2.1) is observable on 
[0, T] (observable) iffthe corresponding output y (t), t E [0, T] (respectively t E [0, oo ]) 
does not vanish identically unless (x (0), Bf) = (0, 0). 

By this definition zero initial state is always observable. 

DEFINITION 2.3. System (2.1) is strongly observable on [0, T] (strongly obser
vable) if all initial states (x(O), Bf) with jELl (0, 1) are observable on [0, 1] (are 
observable). 

DEFINITION 2.4. System (2.1) is observable on (0, T) (observable) if all initial 
states are observable on [0, T] (observable) with jE C (0, 1). 

Obviously all these definitions make sense for T~ 1. Observability property 
of system (2.1) means that initial states of the system are distinguishable, i.e. there 
exists one-to-one correspondence: an output on [0, T]Han initial state. An impor
tant question arises whether this mapping is continuous in the given topologies 
of the output function and the initial state spaces. This question however will 
not be treated in this paper. 

The following property can be obtained directly from the definitions and from 
the stationarity of the system. 

Remark 2.5. Let T2 >T1 ~1. Then observability on [0, T 1 ] of a state (system), 
implies observability on [0, T2 ]. Conversely if a state (system) is not observable on 
[0, T 2 ] then it is not observable on [0, T 1 ]. Similar implications are valid for strong 
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·observability of a system on [0, Td and [0, T2 ], If system (2.1) is strongly observable 
(on [0, T]) then it is observable (on [0, T]). 

So as to show the essential difference between observability and strong observa
bility let us introduce an example. 

Example 2.1. Let in eqs. (2.1) 

[
-2 1] 

A= 0 -1 ; C= [0, 1] 

It can be shown that the system (2.1) with coeffitients as above is not strongly 
observable on [0, 1] but it is observable on [0, 1], 

Suppose the system is not obsetvable on [0, 1]. Then there exist a nonzero initial 
state (x (0), Bf) with f continuous such that 

y(t)= Cx(t)=O on [0, 1]. 

Thus x (t) must have the form 

x(t)=[ab)] 

and satisfy on [0, 1] the eqs. (2. I) 

[dcit)J =[ -2;(t)] + [fl~t)]. 

This gives / 1 (t)=O on [0, 1] and by continuity off 

x1 (0)=/1 (1)=0. 

Hence ( x (0), Bf) = (0, 0) which is a contradiction to the hypothesis above. This 
argument proves observability. 

Now choose an initial function jE V (0, I), f:=(/1,/2 ) as defined below 

fdt)={a 0 #0, t=I 
0, t E [0, 1]' { 

0 t= 1 
! 2 (t) = arbit:.ary, t E [0, 1 ]" 

Such initial conditions give nonzcro trajectory x (t) on [0, 1] 

x(t) ==; [ a0 exp
0 
(- 2t) J 

and identically zero output y (t). 
The system considered is not strongly observable on [0, 1]. 
Now preliminary results, essential for the proofs of main results, will be quoted. 

LEMMA 2.6 [2], [10] . Let k be an integer. To each trajectory x (t), t E [0, kJ 
-of the system (2.1) there corresponds uniquely a ttajectory zk (s) E Rk", sE [0, 1] 
-of a system without delay defined below: 

(2.2) 

and satisfying additional constraints. 
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(2.3) 

The new state vector is of the form 

o =r~ (O)l 
z" : 

0 

(2.4) 

where X; ( ·) is the redundant state of (2.1) at t = i. 
The matrices A", B", J" are respectively kn x kn, kn x n, kn x kn and have the 

:form 
- A 0 ... 0 0 

- -B -
00 .... 0 

-

BA 00 0 10 ... . 0 

A"= Bk= ]"= 0 I .... 0 (2.5) 
AO 0 

0 O ... BA 0 00 ... I 0 

Conversely, if z" (s) is a solution to (2.2) and (2.3) then using formula (2.4) a 

.a trajectory x (t), t E [0, k] satisfying equation (2.1) can be obtained. 

By the Lemma 2.6., any problem concerning the system (2.1) may be replaced 

with a new transformed problem in terms of the system (2.2) and equation (2.3). 

In case of observability the transformed problem is as follows. 

LEMMA 2.7. A nonzcro initial state (x (0), Bf) of tb.e system (2, 1) is not obser

"Vable on [0, k] iff the couccponding solution x (t) E ..;V df ker C Vt E [0, k], or 

·equivalently, iff the sclution zk (s) to (2.2) and (2.3) corresponding to zf; f satisfies 
df 

VsE [O,l] z"(s)E~=Jf/x ... x..;V (the product of k-subspaces). The system 

{2.1) is strongly observable (observable) on [0, k] iff for all nonzero initial states 

{ x, (0), Bf) with f E L 1 (with f E C) the condition z" (s) E ~ on [0, 1] cannot be 

-satisfied by a corresponding solution to (2, 2), (2, 3). 

Proof. The proof follows directly from Definitions 2.2, 2.3, 2. 4 and Lemma 

2.6. 

The question of obsetvability for timc-lag system (2.1) is now the question of 

the existence of a nonzero trajectory of system (2.2) satistying (2.3) and with values 

in the subspace ~ for all time interval [0 ,1]. If such a trajectory exists the system 

is not strongly observable (not observable if f E C (0, 1)) and vice versa. Therefore 

the problem considered has been converted into a kind of controllability problem. 

Therefore let us recall some basic facts concerning controlability with restriction 

.x (t) E ~ (see [1], [13]). 

LEMMA 2.8. 

(i) Given an initial vector z" (0) of the system (2.2), there exists a function 

fEV (0, 1) (or equivalently jE C(O, 1)) such that the solution z"(s)E~ for 
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all s ~ [0, 1] if and only if zk (0) E ./l!k c~, where J!tk is the greatest subspace con
tained in ~ satisfying 

(2.6) 

(ii) Condition (2.6) is satisfied if and only if there exists n x kn matrix Dk such 
that 

(Ak+Bk Dk) vltkcvltk . 

(iii) The subspace Jf!k may be computed from the following algorithms. 

Algorithm I. 

Set vlik= XP where p = dim ~ or set vlik =Xi if xi- 1 =Xi. 

Algorithm II. 

yo =~J.' Yi= yo+A: (Y i- 1 n(imBk)J.). 

Set vlt~ = ( P)J. or set v1t k = ( Yi)J. if y ; + 1 = y;. 

(2.7) 

A trajectory of (2.2) with zk (t) E ~ we shall call~- maintainable trajectory. 
By Lemma 2.8 each~- maintainable trajectory has to start from a smaller subspa
ce vltk named in [1] a maximal (Ak, Ck)- invariant (controlled invariant) contained 
in ~. Hence it is obvious by statioriarity that each ~' - maintainable trajectory 
is Jltk- maintainable. The more explicit form of ~-manitainable trajectory 1s as. 
follows [11 ]. 

LEMMA 2.9. Each ~-maintainable trajectory of (2.2) has the form. 

(2.8) 

where 

(2.9) 

and 

(2.10) 

is of the form of a controllability subspace. 
By the lemma above the following description of the set of all points zk (t) attai

nable from zk (0) by a trajectory in ~ holds. 

(2.11) 

CoROLLARY 2.10. If &>k=O (i.e. vltk n im Bk =0 or equivalently rank B+rank vlik= 
=rank [Bk; Mk] where columns of Mk form a basis for vltk) then for given zk (0) E vltk 
there is only one ~ - maintainable trajectory of (2.2) starting from zk (0). 

Pro of. It suffices to prove the uniqueness of the mapping Ak restricted to invariant 
subspace vltk. Let D~, D~' be the two different matrices satisfying (2.7). Then for 
any mE vltk: 
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-1 I _, ( ") H ( I ") Akm=(Ak+BkDk)mEAtk and Ak m= Ak+BkDk mEA{k· ence Bk Dk-Dk m 
EAtk. Since Atkn imBk=OthisyieldsBk(D~-D~~) m=O and then A~m = A~

1

m 

for any mE Atk. By (2.8) a trajectory has unique form zk(t)=eAkt zk(O). 

Proof. (z,x)EAtk implies by Lemma 2.8 that starting from zk(O) =(z,x) one 
can choose f such that the solution to (2.2) satisfies zk (t) E..#,; =..#,;_ 1 x %. Writing 
explixitly Ak, Bk in the form (2.5) one concludes immediately that the soluton to 
.ik_ 1 (t)=Ak- 1 zk- 1 (t)+Bk- 1 f(t) with zk- 1 (O)=z satisfies zk- 1 (t) E..#,;_ 1 on 
[0, 1]. Applying again Lemma 2.8. one obtains z E Atk_ 1 • 

3. Main results 

First consider the interval [0, T] = [0, k ], k- an integer. By Lemma 2. 7 and 
2.8 a simple sufficient conditions for strong observability and, by Remark 2.5, 
for observability follows. 

THEOREM 3.1. If .Jik =O then the system (2.1) is strongly observable (observable) 
on [0, k]. 

Proof. If .Jik=O then, by Lemma 2.9, &k=O and by Corollary 2.10 the only 
~-maintainable trajectory of (2.2) is zk (t)=O. By Lemma 2.7 the system (2.1) 
is clearly (strongly) observable. 

The next theorem gives less simple but in compact form necessary condition. 

THEOREM 3.2. If the system (2.1) is observable (strongly observable) on [0; k] 
then &k =O (or equivalently .JtknimBk=O). 

Proof. Suppose &k#O. Let zk (O)=zk (1)=0, x (0)=0. Hence by (2.4) z~=O 
a.nd (2.3) holds. Take arbitrary Ak defined by (2.9) and put f(t)=Dk zk (t)+g (t) 
with Bk g (t) E .Jtk n im Bk. The equation (2.2) now is equivalent to 

zk(t)=Ak zk (t)+Bkg(t). 

Since &k is invariant der Ak (see (2.10)) this system is equivalent to a com
pletely controllable systems with &k as a state space. So one can join the points 
zk (0) = 0 and zk (1) = 0 through a nonzero trajectory in &k c..#,; by using a continuous 
"control'' t~-+g(t)withg(1)=0. This implies thatf(t)=Dkzk(t)+g(t) is conti
nuous and f(1)=0=x (0). By Lemmas 2.7, 2.6 there corresponds to zk (t) a nonzero 
trajectory x (t) E.¥ with continuous initial function f and this implies that the 
system (2.1) is not observable on [0, k]. 

The constraint g (1) =0 is immaterial in the controllability problems "from 
point to point in R"" since the space of controls remains infinite dimensional. 

The condition &k =O may have the equivalent form rankB+rank.dk=rank 
{Bk-; Md (see Corollary 2.10). Theorems 3.1 and 3.2 has been specified since it is 
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reasonable that a real algorithm for checking observability starts to verify simple 
~ltetnatives which may give answer at early steps. The checking of general conditions. 
should take place at the end of an algorithm. This general criterion is as follows. 

THEOREM 3.3. The system (2.1) is strongly observable on [0, k] if and only 
if the two following conditions hold. 

(i) rankB+rank M" = rank [B"; M"], 

(ii) n+rank M" = rank [£1"; (I-1" eAk) M"], 
where M" is a matrix whose columns span the subspace A" (tank M" = dim AI<), 
E~"= [I, 0, ... 0] is n x kn matrix, A" is defined by (2.9). 

Proof. Necessity. Observe that tank B = rank B" and therefore condition (i) is 
equivalent to im B" n im M" = 0, that is 91" =0. Now necessity of (i) is clear in view 
point of Theorem 3.2. 

Note that always 

n+rank M~c=mnk Elk+rank M"):rankE1"+rank (I- J" eA•) M"): 
- -

:>:rank [E1"; (I- 1" eA•) M"]=dim (imElk+(l-1" eA•) A"). (3.1} 

Therefore if (ii) is not satisfied then there exists z' E A"' z' =1= 0 such that 

z" ctr (I - l"eA•)z'EimElk. Choose z"(O) = z',z~ = z". It may be assumed &"::o 
(the condition (i) is already proved). By Lemma 2.9 and Cotollary 2:10 the trajectory 
starting from z" (0) and ~-maintainable is unique and can be obtained by setting 

f(t)=D" z" (t). Hence z" (1) =eA• z" (0) and by definition of z" (0) and z~ it is easily 

seen that (2.3) is satisfied. Moreover, the trajectory z" (t) = eAkt z" (0) of (2.2) is a 
nonzero ~-maintainable trajectoty since z"(O)=z' =1=0. By Lemma 2.7 the system 
(2.1) is not strongly observable on [0, k ]. Therefore condition (ii) is necessery for 
sttong observability. 

Sufficiency. Suppose (i), (ii) are satisfied and the system(2.1) is not strongly 
observable. By Lemma 2.7 and 2.8 there exists a nonzero trajectory of (2.2) z" (t) E 
E A"c~ satisfying condition (2.3). Since by (i) 91"=0 Lemma 2.9 implies that 

such trajectory has the form z" (t)=eA"' z" (0), O=i=z" (0) EA". Hence by substitu
ting z" (1) to (2.3) we get 

(3.2) 

where by (2.4)z~EimEu. This means that either (imElk)n(I-l"eA•)A"=i=O 

(in this case z% may be different from 0) or (I - 1" eA•) z" (0) = 0 for some 0 =l=z" (0) E 

EA". In both cases the rank of the matrix [Elk; (I-1" eA•) 11-fd is less then rank 
E 1"+rank M"=n+rank M". To see this it is enough to recall that the rank of a 
matrix is equal to the dimension of the subspace spanned by its columns. The con
tradiction to condition (ii) proves the sufficiency. 

For (not strong) observability we get a slight modification of Theorem 3.3. 
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THEOREM 3.4. The system (2.1) is observable on [0, k] if and only if both condition 
(i) of Theorem 3.3. and the following 

(ii)' rank([~ ~]-(Jk+BkDk) eAk) M"=rank .Mk 

are satisfied. Rete Dk is defined by (2.9) and M" in previous theorem. 

Proof. By Theorem 3.2. condition &k=O is necessary for observability. There-· 

fore it remains to prove that under assumption &" =0 the system is not observable 
iff (ii)' is not satisfied. In view of Lemma 2.7, 2.9 and Corollary 2.10 system (2.1} 
is not observable iff :IO#zk (0) EAt" such that condition (2.3) holds (which may 
be written in the form (3.2)) and initial function/is continuous on [0, 1]. By unique
ness of the trajectory corresponding to z". (0) the function f is in general of the form 
f(t) =D" z" (t) + f' (t), where f' E C [0, 1] is arbitrary with f(t) E ker B. So an uno
bservable state (x (0), Bf) can be chosen with continuous jifl:'the difference Dkzk (1)
- x (0) E kerB, that is BD" zk (1) =Ex (0) or using z~ and (2.8) 

B" D" eAk zk(O)=[~ ~] zf. (3.3); 

Summarizing, an equivalent characterization of unobservability is as follows:: 
There exists 0 # zk (0) E At k such that 

(3.4); 

It is easy to check that (3.4) is equivalent to (3.3) and (3.2). 

Observing that [ ~ ~] J" =1" and that, by definition, the columns of Mk are line

arly independent we get that condition (3.4) is the contrary to (ii)' what was to be 
proven. 

Now consider the case T=k-1 +r, rE (0, 1). The proofs are quite similar so we 
pay attention to changes which are to made only. 

THEOREM 3.5. The system (2.1) is strongly observable on [0, T], k-1 <T<k iff 

(i) rank B+rank Mk- 1 =rank [B"_ 1 ; Mk-1] 
and 

(ii) n+rank Mk=rank [Elk; (I-J" eAk) M1J. 

Proof. Necessity of (ii) "is clear in view of Theorem 3.3. and Remark 2.5. Nece-
ssity of (i) can be proven similarly as necessity of condition (i), in Theorem 3.3 by 
showing that if &k_ 1 # 0 then there exists nonzero solution to (2.2), (2.3) z" (t) E 
E .//!"_ 1 x {O}cA!k (see Lemma· 2.11) and in particular zk (t)=O fortE [0, r], t= 1. 
For sufficiency suppose (i) and (ii) are valid and the system is not strongly observable 
on [0, T]. Then it is not strongly observable on [0, k-1] since k-1 <T. Ftom con~ 
clition (i) (that is [1!"_ 1 =0) and Corollaty 2.10 the trajectoty zk_ 1 (t) conesponding. 
to an unobservable state is analytic on [0, 1] and hence, by (2.4), x (t) is analytic: 
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on [k- 2, k- 1]. This implies by (2.1) that x (t) is analytic on [k- 1, k] since the 
nonhomogenous term g (t) =Bx (t-1) is analytic. By unobservability assumption 
-Cx (t)=O on [0, T]. Analytic extension of this identity gives Cx (t)=O on [0, k]for 
a nonzero trajectory x (t), which means that the system (2.1) is not strongly observable 
on [0, k]. Hence by Theotem 3.3 either &>k#O or condition (ii) fails to hold. But 
O#(z,x)E..itknimBkc&>k, xER", implies that z#O (see the form (2.5) of Bk) 
and, by Lemma 2.11, O#z E ..Jtk- 1 n im Bk_ 1 c&>k_ 1 contradicting to condition (i). 
Jn any case a contradiciton is obtained and thus the proof is complete. 

This proof can be immediately adapted in order to show the validity of the 
next theorem. 

THEOREM 3.6. The system (2.1) is observable on [0, T], k-1<T<k if and only if 
(i) rank B+rankMk_ 1 = rank[Bk _ 1 ;Mk-d, 

.and 

(ii)' rank Mk=rank([~ ~]-(Jk+Bk Dk eAk) Mk) . 

. 4. On Algorithm for checking observability 

Although some of the matrices involved in observability criteria are not uniquely 
-defined (namely the matrices Dk, Ak) this is however immaterial in practice since 

·they may be used in the form multiplied by Mk, e.g. Bk Dk eAk Mk, and such form 
js unique. It is clarified in details below. Let us formulate. 

Algorithm for checking observability on [0, k]. 

Step 1. Given matrices A, B, C of system (2.1) construct matrices Ak, Bk, Jk 
according to (2.5). Compute the-matrix N the columns of which form a basis for ker 
C and then construct nk x nr block diagonal matrix Nk =block diag [ N, ... , N] 
.as a basis matrix for JV;; . Here r = dim ker C. 

Step 2. Compute Mk> ,a basis matrix for the subspace ..Jtk using Algorithm I 
or 11 given in section 2. If Mk = O then STOP, the system is strongly observable 
·On [0, k] (and therefore observable). If Mk#O then go to step 3. 

Step. 3. Check condition (i) in Theorem 3.3. If it is not fullfiled then STOP, 
the system is not observable on [0, k] (and therefore not strongly observable). If 
conditon (i) holds go to step- 4. 

Step 4. Check condition (ii) of Theorem 3.4. In order to do this compute first 
the matrices Qk and Bk following from the representation Ak Mk = Mk Qk+Bk. This 
representation is unique by condition (i) (..Jtk n im Bk =0) and by Lemma 2.8 . 
.Set by definition 

AkMk=Mk Qk nad BkDk Mk= - Bk. 

Due to formula (4.1) we avoid nonuniqueness of Ak and Dk. 

Compute then e..lk Mk = Mk eQk 

(4.1) 

(4.2) 
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and 

(4.3) 

Check condition (ii) of Theorem 3.4 substituting first formulas (4.2) and (4.3). 
If condition (ii) is satisfied the system (2.1) is observable on [0, k ], if not the system 
is not observable and therefore not strongly ob~ervable. END. 

Remark 4.1. In a similar way every observability condition of section 3 can be 
verified. For. strong observability there is no need in computing the matirx Bk and 
the formula (4.3). The practical effectiveness of the algorithm above depe~ds on 
technical details in realization of an algorithm computing the matirx Mk (e.g. the 
method of computing the basis for intersection of two subspaces). 

Let introduce an example illustrating the algorithm presented. 

Example 4.1. Let the matrices A, B, C of system (2.1) be as follows 

. [3 2] A= 0 1 ; B=[~ ~], C=[1, 1]. 

This system is not observable (and not strongly observable) on [0, T], T <2. 
Indeed, here 

N1 =N=[-~] and M1 =N 
which can be checked directly by substituting vi! 1 =:'%into defining formula (2.6) 
where im B 1 =imB is all the space R2

• 

Check observability on [0, 2]. Using an algorithm of Lemma 2.8 yields 

:So we cannot use Theorem 3.1. 
Condition (i) in Theorem 3.3. is satisfied: 

rank B+rank M2 =2+ 1 =rank [B2 ; Mz]. 

Compute 

Hence Q2 = 1, B2 =0 in representation A 2 M 2 =M2 ·Q2 +B2 • 

Check, for strong observability, condition (ii) of Theorem 3.3: 

2+rank M 2 =2+ I =ran~[~ ; M 2 ~[~ ~]M2 . exp (I)]=rank [~; ~]=3. 

By Theorem 3.3 the system is strongly observable on [0, 2] and by Remark 2.5 
it is observable on [0, 2]. 

6 
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I 

5. Conclusions 

Two observability problems has been considered for stationary delay system 
of the form (2.1); strong observability with integrable initial condition and observa
bility with continuous initial function f For both cases appropriate criteria for chec
king observability has been deriv~d. The criteria depends on the length of the interval 
considered and the difficulties in checking observability arises as the length of the 
interval increases. So it would be useful if one has at least partial conditions for 
checking observability and strong observability of the system (2.1) (that is obser
vability on some intervai) not depending on a particular interval. This problem has 
not been solved in this paper but on the basis on examples the following conjecture 
can be stated. 

Conjectur e 5.1. The system (2.1) is observable (strongly observable) if and 
only if it is observable (strongly observable) on [0, q+ 1], where q~dim ker C. 

Since, cleary, the system (2.1) is observable if rank C=n then, if the Conjecture 
5.1 is valid, the system is observable if and only if it is observable on [0, n] (the same· 
for strong observability). 

All the considerations of the previous sections can be repeated for the case when 
the lag h =1- 1 (it is an equivalent case after transformation of time) or for many com
mensurable delays. The criteria will obtain the same form, only the form of · Ak> 
Bk will be modified as in [2]. Also the case of coefficients depending analytically 
on t ime might be probably treated similarly. 

An important unsolved problem is in what topologies and under what conditions 
the map y( · )H (x (0), Bf) which is defined properly for observable systems only) 
is continuous. 

The other problem connected with observability theory is the construction of 
observers. This problem is very important from practical point of view and for the 
case of time-lag systems its solution is not at a satisfactory level yet . 
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Kryteria obserwalnosci dla stacjonarnych uklad6w z op6i
nieniami 

. :/ Rozwa:i:ono problem obserwowalnosci dla ukladu, kt6rego trajektoria jest rozwiqzaniem r6w
nania r6:i:niczkowego z op6:i:nieniem 

x(t)=Ax(t)+Bx(t-l), t:?oO 
z wyjsciem 

y(t) = Cx (t), 

gdzie x (t) E R", y (t) E 'R•; A, B, C-macierze odpowiednich rozmiar6w o sta!ych w czasie wsp6!
czynnikach. / Przyjt<to', definicjt< stanu poczqtkowego jako pary (x (0), Bf), gdzie f(t)=x (t-1) dla 

1 t E [0, 1] jest funckjll poczqtkowq. Okreslono obserwowalnosc i mocnll obserwowalnosc ukladu 
jako rozr6:i:nialnosc stan6w poczqtkowych na bazie informacji zawartej w przebiegu wyjscia przy 
ciqg!ej i (dla mocnej obserwowalnosci) nieciqg!ej funckji poczqtkowej f Przedstawiono r6wnowa:i:ny 
uk!ad bez op6:i:nien (wz6r (2.2)) z dodatkowymi wit<zami dwugranicznymi typu (2.3), co pozwolilo 
sprowadzic problem obserwowalnosci do pewnego problemu inwariantnej sterowalnosci uk!adu 
zast~;pczego (lemat 2.7). Podano algorytmy obliczenia odpowiednich podprzestrzeni niezmienniczej 
sterowalno5ci oraz ich zastosowanie do sprawdzenia obserwowalnosci (twierdzenie 3.1 - prosty 
warunek dostate«zny, twierdzenie 3.2 - prosty warunek konieczny, twierdzenia 3.3-3.6 - pelne 
kryteria dla odpowiednich przypadk6w). W pkcie 4 pracy podano przyk!adowy algorytm spraw
dzania obserwowalnosci na przedziale [0, k], k -liczba ca!kowita, odpowiadajqcy kryterium 
zawartym w Twierdzeniu 3.3 oraz podano przyklad liczbowy ilustrujqcy kolejne etapy algorytmu. 
Dla pozosta!ych przypadk6w algorytm buduje si~ analogicznie . 

.• We wnioskach podkreslono pelnll stosowalnosc metody dla og6lniejszych uk!ad6w z wieloma 
op6:i:nieniami wsp6!miernymi, silnll zale:i:nosc uzyskanych rezultat6w od d!ugosci przedzia!u obser
wacji oraz wskazane pewne nie rozwiqzane problemy bt;;dqce kontynuacjq tematyki niniejszej pracy. / 

IlpOBepKa HaOJUO,IJ;aeMOCTII B CTai.IUOHapHbiX CIICTeMaX 

c 3ai1a3,IJ;hmauneM 

/ 

I1CCJie,[(yeTCH rrpo6JieMa .Ha6JIIO,ZJ;aeMOCTH ,[(JIH CHCTeMbi, KOTOpoli: TpaeKTOpHH HBllileTCH pe
meHHeM M<Pii:JepeHI.(HaJihHoro ypaBHeHHH c 3amt3,[(bmamreM 

x (t) Ax (t)+ Ex (t-1), t :?o 0 
C Bb!XO,[(OM 

y(t)=Cx (t), 
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r.n:e: X (t) ER", y (t) E R•; A, B, C- MaTpRUbi COOTBeTCTByiO!l(eH pa3MepHOCTR C IIOCTOHHHbiMR 

K03<j>QJHIJ,ReHTaMR. B Ha'ieCTBe orrpe.n:erreHRH Ha'iaJibHOTO COCTOHHRH rrpRHHMaeTCH rrapa (x (0), Bf), 
r,n:e f(t) = x (t-1) ,ll;JIH t E [0, 1] HBrrHeTCH Ha'iaJibHOH <j>yHKIJ,Reli. Orrpe,n:e!IeHbl Ha6nro,n:aeMOCTb 

R CRJibHaH Ha6nro.n:aeMOCTb B BR.[(e pa3Jlli'JaeMOCTR Ha'!anHbiX COCTOJIHRH, HCXO,ll;H H3 RH<j>OpMaiJ,HR 

·0 BbiXO,ll;e y (t) Ha HeKOTOpOM RHTepaane [0, T]. IJpR 3TOM paCCMaTpRBaiOTCJI HerrpepbTBHbie 

<j>yHKL]HR j .[(JIH 3a,ll;a'!R Ha6mo,n:aeMOCTH. YKa3aHa 3KBRBaJieHTHaJI CHCTeMa 6e3 3aiJa3,ll;biBaHHH 

{2.2) C ,ll;OIIOJIHIITeJibHbiMR orpaHR'!eHRHMR TRIIa paBeHCTB (2.3). 3TO IJO,ll;BOJIRJIO )laTh HOBYIO 

<j>opMyrrRpOBKY npo6neMbi Ha6rrro.n:aeMOCTR B Bll.[(e HeKOTOpOM rrpo6rreMbl HHBapuaHTHOH yrrpaBJIJI

eMOCTH 3KBuaaneHrHoM:ucr ceMbr (JieMMa 2,7). B pa6ore ,n:aHhi anropHTMbi .n:nH Bbi'iRCneHRH 

·COOTBeTCTBYIO!l(llX IIO.[(IIpOCTpaHCTB RHBapHaHTHOH yrrpaBJIHeMOCTR H RX IlpRJIOlKeHRe .[(JIJI rrpo

aepKR cRcreMbi Ha Ha6nro,n:aeMOCTb (TeopeMa 3.1 - rrpocroe ,n:ocraro'!Hoe ycnoaue, TeopeMa 

3.2- rrpocroe Heo6xo.n:RMoe ycnoane, TeopeMhi 3.3, 3.4, 3.5, 3.6- IIOJIHbie KpRrep.IUi Ha6rrro

_,n:aeMOCTR .[(JIJI COOTBeTCTByiO!l(I'IX CJiy'!aeB). B II. 4 OII.IiCaH IlpHMep anrOp.liTMa rrpoaepK.Ii Ha6JIIO

,n:aeMOCTR Ha RHTepaane [0, k], k- IJ,eJIOe 'illCJIO KOTOpbiH COOTBeTCTByer TeopeMe 3.3 . .ll:aH TaKlKe 

'!RCJieHHblli rrpHMep, IIOJICHJIIO!l(HH rroo'iepe.n:Hhie :narrhr anropnrMa. .D:rrH ocraJibHhiX cnyqaea 

MOlKHO JieTKO IIOCTpOHTb aHaJIOTR'!HbiH anrop.liTM. 

B 3aK!JIO'ieHHe OTMe'!eHa B03MOlKHOCTb rrpHMeHeHHJI OIIHCaHHOTO MeTO.D;a B Cnyqae 6onee 

•CJIOlKHbiX C.liCTeM C MHOTRMR, COR3MepHMbiMH 3aiia3.D;biBaHRJIM.Ii, 3aMe'!eHa CRJibHaJI 3aBHCHMOCTb 

IIOJiy'ieHHbiX pe3yJibTaTOB OT ,J:(Jl.liHbi HHTepaana Ha6JIIO.D;eHHJI, a TaKlKe yKa3aHbl HeKOTOpb!e OT

_KpbJThie BOIIpOCbl, CBH3aHHhie C TeMOH 3TOH pa60Tbl. 
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4. Spis literatury powinien bye podany na koncu artykulu. Numery pozycji 
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wydawc~; 

b) przy artykulach z czasopism: nazw~ czasopisma, numer tomu, rok' wyda
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