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This paper considers the problem of open-loop differential games of pursuit in Banach spaces. 
The necessary conditions for optimal controls are obtained in the form of maximum principle. 
There are given some applications of this results to partial differential equations and functional 
differential equations. 

Introduction 

The object of this paper is to consider open-loop game of pursuit in a Banach 
space. 

The game is described by differential equations in a Banach space. Th~ aim 
of one player (called further pursuer) is to minimize a capture time of second player 
(called further evader). The aini of the evader is to maximize this time. Such a game 
was considered by Kalendzeridze [5]. He has obtained necessary condition for 
optimal controls in the form of maximum principle in finite dimensional space. 
For differential games with time Jag, the maximum principle was proved by Oguzto­
relli in [9]. Similar result obtained Kirilova [6] using methods of functional analysis. 
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1. Preliminaries 

This paragraph has an introductory character. We give here some definitions, 
notations and lemmas applicable in further part of the paper. 

Let Z be a reflexive, separable Banach space. 
Let Cz be a class of all convex, closed, bbunded sets of the space Z . 
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DEFINITION 1. Under sum of sets A, BcZ we understand the set of the form 

and by multiplication of a set A by a real number rx, we understand the set 

rxA={rxx; xEA}. 

(1.1) 

(1.2) 

From the Definition 1 follows that the sum of two sets from the class c. belongs 
to that class, since the sum of two convex, weakly compact sets is convex, weakly 
compact. For the same reason to that class belongs also product of a set from that 
class by a real number. 

Let X be an arbitrary Banach space. 

DEFINITION 2. Function p defined for all sets A, BcX, by formula 

p (A, B)= sup p (a, B)= sup inf I la- bll 
aEA aEA bEB 

will be called Hausdorff semimetric. 

DEFINITION 3. Function d ( ·, ·) of the form 

d (A, B)=max {p (A, B), p (B, A)} 

we shall call Hausdorff metric. 

The Hausdorff semimetric has following properties: 

PROPERTIES 1 [4]: 

(a) p (rxA, rxB)=rxp (A, B); 

(b) lP (A1, B1)-p (Az, Bz)l ~d(A1, Az)+d(Bl, Bz); 

(c) p (A1 +Az, B1 +Bz) ~p (A1, Br)+p (A 2 , Bz). 

(1.3) 

(1.4) 

It is possible to show that the class c. is a complete metric space with Hausdorff 
distance d ( ·, ·) [4]. Let 

K={x; llxll~1}, 

L'={x; llxll=1}. 

K is the closed unit ball of X and L' is the unit sphere of X. 

DEFINITION 4. The ball K of Banach space X will be called uniformly strictly convex, 

if for each e, 2 ?:e>O there exists J (e) >0 such that for any Xr. x 2 E K, llx1 -x2 ll ?=e 
implies 1-llx1 +xzl l ~l-J(e). 

DEFINITION 5. Banach space X will be called uniformly strictly convex if its unit 
ball is uniformly strictly convex. 



Maximum princ•i~·le d'or d'i:fferential open-loop 

THEOREM 1 (see [3]). If a Banach space X is uniformly strictly convex, then: 

(a) X is reflexive; 

(b) x,, X0 EX, x,-+X0 weakly and llx, ll -+ llxo ll then llx,-xoll-+0; 
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(c) if x'EXIIx'l l=1 and A(o)={x;<x',x)~1-o}nK then o-+0 implies 
diam A (o)-+0. 

LEMMA 1. Let Z be uniformly strictly convex Banach space. Let <P1 be a conti· 
nuous multifunction with values <P1 E C. If x (t) E c[Jt and p (0, c[J1) = llx (t) ll then 
x(t) is continuous. 

Proof. We consider two cases 

(1) p (0, <P1)>0, t E [0, T] and T<oo. 

(2) p(O, <P1)>0, tE [0, T], p(O, <Pr)=O. 

Case 1. Without loss of generality we can assume p (0, if>1) = 1, since in another 
case from property (1, a) and continuity of p (0, <P1) on a compact set it follows 
that 

min p (0, if>1)=p (0, if>1.)>0 (1.5) 
O=::;;;t~T 

and putting 

from property (1, 1) we have 

Let x (t) satisfy the assumptions of our Lemma. By the above considerations 
we have 

llx (t)ll= 1. (1.6) 

Let 111 -+10 , then llx (t,) il = 1. 

For any e>O there exists N(e) such that for each n~N(e) by continuity of if>1 

we have 

(1.7) 

Let 
df 

B(e) = (if>,o + eK)nK. (1.8) 

B (e) is a convex set containing x (t0 ) and x (t11) for n ~N (e). Let a linear continuous 
functional x~ separate the sets c[J,o and K. Functional x~ is also a supporting functional 
of B (e) at X 0 , that means 

sup <x~, x) = 1, (1.9) 
X E 8 (e) 

inf <x~, x) = inf <x~, x) =l-e. (1.10) 
X E B(e) x E<Pt

0 
+eK 
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It implies that 

{ 
I } df B(s)c x; (x
0
,x);;;d-s"xEK = A(s). (1.11) 

Hence by Theorem 1 diam A (8)--+0 when 8--+0, so 

llx(t .. )-x(to) ll ~diamA(s)--+0 when 8--+0. 

Therefore x (t) is continuous. 

Case 2. In the second case it follows from the proof of the case 1 that x (t) 
is continuous on [0, T). But llx (t) ll --+0 and llx (T) II =0, that finishes the proof. Q.E.D. 

DEFINITION 6. We say the ball K of a Banach space X is smooth if at each point X 

of the sphere .E there exists exactly one supporting hyperplane. 

LEMMA 2. Let X be a uniformly strictly convex Banach space with a smooth ball, 
X 0 , x,. E .E; x;, - a supporting functional of K at X 11 and 11x;, 11 = 1. If llx,.- X 0 11 --+0 
then there exist subsequence {x;,k} of {x;,} and x' such that X:.. --+x' in norm and 
(x', X0 ) = 1, it means x' is supporting functional of K at X 0 • 

Proof. Sequence {x;,} is conditionally weakly compact, since X is reflexive 
(by Theorem 1). Thus there exists subsequence {x;,.} of {x;,} weakly convergent to 
some x'. We have to show that x' is supporting functional of Kat Xa. 

l(x', Xa) -1 1 = l(x', Xa) -<x;,., x .. k)l~ l(x', xo) -(x;,., Xo) l + 

+ l(x;,., X0 ) -(x;,., X11")1 ~e/2+e/2 =e. (1.12) 

First estimation follows from weak convergence x;,. --+x' and the second follows 
from norm convergence of X 11 to X 0 • Q.E.D. 

In the following by measurability and integrability we shall mean Lebesque mea­
surability and integrability although majority of theorems is true for arbitrary 
measure. 

Let U ( ·) denote measurable multifunction 

U(·):[O, oo)--+Cz . (1.13) 

The existence of measurable selectors follows from Theorem 1 of [10]. 

DEFINITION 7. We shall say that U ( ·) is locally integrable with p-power 1 ~p < oo if 

J dP(U(t), 0) dt<oo , (1.14) 
A 

where A c [0, oo) arbitrary compact set 

0= {0}. set consisting of 0 EX, 

d ( · , ·) Hausdorff metric. 
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DEFINITION 8. By the integral of U ( ·) over A we shall mean the set 

J U(t)dt={zEZ; z= J z(t)dtAz(t)E U(t) a.e.}. 
A A 

(1.15} 

The integral J z (t) dt is understood in the sense of Bochner. By Lv [(0, T), Z] 
A 

we denote the space of all functions integrable with p-power in the sense of Bochner. 

LEMMA 3. If multifunction U ( ·) is integrable with p-power on [0, T] then the set 
of all selectors Us of U ( ·) is weakly compact in LP [(0, T), Z] 1 ~p < oo. 

Proof. For 1 <p<oo it follows from the following facts: 

(a) [!, is bounded and convex; 

(b) U (t) is closed for t E [0, T] a.e. 

Thus Us is strongly closed, convex wh~t implies boundedness in the norm of Lv 
and weak closedness. Reflexivity of Lm 1 <p < oo implies weak compactness. De­
finition 7 of U ( ·) for p = 1 implies that for all measurable selectors rp of U ( ·) we 
have 

ll rp (t) ll ~f(t) a.e. and 

that is enough for weak compactness in V [(0, T), Z] by paper of Castaing [2]. 
Q.E.D. 

LEMMA 4. Let F,: LP [(0, T), Z]-> X be a linear continuous operator for each fixed 
t E [0, TJ. Let a multifunction U ( ·) be integrable with p-power on [0, T] and satisfy 

sup IIF,(u)-F,+O(u) ll ->0 when (1.16) 
JI EUs 

then 

(a) 1\ F,([J,) is convex weakly compact set, 
t E [O, T] 

(b) multifunction F, (U.) of t is continuous in Hausdorff topology. 

Proof. From Lemma 3 it follows that Us is weakly compact in LP [(0, T), Z] so 
by continuity ofF, we obtain convexity and weak compactness of F,(Us), what 
implies point (a). Point (b) follows from the estimation 

p (F,/Us), F,
0
+0 (Us)) =SUp inf JJF,

0
(u) -F,o(v)+ F,

0
(v) -Fr 0 +0(v) Jl~ 

u EUs vE Us 

~sup 11Fr
0
(v)-Ft

0
+0(v) ll ->0 when• o->0 

vE Us 

because of (1.16) 

Similarly we can show 

p (Fr
0
+0 (V.), Fr/Vs))->0 when o->0 

hence we get continuity of F, (Vs). Q.E.D. 

------------------------------------------------------------
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LEMMA 5. Let X be a linear locally convex space. Let AicX for i=l, ... , n and 
X' dual of X. Then the following equality holds 

n 

sup <x', x) =};sup <x', a;). 
XEA 1+ ... +An i=l aiEAi 

(1.17) 

df n n 
Proof. Let D= X Ai means Cartesian product, De X X. We define rp:D-'>X 

i=1 n i= 1 

in the manner rp (x1 , ... , Xn)= 2,; xi sup <x', x) =sup <x', rp (z)) what finishes 
ihe proof. i=l xEA 1+ ... +An zED Q.E.D. 

Let us consider nonlinear integral equation of the form 
t 

y(t)= J S(t,r)f(r,y(r),u(r))dr. (1.18) 
0 

Let us aswme that 
(1.19) 

linear bounded operator from Banach space X into X, for each t, 

S (t, r) x (1.20) 

continuous function of t with fixed T and continuous function of T with fixed t, 
both in the norm topology 

f (.' . ' . ) : (0, T) X X X z--'> X (1.21) 

continuous function of all arguments in the norm topology. 
Moreover we assume that f( ·) has strong derivatives with respect to 2-nd and 

3-rd arguments which are continuous in operator norm. 
Let 

df 
~(u)( · )=y(·). (1.22) 

LEMMA 6 [13]. Under assumption (1.19), (1.20), (1.21) about S(·) andf(·), function 
~(u) given by (1.22) has strong derivatives with respect to u at U 0 and 

t 

by (t) df ~'(u0) (Au)(t)= J S (t, r) [f; ('(u0 )(L1u) (r)+ f:(Au) (r)] dr. (1.23) 
0 

Remark 1. Since by (t) depends linearly on Au. We shall note this by 

E, (Au) df by (t) = (C (u0 ) • Au)(t). (1.24) 

2. Maximum principle for differential open-loop games 

2.1. Problem Formulation 

Let x and y be two points moving in a Banach space X. A trajectories of this 
system of points can be given as solutions of some differential, integral or 
{lifference equations. In this paragraph we shall deal with trajectories described 



Maximum pr,inc:iple for differential open-loop 11 

by differential equation. Equation describing position of a point x (y) depends on 
some control u E Us (v E }/,) . The player using a control u (v) we call pursuer (evader) 
and note them player U (V) respectively. Moreover let some convex closed set 
Q c X be given. The aim of player U is such a choice of control u that at some mo­
ment t 1 should be 

and the moment t 1 should be minimal. The aim of player V is to maximtze this time 
t 1 • In general case we have two differential equations in Banach space X describing 
trajectories of the pursuer and evader of the form 

.X (t) = / 1 (x, t, u), 

j; (t)=/2 (y, t,v), 

(2.1) 

(2.2) 

We assume that the player V chooses his control v at the beginning of the play 
and cannot change it in the course of the game. Next chooses his control player 

knowing already the control v. 

DEFINITION 9. By the time T (u, v) we denote the smallest time t for which we have 
inclusion x (t)- y (t) E Q when players U and V apply controls u and v respectively. 

DEFINITION 10. We shall call T0 the optimal capture time if for each control v 
there exists control u such that T(u, v)~T0 and for any e>O there exists V 0 such that 
for arbitrary u we have inequality 

(2.3) 

If for the pair of controls [u, v ], x (t)- y (t) if= Q for all t then we put T (u, v) = oo. 
In the following we shall assume that T 0 < oo 

DEFINITION 11. We shall call the pair of controls U0 , V 0 optimal if 

sup infT(u,v)= infT(u,v0 )=T(u
0
,V

0
) df T0 • 

vEVs uEUs u EU.~ 

2.2. Maximum principle for linear games 

(2.4) 

In this paragraph we consider differential game, described by the pair of equa­
tions of the form 

where 

x (t) = F, (u) +x1 (t), 

y (t)=E,(v)+y 1 (t), 

(a) Z, Q denote reflexive separable Banach spaces; 
(b) X denotes an arbitrary Banach space; 
(c) X 1 (t) y 1 (t), X (t), y (t) EX; 

(2.5) 

(2.6) 
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(d) x 1 (·), y 1 (·)-given continuous functions; 
(e) U ( • ), V ( ·) - meas-urable, integrable with p-power, 1 ~P < oo, multifunctions 

with values in-4C., CQ respectively; 
(f) Us (Vs) -the set of all measurable selectors of U ( ·) V(·) and u = u ( ·) E U., 

v=v(·)E V •. 

About operators Fr, Er we assume: 
(z 1) For fixed t, Fr (Er) is linear continuous operator from Lv [(0, t), Z] (L0 [(0, t) QJ) 
into the Banach space x 

Fr:L0 [(0 t), Z]-4X, 

Er:Lv[(O t), Q]-4X. 

(z2) Assume that T < oo. Let for t~ T Fr (Er) satisfy assumptions of Lemma 4. 

2.2.1. We consider here the case when Banach space X is uniformly strictly 
convex and unit ball of this space smooth. Such properties have for example: 
Lv (Rn) - spaces with Lebesgue measure 1 <p < oo, 
/ 0 - spaces and Hilbert spaces (see [7]). 

We assume moreover that 
il=K, 

where K- a unit ball of X. 
For simplicity we introduce following notation 

z (t)=y (t)-x (t) 

where x (t) and y (t) are given by (2.5) (2.6), 

Z 1 (t)=y 1 (t)-X1 (t), 

c;Pt (u) =Fr (u) +z1 (t). 

(2.7) 

(2.8) 

(2.9} 

. (2.10} 

The aim of the player U is to reach K in shortest time and the aim of V is to be 
out of K for the longest time. By optimality of V 0 we have \ 

[c:Pr (U.) - Et (v0 )] n K for t<T0 • 

We shall need following lemma 

LEMMA 7. If t'0 is optimal control of evader. then 

1\ V 1\ Kn(c:P,(U.)-(Er(vo)+sK))=0. 
t 1 < T 0 e>D' t ::s;;; t 1 

Proof. Let t 1 < T0 • We shall show, that there exist s > 0 such that 

p (0, c:Pr(U5)-Er(vo))> 1 +s for O~t~t 1 , 

where p Hausdorff semidistance. 

(2.11) 

(2.12) 

(2.13) 

It follows from Lemma 4 that c;Pt ([!~) is a continuous multifunction. Et (vo) 
. is continuous by definition. Moreover both functions are continuous on compact 
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~et [0, t 1 ]. Function p (continuous with respect to Hausdorff metric d( · )) attains 
its minimum. So there exist a constant a and ! 0 E [0, t 1 ] such that 

a= min p (0, cfJ,(U5)-E, (v0 )) = p (0, cfJ,o(U.) - E,o(vo))> 1. 
o ::;;; t :s=;; t 1 

Hence putting 

a-1 
a=-

2
- we get (2.13) 

what means 

Finally 

what finishes the proof. 

Let L1 V,, denote the following set 

LJ V, 
1 
= { LJv ( •): LJv ( T) =V ( T)- V 0 ( T) A V ( T) E V ( T) 0 :( T :( t 1} 

(2.14) 

(2.15) 

(2.16) 

Q.E.D. 

(2.17) 

where V 0 as ~efore optimal control. L1 V,, is the set of admissible variations of optimal 
control V 0 with support contained in [0, t d. Of course the set L1 V, is convex by 

1 

definition and convexity of V (t). 

LEMMA 8. If t 1 <:. T0 and L1 V,, given by (2.17) then 

1\ V 1\ Kn(cfJ,(U5) - E,(vo+fJL1v))=0 

for t E [0, td. 

Proof 

.dv E.dVr
1 

Po>O P<';Po 

E,(V0 + L1v) =E, (v0 ) +E, (L1v), 

sup [[E,(L1v)[[=b>0. 

B 

(2.19) 

(2.20) 

The c.ase b = 0 follows from Lemma 7. Putting fJo = b where B is the same as in 

Lemma 7 we get the proof immediately from Lemma 7. Q.E.D. 

LEMMA 9. Let X be a uniformly strictly convex Banach space and K smooth unit 
bail of X. Moreover x ( ·) continuous function with value in X and fix (t) fl > 0 for 
t E [0, t d, x'(t) EX' such that <x'(t), x (t)) = fix (t)fl [[x'(t) fl = 1 then x'( ·) is conti-
nuous. 

Proof follows immediately from Lemma 2. Q.E.D. 
Under those assumptions the following theorem is true. 

THEOREM 2. If there exists optimal capture time T0 at the game described by equa­
tions (2.5) and (2.6) and corresponding pair of optimal controls U0 , V 0 , then there 
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exists linear continuous functional x~ E X' such that the optimal control U0 fulfils 
the equation. 

uEU5 

and each x' fulfiling (2.21) satisfies the equation 
0 

max <x~, Edv)) =<x~, Er.(v0 )) 

vEVs 

Proof. Let z (t) be given by (2.8) so it has the form 

z (t) =Et (v)- tJ>t (u). 
For v=v0 multifunction 

has not common points with K for t<To so 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

From the form (2.10) of function tJ>t (u) and definition of Et (v) it follows that 
lJft is a continuous multifunction with respect to Hausdorff metric. From properties 
of semimetric p it follows that the function 

p (0, lJft) = min llx ll (2.26) 

is continuous with respect to t. 

Reflexivity of X implies the existence of x (t) such that 

P (0, 'Fr) = llx (t)l l. (2.27) 

Lemma 1 implies continuity of x (t). Let x'(t) EX' be such that 

<x'(t), x (t)) = llx (t)ll and llx'(t)ll = 1 . (2.28) 

From the assumptions on X and Lemma 9 it follows that x'(t) is continuous. 
Equations (2.25) and (2.27) give us inequality. 

p(O, 'Fr)= inf<x'(t),x)=<x'(t),x(t)>max<x'(t),x)=1 for t<T0 • (2.29) 
xEK 

Optimality of time T0 and control V 0 implies 

min <x'(T0 ), x) = 1 (2.30) 
xE'Py

0 

hence 
(2.31) 

but 

min { -<x'(T0 ), tl>r.(u))}= -max (x'(T0 ), tl>r.(u)) 
UEUs 

max (x'(T0 ), tl>r.(u)) =<x'(T0 ), z1 (To)) +max <x'(T0 ), Fr.(u)) 
uEUs uEUs 

• 
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so 

max <x'(To), Fdu)) =<x'(T0 ), Fr.(uo)) (2.32} 
uEUs 

that implies the first part of our theorem. Let us pass to the second part. 
We put 

and 
df 

11 (t) = '1o (t) + <x'(t), E 1 (Av)) 

where Av E AV1, for some t1 ~T0 • 

Let us suppose that the maximum principle does not hold. 
That means that there exist t 1 ~ T 0 and Av 1 E A V1 , such that 

<x'(T0 ), Er.(Av1)) =c >O. 

(2.33) · 

(2.34)· 

(2.35} 

For fixed Av1 left hand side of (2.35) is a continuous function of t, so there 
exist h > 0 such that fortE [To- h, T 0 ] 

(2.36) 

Form Lemma 8 it follows that fortE [0, T0 -h] there exist Po>O which ful­
fils equality 

hence choosing a control v1 =vo+ Po Av1 we get 

Moreover 

hence 

'1 (t) ='70 (t) + /Jo <x' (t), E1 (Avl)) 

'1o (t) + /Jo <x'(t), Et (Avl)) > 1 + /Jo!_> 1 
2 

(2.37} 

(2.38} 

(2.39} 

for t E [To- h, T 0 ], what follows from (2.29) and (2.36). Inequality (2.39) and equality 
(2.38) imply 

(2.40} 

but it contradicts the optimality of time T0 • So for t=T0 and /\ 1\ should be 
fulfilled inequality t,,;;r. LlvELIV,, 

<x'(T0 ), Er.(Av))~O, 

<x'(T0 ), Er.(V-V0))~0, 
(2.41} 

hence 
(2.42). 

vEVs 

and putting x'(T0 )=X0 we finish the proof. Q.E.D. 

--- ------------------·------ -----------
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2.2.2. In this paragraph we shall prove maximum principle under different 
assumptions. Here X is an arbitrary Banach space, Q- closed . convex set with 
interior, Us and F, satisfy previous conditions anp moreover 

F,,(Us)cF,
2
(Us) for t1 ~t2. (2.43) 

The assumptions on E, and Vs are not changed. 

THEOREM 3. If there exist optimal capture time To and corresponding pair of opti­
mal controls U0 , V 0 then there exists linear continuous functional x: EX' such that 

max (x;, Fro(u)) = <x:, Fr
0
(U0 )). 

uEUs 

Proof. Let us put as before 

x (t) =F, (u) + x1 (t), 

y (t) = E, (v) + Y1 (t) 

(2.44) 

(2.45) 

(2.46) 

trajectories of pursuer and evader. Without loss of generality we may assume that 
x 1 (t)=O. 

Let 
(2.47) 

denote trajectory of evader. Control V 0 and time T 0 give 

where o denotes boundary of the set. Since Q has interior there exists continuous 
linear functional x: with 11x;11 = 1 such that 

sup (x:, x)=(x:, Yo(To)) (2.48) 
xEFy

0
(U,)+Q 

Lemma 5 gives us equality 

sup (x;, x)= sup (x:, x)+sup (x:, w) (2.49) 
xEFr.(Us)+Q xEFy

0
(U8 ) roEQ 

which implies 
sup (x:, x) =sup (x:, Fro(u)) =(x;, Fr

0
(U0 )) Q.E.D. (2.50) 

xEFy
0
(U8) uEUs 

In a similar way as in Lemmas 7 and 8 we can prove following lemmas. 

LEMMA 10. If V 0 is optimal control of evader than 

1\ V 1\ (y0 (t)+sK)nF,(Us)=0. (2.51) 
t 1 <To e>O O~t~t1 

LEMMA 11. Let t 1 < T0 and L1 V,, given by (2.17) then 

1\ V 1\ (Yl (t)+E,(vo+ fJL1v)) ~ F,(Vs) (2.52) 
LlvELIVt 1 Po>O (J<>,{Jo 

for t~t1 • 

Now we can pass to the proof of the maximum principle for evader. 
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THEOREM 4. If there exists optimal capture time To and corresponding pair of 
controls ua. V 0 then each linear bounded functional x: E X' fulfilling (2.44) satisfies 
also 

max (x:, ETJv)) =<x:, Ey.(v0 )). (2.53) 
vEV5 

Proof. For arbitrary trajectory y (t) of evader we have 

(2.54) 

Let us consider unequality 

(2.55) 

This inequality implies maximum principle for t~ t 1 . Let us suppose that maxi­
mum principle is not true, so there exist t 1 ~To and L1v1 E L1Vt, such that 

(2.56) 

From continuity of (2.56) with respect to t with fixed L1vi> follows existence of 
h > 0 such that for t E [T0 - h, T0 ] 

Let us consider equation of the form 

Lemma 11 implies the existence of fJo > 0 such that 

for t~T0 -h. 

Inequality (2.57) gives us 

(x:, Yp
0
(t)- Yo (t)) = (x:, fJo Et (L1v1)) 

for t E [To- h, T0 ] what means 

Yp.(tHFt(U.) for tE[T0 -h,To] 

by assumption Ft(U5)cFy(Us), t~T0 , so (2.58) and (2.60) show us that 
0 

that contradicts the optimality of T 0 so we have 

(x:, Ey0(L1v))~O for all t1 ~To 

and 

L1v E L1Vt, 

hence 

max (x~, Ey
0
(v)) =<x:, ET

0
(vo)). Q.E.D. 

vev" 

2 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 



18 C. SIEMA,SZIT<O 

3. Nonlinear case 

Similarly as before we can prove the maximum principle in nonlinear case in 
two variants. 

3.1. Here Banach space X, operator Ft and the set Q have properties as in point 
2.1. The game is described by equations: 

x (t)=Ft(u)+x1 (t), (3.1) 

t 

y(t)= J S(t,r)f(r,y(r),v(r))dr. (3.2) 
0 

The operators S ( ·, ·) and f ( ·, ·, ·) fulfil assumptions of Lemma 6. 

THEOREM 5. If there exists an optimal capture time T0 at the game described by 
(3.1) and (3.2) and corresponding it pair of optimal controls u0 , v 0 then there exists 
continuous bounded functional x: EX' such that for this U0 we have 

uEUs 

and any x;, satisfying (3.3) fulfils also equation 

max <x;, Er.(v)) =<x;, Edvo)) 
vEVs 

where Er (v) is given by (1.24), 

Proof. Let us define 
z(t)=x(t)-y(t) 

where x (t) and y (t) are given by (3.1) (3.2). 
Let 

df 
x 1 (t) +Et (u) = cPt (u) then we get 

z (t)=cPt(u)-y (t). 

(3.3) 

(3.4.) 

(3.5) 

(3.6) 

(3.7) 

Let Yo (t) be a trajectory of evader corresponding to optimal control v0 • From lemma 
(6) we get 

y (t) = Yo (t) +sJy (t) + Ot (e) (3.8) 

where Jy (t) corresponds to variation L1v of v0 

z (t)=cPt(u)-y0 (t)-sJy (t) - Ot(e). (3.9) 

For e=O similarly as in linear case there exist x'(t) EX' such that x'(t) is conti­
nuous and 

IJo (t) df min (x'(t), cPt (u))- (x'(t), Yo (t)) > 1 (3.10) 
uEUs 
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For a trajectory y (t) we define 

Yfe (t) ctf min <x'(t), cpr (u)) -<x'(t), Yo (t))-
uEU3 

- <x'(t), e<5y (t)) -<x'(t), Or (e)). (3.11) 

Let us notice that rt.(T0 )>1 implies strict separation of sets c])r.(U.)-y(T0 ) 

and K. We get maximum principle if 

<x'(T0 ), Jy (T0 ));:?:;0 for any t-1 ~To and 1\ (3.12) 
.dvE.dV,

1 

where Llv corresponds Jy(t). Let us suppose that the maximum principle does not 
hold. Then there exists Jy1 (t) such that 

<x'(T0 ), Jyl (T0)) =- c<O. (3.13) 

By continuity of x'(t) and Jy1 (t) there exists h>O such that 

c 
<x'(t), Jyl (t)) < -2 t E [T0 -h, T0 ] (3.14) 

so for sufficiently small e0 > 0 we get 

c 
rt •• (t)> 1 +eo 2- <x'(t), Or (e0)) > 1 (3.15) 

for t E [T0 -h, T0 ]. 

This inequality means that for the function 

the value of the multifunction cpr (U.)-Y •• (t) can be strictly separated from K 
for any t. On the other hand 

lleoyl (t)+ ot (e)ll (3.16) 

can be arbitrarily small for suitable e=e1 <eo for t E [0, T0 ]. Using Lemma 11 we 
get 

(c])1 (U.)-y,,(t))nK=0, !E [0, T0 -h]. (3.17) 

Hence and from (3.15) follows 

(c])r(U.)-y,,(t)) nK=0, t E [0, To]. (3.18) 

That contradicts the optimality of T0 and V 0 so there should be 

<x'(To), oy (To))~O for all tl ~To and Llv E L1Vr1. (3.19) 

As follows from (1.24) oy(t) depends on Llv linearly so we can write 

df 
oy (t) = E 1 (Llv) . (3.20) 

Hence we have 
<x'(T0 ), Er.(L1v));:?:;O 

min <x'(T0 ), Er.(v)) =<x'(T0 ), Er.(vo)) (3.21) 
V EVs 

---- ---- -------------------------------------------- --------------------
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and putting x'(T0 ) = - x' we get second part of the theorem. To prove the first 
part we use (3.10) for t=T0 • We get then (3.22) 

min (x'(T0 ), tl>du)) =min (x'(T0 ), FTJu)) + (x'(T0 ), x 1 (T0)) (3.22) 
uEUs uEUs 

or 
max <x:, FT.(u)) = -min (x'(T.), FT.(u)) (3.23) 
uEUs uEUs 

so by optimality of U0 we finally get 

max <x:, FT.(u)) =<x:, FT.(u0 )). Q.E.D. (3.24) 
uEUs 

Remark 2. In nonlinear case maximum principle under assumption of pa­
ragraph 2.2. can be proved in a similar way. 

Corollary 1. If operators Et (Ft) satisfing (z1) and (z2 ) are represented by 
equation 

t 

Et(v)= J S (t, r) v (-r) d-r, (3.25) 
0 

t 

Ft(u)= J W(t, r) u (-r) d-r, (3.26) 
0 

then we can give Theorem 2 the following form. 

THEOREM 5'. If there exists optimal capture time T0 at the game described by (3.25) 
and (3.26) and corresponding it pair of optimal controls u0 , v0 then there exists 
x: E X' such that for U0 we have 

max (W*(T0 , r) x:, u (r))=(W*(T0 , r) x:, U0 (<)) (3.27) 

and each x' fulfiling (3.27) fulfils also 

max (S* (T0 , r) x:, v ( r)) = (S* (T0 , r) x:, V 0 ( r)). Q.E.D. (3.28) 
vEVs 

4. Applications 

In this paragraph we shall give some examples of operators Et and Ft fulfiling 
assumptions of the theorems of previous paragraphs. 

4.1. Abstract parabolic equation in Banach space 

X- Banach space. Let us \consider an equation of the form 

dx(t) 
--;j{ = A (t) x (t) (4.1) 
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where x (t) EX 
X (0)=X0 o (402) 

Following Sobolewski we have: 

THEOREM 6 [12]0 Let A (t) be a linear unbounded operator with dense in X domain 
D independent of t for t E [0, T]o Let for arbitrary t, r, s E [0, T] 

II [A (t)-A (r)] A- 1 (s)ll ~c l t-rle (403) 

for some e E (0, 1] and moreover for arbitrary Jc with Re Jc~O, the operator A (t)+AI 

has bounded inverse with 

II(A (t)+Jc/)- 1 11 ~c [ IJ,I + 1]- 1 (4.4) 

then there exists an operator-function S (t, r) defined and strongly continuous 
for r~ t; r, t E [0, T] fulfilling the following conditions: S (t, r) is uniformly diffe­
rentiable with respect to t, t>r 

as (t, r) 
ot +A(t)S(t,r)=O, 

S(t,r)=S(t,l)S(l,r) for T~t~l~r 

S (t, t)=lo 

Formula 
X (t)=S (t, 0) X 0 

(4o5) 

(406) 

(4o7) 

(4o8) 

gives the unique solution of (401) continuous for t E [0, T] and differentiable for 
t>Oo QoEoD. 

THEOREM 7 [12]0 Let A (t) fulfil assumption of the theorem 6 and moreover 

IIA- 1 (s) [A (t)-A (r)JI I ~c lt-r l'1 (409) 

for some 17 E (0, 1]. The bar means closedness of operator in X. Then the operator­
function S (t, r) is uniformly continuously differentiable with respect to r, r < t 
and two-time in t and r together and 

as (t, r) 

or 
S(t, r)A(r)=O, 

o2 S (t, r) ---ara;- - A (t) S (t, r) A (r)=O. 

The following estimation is also true 

I lA-a (t), S (t, r) AIJ (r) l l~ C lt -r la -/J, 0~ IY.~/3 < 1 +17 

IIAa (t) S (t, r) A 11 (r) ll ~ c lt -rl-a- /J, 0~ a.:~ 1 +e, 
0~/3~ 1- +17 ° 

We have the following estimation for S (t, r)o 

(4.10) 

(4011) 

(4012) 

(4.13) 

QoEOD 



22 C. SIEMA'SZIKO 

LEMMA 12 [12]. If assumption of the Theorem 7 are satisfied then 

t+At t 

11 A a(~) J S (t+ At, s) f(s) ds- J S (t, s) f(s) ds 11 ~ 
• • 

[

t+At ]1/P 
~ c (Cl) (At)(p-l)/P j 1/f(s)JIP ds- (4.14) 

Q.E.D. 

LEMMA 13. Under the same assumption as in the Theorem 7 the following estima­
tion is true 

t 

f /IS (t, -r)-S(t, -r-A) /1 d-r~ lAin AI+ 
to 

+ 1(t-t0 +A) In (t-t0 +A)-(t-t0 ) In (t-t0 )l. (4.15) 

Proof. From Theorem 7 we have 
• 

S(t,-r)-S(t,-r-A)= f S(t,s)A(s)ds. (4.16) 
t-A 

From the same theorem we have the estimation 

c 
/IS (t, s) A (s)/1~-- for t>s 

t-s 
(4.17) 

hence we get 
• 

/IS (t, -r)-S (t, -r-A)/1~ J /1 -S-(t-, s_)_A_(-s)/1 ds~ 
t-<1 • 

~~ J"_c_ds=cin(1+~)l for t>-r. (4.18) 
t-s t-T 

<-A 

We have 

c j In ( 1 + t ~ -r ) d-r = c [j 1n (t- -r + A) -In ( t- -r) d-r] = 

=C { -(t--r+A) In (t--r+A) [ ~o +(t-r) [In (t-r)-l] [~J= 

=c [-A In A +(t- to+ A) 1n (t- t0 +A) -(t- to) In (t- to)] . (4.19) 

So we get 

t 

J /IS (t, -r)-S (t, -r-A)/1 d-r~c 1-A1n A+ 
to 

+(t-t0 +A) In (t-t0 +A)-(t-t0 ) In (t-to)l . Q.E.D. 
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Remark 3. From the Lemma 13 it follows that the operator F 1 defined by 

t 

F1 (u)= J S(t,r)u(r)dr (4.20) 
to 

fulfils assumptions of the Lemma 4 and therefore also assumptions of Theorem 2. 
In the next paragraph we shall apply our results to a partial differential equation. 
For this purpose the following definition will be useful. 

DEFINITION 12. We shall say that control u (t) E U(t) is of bang-bang type if u (t)E 

E Extr U (t) where Extr U (t)- the set of extremal points of U (t) 

4~2. Bang-bang principle for the differential game of pursuit described 
by some partial differential equation of parabolic type 

Let the game be described by partial differential equation of the form 

OX (t, p) 

ot A (p, ~ )x(t,p) 

where t E (0, T] p E D c R" with initial condition 

X (O,p) = O 

and boundary condition 

limB(y, ;)x(t,p)= u(t,y)-v(t,y) 
P->Y 'P 

where u (t, y), v (t, y) are measurable function such that 

iu (t, y)I~M (t, y), 

iv (t, y) i ~N (t, y), 

(4.21) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

M (t, y) N (t, y) -are measurable, bounded, positive functions. Linear operators A 
and B have the form · 

(4.25) 

(4.26) 

and the operator [A ( p, ~ ) , B ( y, ~ ) ] is selfadjoint. Domain D has Liapunov 

boundary SE C3 , v (y)= [v 1 (y), ... , vn(y)] is the unit vector of the inward normal 

to the surface S. The operator A (p, :P) is of eliptic type in D. 
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Let 'rpk (p) and A.k denote eigenfunctions and eigenvalues of the operator (A, B). 
The system { rpk} is complete in the space L 2(D) (see [8]). The time optimal control 
problem for this equation was considered by Lawruk, Rolewicz [8]. We assume 
that the remaining conditions from [8] are fulfilled. Let QcU(D) has the form 

(4.27) 

where e>O and K unit ball of L 2(D). Qo- arbitrary closed convex bounded set. 
As before the aim of the player U is to bring the trajectory of equation (2.21) in 
a shortest time T0 to Q and the aim of V is to maximize this T0 • 

Let x (t, p) be the solution of (4.21), (4.21 ')then according to (10) in [8] we get 

I 

J x(t,p) rpk(p)dp= J J {e;.k(r-z>[u(r,y)-v(r,y)] rpk(y)}drdy. (4.28) 
D 0 S 

We shall assume that 0 if= Q. 

THEOREM 8. If there exists an optimal capture time T0 and corresponding pair of 
optimal controls U0 , V 0 then these controls have to be bang-bang. 

Proof. Let us consider the Banach space Z, of measurable functions u (t, y) 

with the norm 

iu (t, y)i 
I lull,,= ess sup sup M (t ) . 

O ~ t=s;;;t 1 y 'y 
(4.29) 

Define u. by 

U.={u (t, y); iu (t, y)I~M (t, y)}. (4.30) 

Hence the set u. is the unit ball in this space. Similarly as in [8] we can show 
that the operator 

t 

d,,(u) = {J e-'k(<-t,) J u(r,y) rpk(y)dydr} 
0 s 

(4.31) 

is a weakly ':' continuous operator from Z, into J2. Hence the image of the unit 
1 

ball of Z, is weakly compact in F. Since the system { rpK} is complete in L 2(D), 
1 

U(D) is isomorphic to F . The image of Q under this isomorphism I is a closed 
convex set, containing a nonempty interior. The operator d,, (u) as a function 
of t1 is continuous. Introducing the space Q,, of measurable functions v (t, y) with 
the norm 

lv (t, y)i 
llvll,, = ess sup sup N (z ) 

o.;,.,,, Y 'y 
(4.32) 

we get a Banach space with properties similar to z, .. The game will be over at time 
To when 

(4.33) 
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So we see that there exists an x' E [2 - the supporting functional to d T .(Us)+ 
+I (Q) at d T

0
(v0 ) . Hence for optimal contols U0 , V 0 we have according to theorem 

(2) the maximum principle 

sup (x;, d T.(u)) =<x;, d T.(u0)) (4.34} 
lluiiT

0
,;; 1 

sup (x;, d r.(v)) =<x;, d T
0
(V0 )). (4.35), 

llvi iT
0

,;; 1 

Since x;={aK} E f2 we can represent it on dTo(u) in the following way 

To 
(x;,dTo(u))= J J T(r,y)u(r,y)dsdr, (4.36} 

0 s 
where 

00 

T ( T, y) = .2; dk e.lck(t- To) 1/Jk (y). (4.37} 
k=1 

Similarly as in [8] we can show that the supremums in (4.34) and (4.35) are 
attained for functions u0 , v0 uniquely defined by the equations 

luo (r, y)l =M (r, y), 

lv0 (T, y)l =N (r, y). 

(4.38) 

( 4.39)· 

Formulas (4.38) and (4.39) show that the optimal controls have to be bang-bang. 

5. Games described by functional equation of neutral type 

5.1. Differential equation of neutral type 

We shall deal with linear differential equation of neutral type of the form 

d t 

dt D (x (·), t)= J dsrt (t, s) x (s)+f(t), 
0 

(5.1} 
Xr

0
=K, KEC[-h,O], fE[t0 ,t1]. 

All results and notation of this paragraph belong to Banks, Kent [1]. Following 
paper [1] we introduce notation; C [ -h, 0] space of continuous functions with 
values in R" on an interval [- h, 0] with norm sup. 

X 1Jr) df X(t0 +T)ER", TE[-h,O]. 

Function D (x ( • ), t) has the form 
t 

D (x (·), t) df x (t) - J ds f.1 (t, s) x (s). (5.2} 
t 0 -h 

Functions f.1 ( ·) and 11 ( ·) are n x n matrices. By a solution of differential equation. 
(5.1) with initial value K we shall mean an xE C [t0 -h, td such that t-+D (x(·), t), 
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is absolutely continuous on [t0 , t 1 ] with (5.1) being satisfied a.e. Now we shall give 
an assumption under which there exists a solution of (5.1). 

Assumption 1. Jl (a, r)=O for r?:a; Jl (a, r)=Jl (a, t0 -h) for r<t0 -h. Jl is Borel 
measurable, continuous from the right in its first argument and continuous from the 
left in its second argument; r~p (a, r) is of bounded variation on every finite r 

t 

interval, uniformly in a· and the mapping t~ r (y, t) df f d. Jl (t, s) y (s) is conti-
t.-h 

nuous on [t0 , t 1 ] for each fixed yE C [t0 -h, td which obviously implies that (y, t)~ 

r (y, t) is continuous. 

Assumption 2. There is a continuous nondecreasing function ~ with ~ (0)=0 
such that for each t E R1 and e>O we have 

Var ([t-e, t]; Jl (t, ·))~~(e). 

Assumption 3. 11 (a, r)=O for r)::a, 11 (a, r)=11 (a, t0 -h) for r<t0 -h, 
11 is measurable, continuous from the left in its second argument on 
(- oo, a): r~11 (a, r) is of bounded variation on every finite r interval and there is 
an m E L~oc such that 

Var ([t0 -h, a];~ (a, ·))~m (a). 

THEOREM 9 [1]. Under assumption 1, 2, 3 for each fixed t E [t0 , td the system 

t t 

Y(s,t)=En+ J da.Y(rx,t)p(a,s)- J Y(rx,t)rz(a,s)ds 
s s (5.3) 

sE[t0 ,t], Y(t,t)=E, Y(s,t)=O, s>t 

has a unique solution on [10 , t 1 ]. This solution Y (s, t) is left continuous in its first 
argument and 

I Y(s,t)I~B, Var([t.,td; Y(·,t))~B for (s,t)E[t0 ,tdx[t.,td. 

The following theorem allows us to represent the solution of (5.1). 

THEOREM 10 [1]. Let x (·) be the solution of (5.1) under assumptions 1, 2, 3. 
Then for t E [to, td 

t 0 - t 

x(t)=Y(t0 ,t)D(K,t0 )+ J dpy(t,jJ)K(/3)+ JY(fJ,t)f(fJ)djJ (5.4) 
to 

where Y is given by (5.3) and 

t+ t 

y (t, /3) df - J dY(rx, t) Jl (rx, /3)+ J Y (a, t) 11 (rx, /3) drx. Q.E.D. (5.5) 
to 
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Assumption 4. f1 has the following property; there exist 1>0, L>O such that 
t 

J d, {fl (t, r)- f1 (s, r)} j ~L jt -s j (5.6) 
t-l 

for s~t. 
Let U(·)-measurable multifunction and for fixed t, U(t)ECRq; u.-the 

set of selectors of U ( • ). 

LEMMA 14 [1]. Under assumptions 1, 2, 3, 4, cfJ being compact in C [ - h, 0] implies 
df 

d={x (K, u)(• ); (K, u) E cfJ X Us} (5.7) 

is an equicontinuous subset of C [t0 -h, t1 ]. Q.E.D. 
Let us define an attainable set in C I -h, 0] by 

dr={zEC[-h,O]; Z=Xr(K,u); (K,U)EcfJxU.} . 

Let us fix K E cfJ, then we have by representation theorem 
to-

Xr(u)(r)=Y(fo,fo+T)D(K,fo)+ J d0 y(t+r,j3)K(/3)+ 

t+t 

+ J Y(f3,t+r)u(f3)df3, TE[-h,O]. 

' 
We can write this in another way, namely 

xr=xz+Fr(u), 
where t 0 +t 

df f Fr(u)= Y(/3, t+r) u(f3)df3, TE ( -h, 0) . 

Fr (u) E C [ -h, 0] for fixed t, and is continuous function of t, so 

F (u) ctf F ( · )(u) E C ([to, t1], C [ :-h, Ol]. 

It is easy to see that F is a continuous operator 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

THEOREM 11 [1]. Under assumption 1, 2, 3, 4, cfJ being compact in C [ -h, 0] im­
plies dr given by (5.8) is campact in C [ -h, 0], t E (t0 , t 1 ]. Furthermore the mapping 
t-tdr is continuous in Hausdorff metric. Q.E.D. 

5.2. Linear differential game of pursuit 

We consider here the game described by the pair of equations 

d t 

dt D1 (x (·), t)= J d. 171 (t, s) x (s)+u (t), (5.13) 
to-h 

d t . 

dt Dz (y (·), t)= J d. 172 (t, s) y (s)+v (t) (5.14) 
to -h 
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with initial values 

(5.15) 

Let U ( ·)- multifunction integrable with p-power, 1 ,:;p < oo, V ( ·) - multi­
function as above, [1, (Vs) - the set of measurable selectors of U ( ·) (V ( ·) ). 
u ( ·) E U., v ( ·) E Vs- controls of players. 

The operators D 1 , D2 are given by (5.2). We assume that all the assumptions. 
of previous paragraph are fulfiled. Let /: C [ -h, 0]-+L2

[ - h, 0] be an embedding 
of C [ -h, 0] into V[ -h, 0]. I is continuous linear operator, so it mapps compact 
sets of C [ -h, 0] into compact sets of V[ -h, 0]. The game will be considered in 
L 2

[ - h, 0] . The problem of pursuit is stated as at the beginning of paragraph 2. 
For this problem the following theorem is true. 

THEOREM 12. If there exists an optimal capture time T0 and corresponding it pair 
of optimal controls u0 , V 0 then there exists a linear continuous functional 
x~ E V [- h, 0] such that the maximum principle holds: 

max <x~, Y1 (/3, To) u (/3)) =<x~, Y (/3, T0 ) Uo (/3)), (5.16) 
uEUs 

max <x~, Y2 (/3, T0 ) v (/3)) = <x~, Y (/3, T0 ) V 0 (/3)). (5.17) 
vEVs 

Remark 2. The maximum principle proved in Theorem 2 is true as well for 
finite as for infinite dimensional spaces. Assumptions in Theorem 2 and further 
demand from Q to contain a non-empty interior. This follows from application 
of the theorem on separation of two convex sets (where it is enough if one of them 
contains an interior). In the case when, the attainable set of Ft (Us) has interior, 
the assumption about interior of Q can be omitted. For details connected with this 
remark regarding to maximum principle for optimal control in Banach spaces see 
[11] and [14]. 
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Zasada maksimum dla rozniczkowych gier poscigu 
w p~tli otwartej 

Rozwa:i:ono zagadnienie r6:i:niczkowych gier poscigu w Pt<tli otwartej zdefiniowanych dla prze­
:strzeni Banacha. Wyznaczono warunki konieczne optymalnosci sterowan w postaci zasady maksi­
mum. Podano przyklady zastosowan otrzymanych wynik6w dla r6wnan r6:i:niczkowych CZ<!Stko­
wych i r6wnan r6:i:niczkowych funkcyjnych. 

llpuuwtn ~aKcnMyMa ,n:nsr ,n:Jtlj>lj>epellllnaJibHhiX urp 
npecJie,n:OBaHIISI B pa30MKIIYTOM KOHType 

PaCCMaTpMBaeTC51 BOUpOC )J,H!p<l_lepeHl(HaJibHbiX Mrp rrpeCJie)J,OBaHI151 B pa30MKHYTOM KOHType, 
<lrrpe.n;eneHHb!X B 6aHaXOBOM IIpOCTpaHCTBe. f1pnBO)J,51TC51 He06XO)J,I1:Mble yCJIOBH51 OIITHMaJihHOCTU 
yrrpasrreHHit B BH.n;e rrpliH!.\HIIa MaKCliMyMa. )J;aHhr rrpnMep&r rrpnMeHemrit rrony'ieHH&rx pe3yn&­
Taros ).lJI51 )J,H<l_l<l_lepeHD;HaJihHbiX ypaBHeHHH C 'iaCTHbiMH npOH3BO)J,HblMH M <l_lyHKD;HOHaJThHb!X 
.,!l,n<l_l<l_lepeHI\llaJI&HhiX ypasHeHnii. 




