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This paper considers the problem of open-loop differential games of pursuit in Banach spaces.
The necessary conditions for optimal controls are obtained in the form of maximum principle.
There are given some applications of this results to partial differential equations and functional
differential equations.

Introduction

The object of this paper is to consider open-loop game of pursuit in a Banach
space.

The game is described by differential equations in a Banach space. The aim
of one player (called further pursuer) is to minimize a capture time of second player
(called further evader). The aim of the evader is to maximize this time. Such a game
was considered by Kalendzeridze [5]. He has obtained necessary condition for
optimal controls in the form of maximum principle in finite dimensional space.
For differential games with time lag, the maximum principle was proved by Oguzto-
relli in [9]. Similar result obtained Kirilova [6] using methods of functional analysis.
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1. Preliminaries

This paragraph has an introductory character. We give here some definitions,
notations and lemmas applicable in further part of the paper.

Let Z be a reflexive, separable Banach space.
Let C; be a class of all convex, closed, bounded sets of the space Z.
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DeriNITION 1. Under sum of sets 4, BeZ we understand the set of the form
A+B={x+y; xe Any€EB}, (1.1)
and by multiplication of a set 4 by a real number «, we understand the set
ad={ox; xe€ A}. (1.2)

From the Definition 1 follows that the sum of two sets from the class C, belongs
to that class, since the sum of two convex, weakly compact sets is convex, weakly
compact. For the same reason to that class belongs also product of a set from that
class by a real number.

Let X be an arbitrary Banach space.

DerINITION 2. Function p defined for all sets 4, B< X, by formula

p (4, B)=sup p(a, B)=sup inf [la—>b|| (1.3)

acA a€4d bEB

will be called Hausdorff semimetric.

DeriniTiON 3. Function d (-, ) of the form
d (4, B)y=max {p (4, B), p (B, A)} (1.4)

we shall call Hausdorff metric.
The Hausdorff semimetric has following properties:

ProPERTIES 1 [4]:
@) p(ad, aB)=ap (4, B);
(0) |p (41, B)—p (43, By)| <d (4, 45)+d (By, By);
© p(A1+A4,,Bi+B,)<p (A, B))+p(4,, B,).

It is possible to show that the class C, is a complete metric space with Hausdorff
distance d (-, <) [4]. Let
K={x; [Ix|l<1},

Z={x; |lx|l=1}.
K is the closed unit ball of X and X' is the unit sphere of X.
DEermITION 4. The ball K of Banach space X will be called uniformly strictly convex,

if for each ¢, 2>¢>0 there exists d (¢) >0 such that for any x,, x, € K, ||x; —x,||=¢
implies % |lx; +x,(|<1—0 (e).

DeriNTION 5. Banach space X will be called uniformly strictly convex if its unit
ball is uniformly strictly convex.
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Taeorem 1 (see [3]). If a Banach space X is uniformly strictly convex, then:
(a) X is reflexive;
(®)  xi x, € X, x,—x, weakly and [x,[|=[x,|| then [x,—x,[—0;

(© if x'eX|x'||=1 and A4 (0)={x;<{x’,x)=1-0}nK then d—0 implies
diam 4 (0)—0.

Lemma 1. Let Z be uniformly strictly convex Banach space. Let @, be a conti-
nuous multifunction with values @, e C,. If x(¢) e @, and p (0, D,)=|x (¢)| then
x(z) is continuous.

Proof. We consider two cases
1 pO @)>0, te[0,T] and T<oo.
(2) P (05 ¢1)>05 te [05 T]’ P (07 ¢T):O ¢

Case 1. Without loss of generality we can assume p (0, @,)=1, since in another
case from property (1, a) and continuity of p (0, @,) on a compact set it follows
that

min p (0, )=p (0, ¥, )>0 (1.5)
o<t<sT

and putting
¥Y,= ¢t/p (0’ )

from property (1, 1) we have

p 0, ¥)=p (0, D/p (0, D)=1.
Let x(t) satisfy the assumptions of our Lemma. By the above considerations
we have
llx ()II=1. 1.6)
Let t,—1t,, then [x (¢,)|=1.

For any &>0 there exists N (g) such that for each n>N (¢) by continuity of @,
we have

x (t,) € &, (P, +eK). (L7
18t
B(e)==(®, +eK)NK. (1.8)

B (¢) is a convex set containing x (,) and x (z,) for n >N (¢). Let a linear continuous
functional x, separate the sets @, and K. Functional x, is also a supporting functional
of B(e) at x,, that means

sup <{x., x)=1, (1.9)
x€B(e)
iof Lx, 0= Inf <x, H=1-s. (1.10)

X €EB(g) xe¢,0+eK
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It implies that

Be)c{x; (x, xd>1—g,xe K} A (). (1.11)
Hence by Theorem 1 diam 4 (¢)—0 when &¢—0, so

Ix (z,) — x (t,)|| <diam A4 (¢)—>0 when ¢—0.

Therefore x (¢) is continuous.

Case 2. In the second case it follows from the proof of the case 1 that x(z)
is continuous on [0, 7). But [|x (¢)||—0 and |[x (7)||=0, that finishes the proof. Q.E.D.

DerINITION 6. We say the ball K of a Banach space X is smooth if at each point x
of the sphere X there exists exactly one supporting hyperplane.

LeMMA 2. Let X be a uniformly strictly convex Banach space with a smooth ball,
X, X,€ZX; X, — a supporting functional of K at x, and Hx,',||=1. If ||x,—x,||—0
then there exist subsequence {x, } of {x,} and &' such that x, —%' in norm and
(X', x,p=1, it means X’ is supporting functional of K at x,.

Proof. Sequence {x,} is conditionally weakly compact, since X is reflexive
(by Theorem 1). Thus there exists subsequence {x, } of {x,} weakly convergent to
some X'. We have to show that X' is supporting functional of K at x,.

[(f,’ xa> =) ‘ = |<x~,5 xo> _<xrl1k5 xnk>I < l<7z,a -xn> —<x1;k’ xo>| +
F KX Xop =y X Y| SE[2+8[2=¢. (1.12)

First estimation follows from weak convergence x, —%' and the second follows
from norm convergence of x, to x,. Q.E.D.

In the following by measurability and integrability we shall mean Lebesque mea-
surability and integrability although majority of theorems is true for arbitrary
measure.

Let U (-) denote measurable multifunction

U (+):[0, 0)—C,. (1.13)

The existence of measurable selectors follows from Theorem 1 of [10].

DermNITION 7. We shall say that U (-) is locally integrable with p-power 1< p<oo if

[ a» (U @), 0)di<co, (1.14)

where 4<[0, o) arbitrary compact set
0={0} - set consisting of 0 € X,

d (-, +) Hausdorff metric.
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DeriNITION 8. By the integral of U (+) over A4 we shall mean the set

IR4G) dt={zeZ; 2= [z(@) dtyz(1)e U (1) a.e‘}. (1.15)

The integral f z () dt is understood in the sense of Bochner. By L,[(0, T), Z]
A

we denote the space of all functions integrable with p-power in the sense of Bochner.

LemMA 3. If multifunction U (-) is integrable with p-power on [0, 7] then the set
of all selectors U, of U (-) is weakly compact in L,[(0, T), Z] 1<p<oco.

Proof. For 1<p<co it follows from the following facts:

(a) U, is bounded and convex;
(b) U(t) is closed for te[0, T] a.e.

Thus Uj is strongly closed, convex what implies boundedness in the norm of L,
and weak closedness. Reflexivity of L,, 1 <p<oco implies weak compactness. De-
finition 7 of U (-) for p=1 implies that for all measurable selectors ¢ of U (:) we
have

lp DI<f(r) ae. and  f(-)elL,

that is enough for weak compactness in L! [(0, T), Z] by paper of Castaing [2].
Q.E.D.

LemmA 4. Let F,:L,[(0, T), Z]—»X be a linear continuous operator for each fixed
te [0, T]. Let a multifunction U (-) be integrable with p-power on [0, 7] and satisfy

sup ||F, (w)—F,.s(w)||-»0  when -0 (1.16)
UeEUg
then
(a) A F:(Uy) is convex weakly compact set,
tel0,T]

(b) multifunction F,(Uy) of ¢ is continuous in Hausdorff topology.

Proof. From Lemma 3 it follows that U, is weakly compact in L, [(0, T), Z] so
by continuity of F, we obtain convexity and weak compactness of F,(U,), what
implies point (a). Point (b) follows from the estimation

P (on(Us), Ft0+5(Us))=Sup inf ||Ft0(”)_Frn('v)‘i’Ft,,('U)_Fr,,+6(7))”<

ueUs veEUy

<sup ||F, () = F, 60|20  when -0

veUg

because of (1.16)
Similarly we can show

P (Ft,,+5(Us)a Fro([]s))_)o when -0

hence we get continuity of F,(Uy). Q.E.D.
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Lemma 5. Let X be a linear locally convex space. Let 4,<X for i=1,...,n and
X" dual of X. Then the following equality holds

n

sup  (x', x>= 2 sup {x', a;>. (1.17)

XMy £ £y o7 aied;

Proof. Let D= X A; means Cartesian product, Dc X X. We define ¢p:D—X

p=:1 n b i=1 .
in the manner ¢ (xy, ..., x,)=>x; sup <x’, x)=sup<x’, ¢ ()> what finishes
the proof. kel X A D Q.E.D.

Let us consider nonlinear integral equation of the form

t
)= [ S0/ (wy@,u@)d. (1.18)
Let us assume that ’
St 1) X-X (1.19)
linear bounded operator from Banach space X into X, for each ¢,
S(t1)x (1.20)

continuous function of ¢ with fixed = and continuous function of t with fixed 7,
both in the norm topology

fGse )0, T)xXxZ>X (1.21)

continuous function of all arguments in the norm topology.

Moreover we assume that f(-) has strong derivatives with respect to 2-nd and
3-rd arguments which are continuous in operator norm.

Let

E@ ()=p (). (1.22)

LEMMA 6 [13]. Under assumption (1.19), (1.20), (1.21) about S(-) and f(-), function
&(u) given by (1.22) has strong derivatives with respect to u at u, and

3y ()L &) () (1)= [ S (1,0 [f; &'@) () () +1,(4w) D] dr. (1.23)

Remark 1. Since Jy (¢) depends linearly on Au. We shall note this by
E, (4u) =538y ()= (' ()~ 4u) (1). (1.24)

2. Maximum principle for differential open-loop games

2.1. Problem Formulation

Let x and y be two points moving in a Banach space X. A trajectories of this
system of points can be given as solutions of some differential, integral or
aifference equations. In this paragraph we shall deal with trajectories described
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by differential equation. Equation describing position of a point x(y) depends on
some control u € Uy (v € V). The player using a control u (v) we call pursuer (evader)
and note them player U (V) respectively. Moreover let some convex closed set
Q< X be given. The aim of player U is such a choice of control u that at some mo-
ment #; should be

x(1)—y () e

and the moment #; should be minimal. The aim of player V is to maximize this time
t;. In general case we have two differential equations in Banach space X describing
trajectories of the pursuer and evader of the form

x@O=filx t,uw), x(t)=x, 2.1)
yO=£0,82),  y(t)=y. 2.2)

We assume that the player V' chooses his control v at the beginning of the play
and cannot change it in the course of the game. Next chooses his control player
knowing already the control .

DEerFINITION 9. By the time 7 (1, v) we denote the smallest time z for which we have
inclusion x (z)—y (¢) € 2 when players U and V apply controls u and v respectively.

DeriniTION 10. We shall call 7, the optimal capture time if for each control v
there exists control u such that 7 (u, v)< T, and for any >0 there exists v, such that
for arbitrary u we have inequality

T(u,v)=T,—¢. » 2.3)

If for the pair of controls [u, ], x (1) —y (¢) ¢ 2 for all ¢ then we put 7 (i, v) = oo.
In the following we shall assume that 7,<oo

DermNiTION 11. We shall call the pair of controls u,, v, optimal if

sup inf 7' (u, v)= inf T (u, v,) =T (u1,, 0,) =T, . (2.4)

vEVs ueUy ueUs

2.2. Maximum principle for linear games

In this paragraph we consider differential game, described by the pair of equa-
tions of the form

x()=F,(u)+x,(1), 2.5)

y(@)=E;(v)+y: (1), (2.6)
where

(a) Z, QO denote reflexive separable Banach spaces;
(b) X denotes an arbitrary Banach space;

© xi Dy (1), x @),y @) e X;
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(d) x4 (), y1 (+) — given continuous functions;
(e) U(-), V' (-) — measurable, integrable with p-power, 1<p<oco, multifunctions
with values in—C,, C, respectively;
() U, (V,) —the set of all measurable selectors of U (-) V(-) and u=u(-)e U,
v=v (.)€ V,
About operators F,, E, we assume:
(z1) For fixed 1, F,(E,) is linear continuous operator from L, [(0, 1), Z] (L, [0, 1) O1)
into the Banach space x
F.:L,[(0 1), Z]»X,

E:L,J0 1), Q1> X.

(z,) Assume that T<oo. Let for t<T F, (E,) satisfy assumptions of Lemma 4.

2.2.1. We consider here the case when Banach space X is uniformly strictly
convex and unit ball of this space smooth. Such properties have for example:
L, (R") — spaces with Lebesgue measure 1 <p<oo,
L — spaces and Hilbert spaces (see [7]).
We assume moreover that
Q=K, 2.7

where K —a unit ball of X.
For simplicity we introduce following notation

z(O)=y O)—x () (2.8)

where x (¢) and y (¢) are given by (2.5) (2.6),
z; )=y (O)—x, (1), 2.9)
D, (u)=F,(u)+z.(1). .(2.10)

The aim of the player U is to reach K in shortest time and the aim of V is to be
out of K for the longest time. By optimality of v, we have

[@,(U)—E,(v)]nK for t<T,. @2.11)

We shall need following lemma

LemmA 7. If 9, is optimal control of evader then

AV A Kn(@,(U)—(E (v,)+¢K))=9. (2.12y

1,<To >0 t<t,
Proof. Let #; <T,. We shall show, that there exist ¢>0 such that
p (0, &, (U)—E, (v,))>14+¢ for 0<1<ty, (2.13)

where p Hausdorff semidistance.

It follows from Lemma 4 that &, (U,) is a continuous multifunction. E, (v,)
_is continuous by definition. Moreover both functions are continuous on compact
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set [0, #;]. Function p (continuous with respect to Hausdorff metric d(-)) attains
its minimum. So there exist a constant ¢ and ¢, € [0, #;] such that

a= min p (0, B,(V)~E @))=p (0, @, (U)-E, @)>1. (214
o<t<t, .
Hence putting
a—1
e= we get (2.13)
what means
(1+&) KN (@, (Uy)—E, (2,))=9. (2.15)
Finally
Kn(®,(U)—E,(v,)+eK)=9 (2.16)
what finishes the proof. Q.E.D.

Let 4V, denote the following set
AV, ={dv (-): 4v (D=2 (1) —2,() A0 (1) € V (v) O<t<ty} @.17)

where v, as before optimal control. AV, is the set of admissible variations of optimal
control v, with support contained in [0, #;]. Of course the set 4V, is convex by
definition and convexity of ¥ (7).

Lemma 8. If ¢, <T, and 4V, given by (2.17) then
AV A KO(P(U)—E, (v,+ pav)) =0 (2.18)

AvedVy >0 B<B,
for 1€ [0, t,].

" Proof )
E (v, + 4v)=E,(v,) +E, (4v), . (2.19)
sup ||E,(4v)|=b>0. (2.20)
o<r<t, )

e
The case b=0 follows from Lemma 7. Putting §,=—— where ¢ is the same as in

b
Lemma 7 we get the proof immediately from Lemma 7. Q.E.D.

LemMA 9. Let X be a uniformly strictly convex Banach space and K smooth unit
ball of X. Moreover x (-) continuous function with value in X and |jx (¢)||>0 for
te |0, t;], x'(t) e X’ such that <x'(¢), x 1)>=|x @®)| [|x'(?)]|=1 then x’(-) is conti-
nuous. ;

Proof follows immediately from Lemma 2. Q.E.D.
Under those assumptions the following theorem is true.

TueoreM 2. If there exists optimal capture time 7T, at the game described by equa-
tions (2.5) and (2.6) and corresponding pair of optimal controls u,, v,, then there
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exists linear continuous functional x,e X’ such that the optimal control u, fulfils
the equation.

max x,, Fr(u) ={x,, Fr (U, 221)

u€eUg

and each x; fulfiling (2.21) satisfies the equation
max {x,, Er,(0)) ={x,, Er (0,)) (2.22)

VEVs

Proof. Let z(¢) be given by (2.8) so it has the form
z (1)=E,(v)— D, (u). (2.23)
For v=v, multifunction
v, LB @) D.(U) - (2.24)
has not common points with K for 1<T, so
¥,NK=@ for t<T,. (2.25)

From the form (2.10) of function @,(u) and definition of E;(v) it follows that
Y, is a continuous multifunction with respect to Hausdorff metric. From properties
of semimetric p it follows that the function

p (0, ¥,)= min [|x] ' (2.26)
XEYy
is continuous with respect to t.

Reflexivity of X implies the existence of x (¢) such that
p 0, ¥)=[x@)l. 2.27)
Lemma 1 implies continuity of x (z). Let x'(z) € X’ be such that
K@), x@p=lx@®I and |x'@lI=1. (2.28)

From the assumptions on X and Lemma 9 it follows that x'(¢) is continuous.
Equations (2.25) and (2.27) give us inequality.

20, ¥ = inf {x'(¢), x) ={x'(t), x () >max {x'(t), xp=1 for ¢<T,. (2.29)

xe¥; XEK

Optimality of time T, and control v, implies

min {x'(T,), x>=1 (2.30)
xE'I’TD
hence
min {x'(T,), xy =<{x'(T,), Ez (v,)) +min {—<{x'(T,), P (W)} (2.31)
but ’

min {—<{x'(T,), Pr,W))}=—max <{x'(T,), Dr (1))

uceUg

max <xl(To): QT,,(”)> =<x,(To)5 Zy (To)> +max <xl(To)a FTo(u)>

ueUs u€eUsg
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SO )
max <xl(T0)a FTo(u)> ) <x’(To)a FTo(uo)> (232)

ueUs

that implies the first part of our theorem. Let us pass to the second part.
We put

p (0, ¥) =1, (1) 2.33)
and
7 (8)==1, () +<{x'(8), E, (40)) (2.34)

where Adve AV, for some #,<T,.
Let us suppose that the maximum principle does not hold.
That means that there exist #;<7, and 4v, € 4V, such that

x'(T,), Ex (4v,)y=c>0. (2:35)

For fixed 4v; left hand side of (2.35) is a continuous function of 7, so there
exist >0 such that for ¢t e [T,— A, T,] y

(X (1), Ey (doy)) >§. (2.36)

Form Lemma 8 it follows that for ¢ € [0, T,— 4] there exist f,>0 which ful-
fils equality '

(=D, (U)+E, (v,)+ B, E, (dv,)) N K=0 (2.37)
hence choosing a control v, =v,+ f§, 4v; we get
(E,(v)— D, (U))NK=0 for tel0,T,—h]. (2.38)
Moreover
n (1) =1,(t)+ B, {x' (2), E; (4v1))
hence

70 () + Bo (X' (D), E, (Avl)>>1+/?o—;—>1 (2.39)

for te[T,—h, T,], what follows from (2.29) and (2.36). Inequality (2.39) and equality
(2.38) imply

(E@)-®,(U)NK=0, te[0,T,] (2.40)
but it contradicts the optimality of time Tj,. So for =7, and A /\ should be
fulfilled inequality LRSS

XU(T,), Er (4v))<0,
(2.41)
<x,(To), ETO(W _7)0)> <0 ’
hence
max {x'(To), Er (0)) =<x'(T,), Er (0o)) (2.42)

VEVy

and putting x'(T,)=x, we finish the proof. Q.E.D.
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2.2.2. In this paragraph we shall prove maximum principle under different
assumptions. Here X is an arbitrary Banach space, £ — closed convex set with
interior, U, and F, satisfy previous conditions and moreover

F(U)<F,(U) for #<t,. (2.43)

The assumptions on E, and V, are not changed.

Tueorem 3. If there exist optimal capture time 7, and corresponding pair of opti-

mal controls u,, v, then there exists linear continuous functional x, € X’ such that
max {x,, Fr (u)y =<x,, Fr (1)) . (2.44)
ueUy

Proof. Let us put as before

x () =F,W)+x, (1), (2.45)

Yy (O)=E, (@) +y: (1) (2.46)
trajectories of pursuer and evader. Without loss of generality we may assume that
X1 (t) EO.

Let

Yo(D)=E,(@,)+y1(2) (2.47)

denote trajectory of evader. Control v, and time T, give
yo(To) €d (FTO(US)+‘Q)

where 0 denotes boundary of the set. Since © has interior there exists continuous
linear functional x, with [|x)[|=1 such that

sup  <xp, XD =Cx,, 1o (To)) (2.43)
X EFTH(US) +02

Lemma 5 gives us equality

sup  (x,, x)= sup <x,, X)+sup (x,, 0) (2.49)

* eFTD(Us)+.Q * EFTO(US) weR
which implies

sup (), xp=sup (x), Fr () =(xl, Fr(u))  QED. (2.50)

xeFTo(Us) ueUs

In a similar way as in Lemmas 7 and 8 we can prove following lemmas.

LemmA 10. If 9, is optimal control of evader than

AV A (Go@®)+eK)NF(U)=09. (2:51)

t;<T, e8>0 0<1<t,

Lemma 11. Let ¢, <7, and 4V, given by (2.17) then
AV A (L(O+E, (o,+ p4v)) ¢ F,(Uy) (2.52)

AvEAVLy Bo>0 B<Bo
for 1<1t,.
Now we can pass to the proof of the maximum principle for evader.
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THEOREM 4. If there exists optimal capture time 7, and corresponding pair of
controls u,, v, then each linear bounded functional x, e X” fulfilling (2.44) satisfies
also

max <x,, Ez,(0)) =<x,, E1,(2,)) - (2.53)

vEVs
Proof. For arbitrary trajectory y (¢) of evader we have
¥ (@)=y,(t)+E, (4v). (2.54)
Let us consider unequality
x', Er (40)y<0  for Ave 4V, . (2.55)

This inequality implies maximum principle for 7<#,. Let us suppose that maxi-
mum principle is not true, so there exist 7, <7, and 4v; € AV, such that

(Xl Er (dv)y=¢>0. (2.56)

From continuity of (2.56) with respect to ¢ with fixed 4v;, follows existence of
h>0 such that for te[T,—h, T,]

C
AV 2.57)
Let us consider equation of the form

ar
Vo (1) =2, (1) +E, (4vy) .
Lemma 11 implies the existence of f,>0 such that
Y5 D)=2,(t)+ B, E; (dvy) ¢ F,(Uy) . (2.58)
for <T,—h.
Inequality (2.57) gives us

<%0 Y5 () =10 (O =X, fo Er (401)) (2.59)
for te[T,—h, T,] what means
V() EF(Uy) for te[T,—hT,] (2.60)
by assumption F, (Uy) =Fr (Uy), t<T,, so (2.58) and (2.60) show us that
v, () § F,(Uy for <7, (2.61)
that contradicts the optimality of 7, so we have
{x,, Er (4v))<0  for all £,<T, (2.62)
and
Ave A V,1
hence
max {x,, Er@)>=(x,, Er @)y, QED. (2.63)

veVy
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3. Nonlinear case

Similarly as before we can prove the maximum principle in nonlinear case in
two variants.

3.1. Here Banach space X, operator F, and the set 2 have properties as in point
2.1. The game is described by equations:

x()=F,)+x,(1), (3.1)

: .
y@O=[ St /(5y @ 0@)dr. (3.2)
(0]
The operators S (-, -) and f(-, -, -) fulfil assumptions of Lemma 6.

THEOREM 5. If there exists an optimal capture time 7, at the game described by
(3.1) and (3.2) and corresponding it pair of optimal controls u,, v, then there exists
continuous bounded functional x, € X” such that for this u, we have
max {x,, Fr (u)) =<{x,, Fr (1)) (3.3)
ueUsy
and any x,, satisfying (3.3) fulfils also equation
max {x,, Er (v)) ={x,, Er(0,)) (3.4)
vVEVy

where Ep (v) is given by (1.24),

Proof. Let us define

z(O)=x()—y @) (3.5)
where x (z) and y (¢) are given by (3.1) (3.2).
Let
x; (t)+E, (u)g @, (1) then we get (3.6)
z(A)=2,(w)—y (). 3.7

Let y, (¢) be a trajectory of evader corresponding to optimal control v,. From lemma
(6) we get

Y (0)=y,(t) +edy (£)+ 0, () (3.8)
where Jy (¢) corresponds to variation 4v of v,
z (1) =D, (W) —y, (1) —dy (1) — 0, (e). (3.9)

For ¢=0 similarly as in linear case there exist x'(f) € X’ such that x'(z) is conti-
nuous and
df o 7 ’
1, (#) = min {x'(2), D (w)) —<x'(1), y, (1)) >1 (3.10)

ueUs

for t<T,, and #,(T,)=1.
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For a trajectory y (t) we define
7,(6) = min Cx'(2), @, () —<x'(0), po () —

- — (X (1), €6y (DY —<x'(@), 0, . (B.11)

Let us notice that #,(7,)>1 implies strict separation of sets @ (Ug)—y (To)
and K. We get maximum principle if

x'(T,), oy (T,)»=0 for any #<T, and A (3.12)

AvedV;
1

where 4o corresponds Jy(f). Let us suppose that the maximum principle does not
hold. Then there exists dy,; (¢) such that

xX'(Ty), 0y, (Tp)) =—c<0. (3.13)

By continuity of x'(#) and dy; (¢) there exists 2>0 such that

(0, o (<~ te[T,~h, T,) (3.14)

so for sufficiently small ¢,>0 we get

c
Ne(D)> 148, 5 = <X'(2), 04 (6,))>1 (3.15)
for te[T,—h, T,].
This inequality means that for the function
Ve (D=0 (1)+&, 6y1 (1) + O (e,)

the value of the multifunction @,(U)—y,(f) can be strictly separated from K
for any ¢#. On the other hand

lledys (1) + O, (&) (3.16)

can be arbitrarily small for suitable eé=¢, <g¢, for ¢ € [0, T,]. Using Lemma 11 we
get

(2. (U) -y, () NK=@, te [0, T,—h]. 3.17)
Hence and from (3.15) follows
(2. (U)—y, (1)) NK=0, 1[0, T,]. (3.18)
That contradicts the optimality of T, and v, so there should be
x'(T,), oy (T,)y<0 for all #,<T, and dve 4V, . (3.19)
As follows from (1.24) oy () depends on Av linearly so we can write
oy (1)L E, (40). (3.20)
Hence we have
X'(T,), Ex (40)y=0
min {x'(1,), Er,(0)) ={x"(T,), Er,©0)) (3.21)

VEVy
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and putting x'(7,)=—x" we get second part of the theorem. To prove the first
part we use (3.10) for ¢=T7,. We get then (3.22)

min {x'(7,), @1 (w)y =min {x(T,), Fr W)y +<{x'(T,), x1 (To)> (3.22)
ueUs ueUs
or ’
max {x,, Fy (w)) = —min (x'(T,), Fr (1)) (3.23)
ucUs ueUs

so by optimality of u, we finally get

max {x,, Fr (W)y=<x,, Fr(u,)>. Q.ED. (3.24)

u€eUs

Remark 2. In nonlinear case maximum principle under assumption of pa-
ragraph 2.2. can be proved in a similar way.

Corollary 1. If operators E, (F,) satisfing (z;) and (z,) are represented by
equation

E,(v)= f S (¢, 1) v () dr, (3.25)

T
Fw= [W@u d, . (3.26)
[¢]
then we can give Theorem 2 the following form.
THEOREM 5'. If there exists optimal capture time 7, at the game described by (3.25)

and (3.26) and corresponding it pair of optimal controls u,, v, then there exists
x, € X’ such that for u, we have

max W (T,, 7) X, 4 (D) =KW (T, 7) X, 14, (2)) (3.27)
ueUs
and each x’ fulfiling (3.27) fulfils also
max (§* (T, 7) x., ¥ (2)) ={S*(Tp, 7) X,, % (7)) . Q.E.D. (3.28)

VEVs

_ 4. Applications

In this paragraph we shall give some examples of operators E, and F, fulfiling
assumptions of the theorems of previous paragraphs.

4.1. Abstract parabolic equation in Banach space

X — Banach space. Let us ‘consider an equation of the form

P ittt @1
dt X s
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where x () e X
x(0)=x,. 4.2)
Following Sobolewski we have:

THEOREM 6 [12]. Let 4 (7) be a linear unbounded operator with dense in X domain
D independent of ¢ for 7€ [0, T]. Let for arbitrary ¢z, 7, s € [0, 7]
M4 @—-4 @] A7 @l <clt—7I° (4.3)

for some ¢ € (0, 1] and moreover for arbitrary A with Re >0, the operator 4 (z)+ Al
has bounded inverse with

(4 @O+AD~Y<e [1A+1]71 (4.4

then there exists an operator-function S (z, v) defined and strongly continuous
for ©<t; 7, t € [0, T] fulfilling the following conditions: S (¢, 7) is uniformly diffe-
rentiable with respect to 7, 1>t

oS (t, 1)
— T4 () S(t,7=0, 4.5)
St=S¢tDSU71) for T=tzl>v 4.6)
S(t,)=1I. 4.7

Formula

x ()=S0 x, 4.8)
gives the unique solution of (4.1) continuous for 7€ [0, 7] and differentiable for
1>0. Q.E.D.

TaeoreM 7 [12]. Let A (¢) fulfil assumption of the theorem 6 and moreover
4=t () [4 () —A4 @]l<c |t—1]" 4.9

for some # € (0, 1]. The bar means closedness of operator in X. Then the operator-
function S (¢, 7) is uniformly continuously differentiable with respect to 7, t<?
and two-time in 7 and 7 together and

St n) —
—T——S(t, 7) A(7)=0, (4.10)
T
828 (t, %)
% o — A(t) S'(t; 1) A (1)=05 (4.11)

The following estimation is also true

lA=2(2), S (t, ©) A2 (DlI<c [t—7*~F, O<agf<lty 4.12)
4%(2) S (t, ©) A2 (@)lI<clt—7|7*7F,  O<a<l+te, (4.13)
0<p<l—+1.

We have the following estimation for S (7, 7). Q.E.D
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Lemma 12 [12]. If assumption of the Theorem 7 are satisfied then

t+A4t 13

4Q [ S@+aL9 76 ds— [ S5 1) ds|<

t+4t

<e (@) (4no=1 [ [ 1r@ie ds]”" (4.14)

T

for feL,[0,T] O<a< 2

. Q.E.D.

LemMA 13. Under the same assumption as in the Theorem 7 the following estima-
tion is true

fusa, 1)—S(t, t—4)| dr<|dIn 4|+

+|(t—t,+4) In (t—1,+A)—(t—1,) In (t—1,)|.

(4.15)
Proof. From Theorem 7 we have
S-S t—4)= fS(z, s) A (s) ds. (4.16)
T—4
From the same theorem we have the estimation
T N L c
IS (z, s) 4 (s)||<t—_—s for t>s 4.17)

hence we get

IS (t, )= S (t, T— A)|I< f IS (1, 5) A ()| ds<

T

C A
f ds=cln(1+ )
1S =T

t—4

<

for t>7. (4.18)
We have

c fln(l+74:'—r-) dr=c[tftln(t—-r+A)—-1n(t—r) d'c]=

1o

=c{—(@—t+A) In(t—7+4)

¢ Ht—2) In{t—n—1] §D}=
=c[—AdInAd+(@—t,+A) In (t—t,+4)—(t—1,) In (t—1,)].

4.19)
So we get

t
f IS (2, 7)—S (¢, t— )| dr<c|—AIn 4+
to

+@—t,+A)In(@t—t,+4)—(—1,)In(t—1,)|. Q.E.D.
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Remark 3. From the Lemma 13 it follows that the operator F, defined by
t
F,(u)= f S(t,7)u (@) de - (4.20)
to

fulfils assumptions of the Lemma 4 and therefore also assumptions of Theorem 2.
In the next paragraph we shall apply our results to a partial differential equation.
For this purpose the following definition will be useful.

DeriNiTION 12. We shall say that control u (¢) € U(z) is of bang-bang type if u (¢)e
€ Extr U () where Extr U () — the set of extremal points of U (¢)

4.2. Bang-bang principle for the differential game of pursuit described
by some partial differential equation of parabolic type

Let the game be described by partial differential equation of the form

ox (t, p) ( 0 ) .
where ¢ € (0, 7] p e D= R" with initial condition
x (0, p)=0 4.21)
and boundary condition
0
hmB(y; —)X(t,p)=u(t, y)—‘Z) (t: y) (422)
Py op
where u (¢, ), v (¢, y) are measurable function such that
lu(t, NISM (), (4.23)
[v (& MISN (1, 3), (4.24)

M (¢, y) N (¢, y) — are measurable, bounded, positive functions. Linear operators A4
and B have the form

8 8 o

Alogr)= X 5l ) +a ), “29)
8 - 8

B(ng)= Y w00 b0, (426

d
P, op
boundary SeC3, v(»)=[v.(y), ..., v.(¥)] is the unit vector of the inward normal

0
and the operator [A( ),B ( Y Zp—)] is selfadjoint. Domain D has Liapunov

0
) is of eliptic type in D.

to the surface S. The operator 4 (p, E
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Let ¢, (p) and A, denote eigenfunctions and eigenvalues of the operator (4, B).
The system {¢,} is complete in the space L?(D) (see [8]). The time optimal control
problem for this equation was considered by Lawruk, Rolewicz [8]. We assume
that the remaining conditions from [8] are fulfilled. Let Q =L?(D) has the form

Q=0,+:¢K, 4.27)

where ¢>0 and K unit ball of L*(D). Q, — arbitrary closed convex bounded set.
As before the aim of the player U is to bring the trajectory of equation (2.21) in
a shortest time 7, to 2 and the aim of V is to maximize this 7.

Let x (¢, p) be the solution of (4.21), (4.21") then according to (10) in [8] we get

[x@p) ou(p) dp=] [ {2 [uz, )0 ()] 0D} drdy.  (4.28)

D

We shall assume that 0 ¢ Q.

L J

THeoreM 8. If there exists an optimal capture time 7, and corresponding pair of
optimal controls u,, v, then these controls have to be bang-bang.

Proof. Let us consider the Banach space Z, of measurable functions u (¢, )
with the norm

llu]l, =ess sup su M (4.29
" ostls)rl yp M(ty) " .
Define U, by
U={u(t,y); lu(t, )I<M (1)} (4.30)

Hence the set U is the unit ball in this space. Similarly as in [8] we can show
that the operator

m,(u)={ f e f u(z,7) 90) dy ds) (4.31)

is a weakly * continuous operator from Z, into 2. Hence the image of the unit
ball of Z, is weakly compact in /?. Since the system {gg} is complete in L*(D),
L?(D) is isomorphic to /2. The image of € under this isomorphism 7/ is a closed
convex set, containing a nonempty interior. The operator </, (1) as a function
of #; is continuous. Introducing the space O, of measurable functions v (¢, y) with
the norm

lo (7, )|
lloll;, =ess sup sup——)~ (4.32)

0<t<ty ¥ N(z )
we get a Banach space with properties similar to Z, . The game will be over at time
T, when

A 1,0,) € A1 (U)+1(Q2). (4.33)
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So we see that there exists an x’ € > — the supporting functional to </, (U,)+
+1(Q) at o/ (v,). Hence for optimal contols %,, v, we have according to theorem
(2) the maximum principle

]\ ?lup <x:;a tSziTo(u)> :<x;) &iT‘,(uo)> (434)
ullr, < i
‘ 3111) (p A 1 (O =<5 A1, (@) - (4.35)
v 1'0$ 1§

Since x,={ax} € /> we can represent it on &/ (u) in the following way

To
G A @y= [ [ Ty u(sy)dsde, (4.36)
0 S
where
r@y= D & g,0). (4.37)
k=1

Similarly as in [8] we can show that the supremums in (4.34) and (4.35) are
attained for functions u,, v, uniquely defined by the equations

]uo(‘L-, y)i:M(Ta J’), (438)
9, (z, MI=N (2, ). (4.39)
Formulas (4.38) and (4.39) show that the optimal controls have to be bang-bang..

5. Games described by functional equation of neutral type

5.1. Differential equation of neutral type

We shall deal with linear differential equation of neutral type of the form

d T
D)1= [dn@9)x©+/O),
° (5.1):

x, =K, kKeC[-hO0], telt,t].

All results and notation of this paragraph belong to Banks, Kent [1]. Following
paper [1] we introduce notation; C [—#, 0] space of continuous functions with.
values in R" on an interval [—#A, 0] with norm sup.

x,a(r)gx (t,+7)eR", te[—h0].
Function D (x (), ¢) has the form
ar -
D(x(:), t)=x()— fdsu(t, $) x(5). 5.2
to—h

Functions y (+) and # () are n X n matrices. By a solution of differential equation.
(5.1) with initial value x we shall mean an x € C [¢,—#h, #;] such that t—D (x (+), £)-
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is absolutely continuous on [7,, #;] with (5.1) being satisfied a.c. Now we shall give
an assumption under which there exists a solution of (5.1).

Assumption 1. p (o, ©)=0 for t>0; u (o, 7)=pu (o, t,—h) for t<t,—h. p is Borel
measurable, continuous from the right in its first argument and continuous from the
left in its second argument; 7—pu (o, 7) is of bounded variation on every finite

T
interval, uniformly in ¢ and the mapping —1 (y,t) £ f dg u(t,5) y (s) is conti-
to—h
nuous on [z, ¢;] for each fixed y € C [¢,—hA, t;] which obviously implies that (y, t)—
I (y,t) is continuous.

Assumption 2. There is a continuous nondecreasing function ¢ with J (0)=0
such that for each e R' and ¢>0 we have

Var ([t—e, t]; p (2, +))< (¢).

Assumption 3. 5 (o,7)=0 for =0, 5 (o,1v)=1(,t,—h) for z<t,—h,
y# is measurable, continuous from the left in its second argument on
(=00, 0): 77 (0, 7) is of bounded variation on every finite 7 interval and there is
an m e L1°° such that

Var ([t,—h, o]; 1 (o, 2))<m (o).

TueoreM 9 [1]. Under assumption 1, 2, 3 for each fixed ¢ € [¢,, #;] the system

Y (s, )=E,+ [ d, Y (1) p(0s)— [ V(e 0)n(s)ds

(5.3)
selt,t], Y, )=E, Y(s,t)=0, s>t

has a unique solution on [, #;]. This solution Y (s, ¢) is left continuous in its first
argument and

IY(S: t)I<B9 Var ([tu’ tl]; Y(': t))SB for (S, t) € [to’ tl]X[to’ tl]'

The following theorem allows us to represent the solution of (5.1).

TuEOREM 10 [1]. Let x(-) be the solution of (5.1) under assumptions 1,2, 3.
Then for ¢ € [t,, ;]

SO=Y D061+ | dr@H@®+ [YEOIBdB (54

to—h

where Y is given by (5.3) and

y A=~ [ A¥ @) u( P+ [ Y@ D pde. QED.  (55)
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Assumption 4. p has the following property; there exist />0, L>0 such that

T
fdr {u(t, D)—u(s, D}<L |t—s] (5.6)
t—1
for s<t.
Let U(+) — measurable multifunction and for fixed ¢, U(t)e Cp q; U, —the
set of selectors of U ().

LemMA 14 [1]. Under assumptions 1, 2, 3, 4, & being compact in C [—#A, 0] implies
&lg{x(ic, w(+); (k,u)e Dx U} 5.7
is an equicontinuous subset of C [t,—h, ;]. Q.E.D.
Let us define an attainable set in C [—4, 0] by
Ay={ze C[—h,0]; z=x,(x, u); (c,u) e Dx Uy}. (5.8)

Let us fix x € @, then we have by representation theorem

X, =Y (o o+ D (6 )+ | dy 7 (47, B (B)+

+ [ Y@ t+0uB)dp, tel-h0l. (59

We can write this in another way, namely

x,=x}+F, (), (5.10)
where tot+t

Fw= [ Y t+du(fdf, te[—h0]. (5.11)

1o

F,(u)e C[—h,0] for fixed ¢, and is continuous function of ¢, so
F@)SF(-) @) e Clt, 1], CI—h,0]]. (5.12)

It is easy to see that F is a continuous operator

THEOREM 11 [1]. Under assumption 1,2, 3, 4, @ being compact in C [—4A, 0] im-
plies o7, given by (5.8) is campact in C [—4,.0], ¢ € [7,, t,]. Furthermore the mapping
t—<f, is continuous in Hausdorff metric. Q.E.D.

5.2. Linear differential game of pursuit

We consider here the game described by the pair of equations

d t

—;l?Dl(x (=), t)=t_fhds;71(t, ) x (s)+u (), (5.13)
d : :

D0 0)= [dn(69)yE)+o() (5.14)

to—h
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with initial values
X, =Ko, Vi, =K1, Ko k1€C[—h,0]. (5.15)

Let U (-) — multifunction integrable with p-power, 1<p<oo, ¥V (+) — multi-
function as above, U,(V,) — the set of measurable selectors of U (-) (V(-)),
u(-)e U, v(+)e Vy— controls of players.

The operators Dy, D, are given by (5.2). We assume that all the assumptions
of previous paragraph are fulfiled. Let I: C [—h, 0]>L?*[—h, 0] be an embedding
of C[—h, 0] into L?[—h, 0]. I is continuous linear operator, so it mapps compact
sets of C [—#A, 0] into compact sets of L?[—4, 0]. The game will be considered in
L*[—h, 0]. The problem of pursuit is stated as at the beginning of paragraph 2.
For this problem the following theorem is true.

THeOREM 12. If there exists an optimal capture time 7, and corresponding it pair
of optimal controls u,, v, then there exists a linear continuous functional
x, € L*[—h, 0] such that the maximum principle holds:

max (x,, Yy (B, T,) u (B)> =<, Y (B, To) o (B)> » (5.16)
max {x,, Y5 (B, T,) v (B)) =<, Y (B, To) vo (B)) - (5.17)

Remark 2. The maximum principle proved in Theorem 2 is true as well for
finite as for infinite dimensional spaces. Assumptions in Theorem 2 and further
demand from © to contain a non-empty interior. This follows from application
of the theorem on separation of two convex sets (where it is enough if one of them
contains an interior). In the case when, the attainable set of F, (U,) has interior,
the assumption about interior of Q can be omitted. For details connected with this
remark regarding to maximum principle for optimal control in Banach spaces see
[11] and [14].
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Zasada maksimum dla réiniczkewych gier poscigu
w petli otwartej

Rozwazono zagadnienie rozniczkowych gier poscigu w petli otwartej zdefiniowanych dla prze-
strzeni Banacha. Wyznaczono warunki konieczne optymalnosci sterowan w postaci zasady maksi-
mum. Podano przyklady zastosowan otrzymanych wynikow dla réwnan rézniczkowych czastko-
‘wych i rownan rozniczkowych funkcyjnych.

TIpumimn Maxcumyma Jois AudepeHnHaIBHBIX UIP
npecae0BaHud B Pa30MKHYTOM KOHTYype

PaccmaTpusaercst Bonpoc mubdepennanbHEX UIp IPeciefOBaHis B PA3OMKHYTOM KOHTYDE,
‘OTIPEeNIEJICHHBIX B 0aHAXOBOM MPOCTPaHcTBE. [IPHBOASTCS HEOOXOAUMBIC YCIIOBUSA ONTHMAIBHOCTH
yOpaBlieHHH B BUIC NPUHINIA MakCuMmyMa. JlaHbI TpUMEphI TPUMEHEHUN ITOIYYEHHBIX PE3Yiib-
TaTOB AN Aud(hepeHuaIbHbIX YPaBHEHH C YaCTHBIMH MPOM3BONHBIMA M (GYHKUHOHATBHBIX
uhdepeHIuaTbHbIX YPaBHEHMIA.
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