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A norm scalarisation was studied for finite dimensional Euclidean space by Savlukadze [1, 2]. His 
results were extended partially for Hilbert space by Wierzbicki [3]. In the present note a norm 
scalarisation for Banach spaces is investigated. 

Let E be a linear space. Let D be a convex cone in E. Let Q be a set in E. A point 
p E Q is called D-optimal if 

(p - D)nQ={p}. (1) 

Savlukadze [1, 2] has proved that if E = R 11 and D={x=(x1 , ... , X 11), X;~O, i= 
= 1, 2, ... , n} then we can find a D-optimal point in a following way. 

Let 

Y; = inf {x;: (x1, ... , X 11 ) E Q}. 

The point y=(JI, ... , y,J is called "utopia point", since in general y is not ne
cessary belonging to Q. 

Now let x E Q be such a point that 

p (y, x)= inf p (y, z) 
zEQ 

where p is the Euclidean metric in R". Such x exist, provided Q is closed, because 
QcR11

• Savlukadze [1, 2] has proved that xis aD-optimal point. 
For infinite dimensional Hilbert space H a result of similar character was given 

by Wierzbicki [3]. Namely, Wierzbicki take an arbitrary point p E Q. Let rv = 
= Q n (p- D) . Let x be such a point that 

p (x,p)= sup p (x, z), 
zET p 

where p is a Hilbert distance in H. Wierzbicki proved that x is D-optimal, provided 

DcD*. (2) 
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In the present note we shall extend the results of Savlukadze and Wierzbicki 
for infinite dimensional Banach spaces. 

Let E be a Banach space. We assume that the coneD satisfies a following con
dition 

Dn(x-D)c.Kjfxii (O)u{x} for all xEE (3) 

where 

Kr(q)={z: llz-qll<r). 

THEOREM 1. Let E be a Banach space. Let D be closed and satisfies (3). Let Q be 
an arbitrary closed set in E. Let p be a point, such that 

Qcp+D. 

Let x 0 E Q be a point, such that 

llxo-PII =inf {llz-pll: z E Q}. 
Then x 0 is D-optimal. 

Proof. By condition (4) x 0 Ep+D. Thus by (3). 

(p+D) n (x0 -D)cKj1xo-vll (p)+ {xo}. 

By definition of x~,KjJxo- ~l(p)nQ=0, Therefore 

x0 - D n Q = x0 - D n p + D n Q = 0. 

(4) 

(5) 

Q.E.D. 

THEOREM 2. Let E be a Banach space. Let D be a closed cone satisfying (3). Let q 
be an arbitrary point of Q. Let Fq=(q-D)nQ. Let x0 EQ be a point satisfying 

llxo -qll =sup {l lz-qil: z E Tq}. 

Then x 0 is D-optimal. 

Proof. By the symmetry of balls in Banach spaces from (3) we get 

Q.E.D. (3') 
Hence 

(6) 

. Since .KiJxo -llJI(q) is a convex open set, the x belongs to boundary of this set, 
D is closed, (6) implies that 

(7) 
Thus 

(x0 -D)nFq={x0 }. (8) 

Since x0 -Dcq-D by (8) we get 

(x0 -D) nQ=(x0 -D) n (q-D)nQ=(x0 -D) n Fq={x0 }. Q.E.D. (9) 

Therefore x 0 is D-optimal. 
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Now we shall show relation between condition (3) and condition (2) given by 
Wierzbicki. 

THEOREM 3. Let E be a Hilbert space. Then (2) and (3) are equivalent. 

Proof. (2)--+(3). By definition of D*, if xED and x*ED*, (x*,x));O. Thus 
for yE -D*, (y, x)=(O. It implies, that the angle between y and x is not smaller 
then n/2. 

Thus everything can be reducted to a two dimensional consideration. Let q E 

E lin (x, y). Since between x E D and yE -D* the angle is not smaller than n/2, 
thus the lines {tx} {q-sy}, t, s being reals, must intersect inside the ball Killlii(O). 
It implies 

D n (q-D*) cKil<q>II(O) u {q}. (10) 

Thus by (2) we trivially get (3). 
(3)--+(2). Suppose that (2) does not hold. Then here are x, yE D such that (x, y) <0. 

Let 

It is easy to verify that 

On the other hand 

and for sufficiently small rx 

!!x!! 2 < llqall 2
• 

It implies that Dn(qa-D) is not contained in Ki1q11 (0)u{qa}· Hence (3) does 
not hold. 

In many cases there is no such a point p that (4) holds. It can follows from fact 
that, either Q is not bounded, or D does not have interior. 

For these reason a following obvious extensions of Theorem 1 are important. 

THEOREM 1 '. Let E be a Banach space, D be a closed cone. Q be a closed set. Let p 
be an arbitrary point belonging to E. Let x 0 E Q be a point satisfying (5). 

If x 0 Ep+D and 

then . x 0 is D-optimal. 

THEOREM 1 ". Let E be a Banach space, D and D 1 be closed cones, D c D 1 • Let Q 

be a closed set contained in p+D1 • Let x 0 E Q be a point satisfying (5). 
If 

then x 0 is D-optimal. 
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Since condition (4) plays an important role, we are interested how is the set 
of those p that (4) holds. 

THEOREM 4. Let E be a linear space. Let D be a convex cone. Let Q be an arbi
trary set. Then the set 

p={p EE:Qcp+D} (11) 
is a convex set. 

Proof. Let p, q E P. Let z be an arbitrary element of Q. By the definition of P 
we can represent z in the fom:; 

z=p+x=q+y 

where x, yE D. Then for rt., jJ?;:-0, rt.+ fJ= 1 

(rt.+ fJ) z=rt.p+ fJq+r~..x+ fJy. 

(13) implies that z E rxp+ fJq+D, since rxx+ fJy E D. Therefore 

Qcrxp+ fJq+D. 
Hence P is convex. 

(12) 

(13) 

Q.E.D. (14) 

THEOREM 5. Let E be a Banach space. Let D be a closed convex cone in E. Let Q 
be a closed set. Let P be a following set (11) 

P={p EE:·Qcp+D}. 

Then the set P is closed. 

Proof. Let {Pn} be a sequence of elements of P convergent to p E E. Let z be 
an arbitrary element of Q. By the definition of P, z can be represented by a 
following form: 

where X 11 ED. 
Since {Pn} is a convergent sequence, {xn} is convergent too. Let x=lim X 11 • Since 

D is closed, x E D. By (15) z=p+x. If implies that 

Qcp+D . Q.E.D. 

By definition of P, p E P, and P is closed. 
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0 skalaryzacji normowej w nieskonczenie wymiarowych 
przestrzeniach Banacha 
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W pracach [1, 2] Savlukadze poda! metodC< skalaryzacji normowej dla przestrzeni euklidesowej 

skonczenie wymiarowej. Rezultaty jego by!y czC<sciowo uog6lnione przez Wierzbickiego [3] dla 

nieskonczenie wymiarowej przestrzeni Hilberta. W niniejszej nocie rozszerzone zostaly wyniki 
Wierzbickiego o skalaryzacji normowej na przypadek nieskonczenie wymiarowej przestrzeni 

Banacha. 

CKaJUipH3al(uH uopMbi B 6ecKone'IHOM 6auaxosoM npocTpaucTse 

CKa.Jil!pH3aJ.J.HH HOpMb! AJIH KOHe'lHOMepHOIO eBKJIHAOBOIO IIpOCTpaHCTBa H3y'laJiaCh B pa60-· 

rax CamoKOBaA3e [1], [2]. 3TH pe3yJihTaThi 6hiJIH qacTH'lHO paciTIHpeHhi BeJK6HI.\KHM AJIH rnrrh-

6eproaoro IlpOCTpaHCTBa [3). B AaHHOH pa6oTe HCCJJeAOBaJiaCh CKaJIHpH3al\HH HOpMhl AJI!l 6aHa
XOBOro rrpOCTpaHCTBa. 
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