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'This paper presents the real sensitivity analysis of optimal control systems in various structures 
with small time delay. A computational method for a linear-quadratic case is described. An example 
:illustrates the application of the method . 

.1. Introduction 

Consider a time delay · process 

x (t)=A 1 x (t)+A 2 x (t-h)+Bu (t) (1) 

-with given initial state 

x(t)=rp(t), lE[-hn.,OJ (2) 

·where x (t) ERn denotes a state vector; u (t) ERr is a control vector; A1 , A 2 , B 
are real metrices and h E [0, hm] is a sma![l) delay parameter. The optimal control 
·problem consists of minimizing the functional. 

T 

I (x, u) = 0.5 x'(T) Fx (T) +0.5 J (x'(t) Qx (t) + u'(t) Ru (t)) dt (3) 
0 

-where prime denotes the transpose; F, Q, R are real matrices; T is a fixed final time. 
Time delay optimization problems have been studied extensively in recent years 

because of numerous applications in physical, biological and social systems etc. 
Even in simple examples of the foregoing type, the solution of such problems leads 
to a large computational effort. On the other hand, small time delays (which appear 
in almost every application) are often neglected. The sensitivity analysis of optimal 
-control systems will help to determine the performance loss in (3) due to neglecting 
.the time delay, that is, by defining a more simple model: 

x (t) =(A 1 + A2) x (t) + Bu (t), x (0) = rp (0) (4) 

oy setting h = 0. 

1) Actually, the "smallness" of the time delay can be determined on the basis of the 
-,sensitiv ity analysis - see further lines. 
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The optimal control computed from the model ( 4), can be applied to the real 
process (1) in various ways, i.e., in various optimal control structures which have, 
in general, different sensitivities. The sensitivity approach presented here also allows 
the comparison of various control structures and provides data for choosing the 
best one with respect to the performance index. 

2. Basic results in the sensitivity analysis of optimal 
control systems 

The problem, formulated above, corresponds to the general sensitivity problem 
which was investigated in [1] . We present now some basic results related to the 
time delay sensitivity. 

Generally, the optimal control problem can be defined in the following way: 

minI (x, u, a) =1 (a) (Sa) 

such that 

P (x, u, a)=O (Sb) 

where x E Bx represents the state, u E B is rhe control and a E Ba is a parameter. 
The constraining relation (5b), where Pi,Bx x Bi x Ba-4Bx, can be interpreted as a state 
equation and the functional I represents the costs of the process. Assume that for 
each a there exists an optimal solution x =X (a), u = 0 (a) for the problem (Sa, b) . 
The operators X (a), 0 (a) are called basic state and control characteristics2

). 

In practical applications the optimization problem is based on a model, e.g. 
(Sa, b), which often differs from reality. Define another model which differs from 
the original one in the value of parameters (e.g. P (x, u, Ol) =0, I (x, u, Ol) = q). 

Suppose the optimal control law is represented by the operator equation: 

(6) 

where i denotes the i-th structure of the control system. Assume Ri(X (a), a, a)= 

= 0 (a). The state xi of the process in the i-th control structure and the real per
formance functional are defined by the following relations: 

( 
i ' ( . ) ) df . I x, R' x', a, Ol, Ol = I' (a, Ol). 

(7a) 

(7b) 

We call the operators X;(a, Ol)=xi, which is a solution of (7a) und Ui(a,Ol)= 

= Ri (Xi (a, Ol), a, I)() (if they exist) structural state and control characteristics. The 
functional 

(8} 

2
) Analogously, one can define n=N(a) the basic characteristic of the adjoin! variable 

(which exists and is normal if P,. is onto; P,. denotes the Frechet derivative). 
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evaluates the performance loss due to imperfect knowledge of the process para
meter rx and is called the sensitivity measure 3) of the optimal control problem. 
Since the optimality Si(a, rx)~O and Si(arx)=O for a=rx. 

THEOREM 1. Suppose Bx, Bu are Banach spaces, Bx is reflexive; Ba = R 1
, a, rx E 

E [a0 , a1 ]. Suppose P, I are twice continuously differentiable with respect to x, u 
and X (a), 0 (a), N (a) are continuous in [a0 , ad. Suppose the structural charac
teristics Xi(a, rx), Ui(a, rx) are differentiable with respect to a in a neighborhood 
of a=rx, rx E (a0 , a1 ] (with one-side derivatives at a0 , a 1) and their derivatives are: 
Lipshitz continuous with respect to a for a= rx and continuous with respect to rx 
for a=rx. 

Then the sensitivity measure Si(a, rx) is twice differentiablt< with respect to a, rx 
for a= rx (with one-side derivatives in a0 , a1) and for each a= rx, rx E [a0 , a1 ] 

(i) 

(ii) 

S~=S~=O; (9a) 

(9b) 

Moreover, for each a, rx E [a0 , a 1 ] the sensitivity measure can be approximated by 

Si( a, rx) -;::;;Si( a, a) -;::::;0.5 ( <X~*(a), Lxx (a) x; (a))+ 

+ 2 <X~*(a), LXII (a) u;(a)) +< u~*(a), Luu (a) u;(a))) (10) 

where Lxx(a)=Lxx(X(a), U(a),N(a)),a etc.; L(x,u,rt,a)-the Lagrange func
tional, and 

. oUi (a, rx) I 
u;(a)=--

oa a=a 
(11) 

i.e. x;' u; are the derivatives of the structural characteristics with respects to a 
at rx=a. The accuracy of this approximation is in order o (Lia 2), Lla=rx-a. 

The proof of this theorem is given in the Appendix 1. The derivatives (11) are 
called structural sensitivity functions. 

This result can be stated in a form of so-called relative principle of the local 
sensitivity analysis [1]. Namely, one can use the same approximation of the sensi
tivity measure no matter which of the parameters changes. Actually, the situation 
when the parameter of the process has value rx and changes is of more practical 
importance. But the reverse assumption is more acceptable from the computational 
point of view. 

For an effective calculation of the structural functions (11) so-called basic sen
sitivity functions X. (a), O. (a) are needed. They are the derivatives of the basic 
characteristics X (a), 0 (a) and can be found from the linearization of the opti
mality conditions (canonical equations)- see [1]. 

Suppose that there exist operators C, D such that 

(12a) 

3
) This approach to the sensitivity was introduced by A. Wierzbicki in [2]. 
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Let Ri(x, a, ex)= R 1(x, a) be the optimal control law in the closed-loop struc
ture, un!quely defined and differentiable with respect to (x, a). Then Ua can be also 
expressed as 

(12b} 

which implies R! = C, R; =D. 
The main purpose of this paper is to present a method for computing the second

order approximation (10) for time delay process. Therefore, the singular perturba
tion theorems for homogeneous equation and optimal control problem are involved. 

3. The time delay optimal control problem 

Consider the original problem (1), (2), (3). Suppose rp (t) is an absolutely con
tinuous function on [ - h11, 0]. Suppose R is symmetric positive-definite and Q, F 
are symmetric positive-semidefinite matrices. Assume Bx=L2 

( -h11, 0; R") x 

x Wi (0, T; R"), Bu =L2 (0, T; Rr). The operator (5b) can be defined as follows4
} 

P (x, u, h)= (x- A1 x- A 2 x (t-h)- Bu, x (t)- rp (t), x (0) - rp (0)). (13} 

The local maximum principle [3] implies, that along the optimal trajectory 

u (t) = R- 1 B'11 (t) (14} 

while the state and ad joint variables 11 E L 2 (0, T; R") x L 2(T, T + h111 ; R") x R" satisfy 
the following canonical equations 

X=A 1 x+A 2 x (t-h)+S11, 

1j = - A~ 11-A~ 11 (t+h)+Qx, 

where S=BR- 1B', with the boundary conditions 

x(t)=rp(t), tE[ - h,,O]; 11(T)=-Fx(T), 11(t)=0, tE(T,T+h111). 

(15a} 

(15b} 

The optimal control can be also uniquely defined as a function of the state, i.e., 
in a form of closed-loop optimal control law- see [4]. Although broadly investigated, 
the synthesis of the optimal feedback controller is very complicated and difficult 
in practical applications. 

The canonical difference-differential equations can be transformed into a system 
of ordinary' diflerential equations [5]. Let m=T/h be an integer. We set 

lfl= [111• ··· • 11mJ' (16} 
where 

X;=x(t), 11; = 11 (t) t E [ih, (i+ 1) h] i = l,2, ... ,m (17) 

4
) This means that x /IIIm , oJE£2(-h,, 0; R"), x /10 , ;1 E Wf(O, T; R") while P:BxxB.xR-+ 

-> £2 (0, T; R" XL 2 
( - h,, 0; R") xR" and (5b) is here equivalent to 

x (t)=A 1 x (t)+A 2 x (t-h) + Bu (t), t E [0, T], 
x(t)=<p(t), tE[-h,.,O] 
X (0) = <p (0) . 
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and define the matrices 

rA, 0 0 p 01 
-
0 

-, Az A1 0 0 
0 

dl ff= rff= 

0 

' 0 Az A1 0 1 0 0 0 -F 
-

f/J1 =diag {s}r, f!J=diag {Q}'~', 

F2 =[q; (t) 0 ... 0]', F1 =diag {A2 }~ Fz. 

We obtain a (2n x m)-dimensiona1 system of ordinary differential equations with 
mixed boundary conditions: 

~=d~+f/J1 lfi+F1, ~ (0)=F2 (O)+ff~(h), 

it= -d' lf!+f!J2 ~, If/ (h)= rff~ (h) +fflfl (0). 

(18a} 

(18b) 

This shows that the problem of determining analytically the optimal state and 
control becomes more and more difficult as h tends to zero, since dimensionality 
of the system (18a, b) tends to infinity. 

Setting h=O we obtain5
) 

P (x, u, 0) =(x -(A1 + A 2 ) x-Bu, x (t)- q; (t), x (0)- q; (0)) (19) 

and the canonical equations, corresponding to the nondelayed model, are 

Xo=(A1+A 2 )x0 +S1J0 , x(O)=q;(O), 

iJo= -(A1 +Az)' 1]0 +Qx0 , 1J (T)= -Fxo(T). 

The optimal control 

u0 (t)=R- 1 B' 1]0 (t) 

can be presented in a form of a feedback controller 

u0 (t)=R- 1 B' K(t) x 0 (t) 

(20a} 

(20b) 

(21} 

(22} 

where K (t) is a symmetric, negative semi definite matrix, which satisfies the Riccati 
equation 

and 

K= - K(A 1 +A 2 )-(A 1 +Az)' K-KSK+Q, 

K(T) = -F, 

1Jo (t) = K (t) x 0 (t). 

(23) 

(24) 

5) We have assumed the state space Bx does not change with the parameter. Therefore 
the initial function appears in the nondelayed equation, in form. 
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4. ~ensitivity analysis of the time delay problem 

The asymptotic solution of differential equations with time delay has been pre
sented in [6], [7], [8]. However, these results can not be directly applied in the sen
sitivity approximation. Therefore, the following theorems are proven in the Appen
dix 2. 

Consider first the homogeneous equation 

x(t)=A 1 x(t)+A 2 x(t-h), x(t)=qJ(t), tE[-h,O]. (25) 

T HEOREM 2. The solution x (t, h) of (25) has right-side derivative X1, (t) with respect 
to h at h=O, which satisfies the equation 

xh (O) =0 (26) 

where x 0 (t) is the solution of the nondelayed equation 

x 0 (0) = (/J (0). (27) 

Consider the canonical equations (15a, b) 

THEOREM 3. The solution (x (t, h), fj (t, h)) of (15a, b) has right-side derivative 
(X11 (t), N~r(t)) at h=O which satisfies the equations 

t' I"" "' I :' 

N,, = -(A1 +Az) Nh +QXh - Az 1Jo, 

X11 (0)=0; N11 (T) = - FX11 (T) - A; fj 0 (T), 

where x0 , Jji0 are solutions of the problem (20a, b). 
Hence, the right-side derivative of the control 

where M (t) satisfies the equation 

M= -(KS+ A~ +A~) M+KA 2 x0 -A~ 1] 0 , 

M(T)= -A~ 1Jo(T). 

(28a) 

(28b) 

(29) 

(30) 

In terms of sensitivity analysis xfr, Oh, Nh are the basic sensttlVlty functions. 
Having the existence of right-side derivatives, the Lipshitz-continuity of these de
rivatives for h?;O can be easily proven. 

According to Section 2, the relation (29) represents exactly the linear part of 
the approximation of the optimal feedback control Jaw at h=06

). 

In order to determine the structural variations, consider the following situation. 
Assume that delay parameter h is zero in the process and in the model the delay 

6
) The differentiability and Lipshitz-continuity of the operator R1 (x, h) in [0, hm] can be 

directly proven on the basis of [4]. 

---~ --- ----------------------
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parameter changes from 0 to h. The structural variations are computed at the point 
h =0 and we obtain non-delayed equations for the structural variations. According 
to the Theorem 1 this approach is locally equivalent to the reverse situation which 
appears in practice. 

Under this assumption we consider several well-known optimal structures. 
The structural sensitivity functions are obtained immediately from the general 
sensitivity models, presented in [1 ]. 

(0) Open-loop structure 

The optimal control is applied in a control system in the same way as it is de
termined, hence X 0 (a, a)=x (o:, u(a)); U0 (a, ex)= O(a) and U~(t)= Oh(t). The 
structural state sensitivity function satisfies the equation 

(31) 

(1) Closed-loop structure 

The optimal control law is synthesized on the basis of a model with delay and 
its linear approximation is given by (29). Hence, the structural sensitivity functions 

(2) Optimal trajectory tracking 

(32a) 

(32b) 

If the matrix B has an inverse and a nondelayed state is observable, the optimal 
trajectory tracking structure (or model-following structure) can be applied - see 
Fig. 1. The state of the real process is equal to the optimal state for the model; 
hence 

and 

or, a more useful formula is 

Classical 
controller Process 

Fig. 1. Optimal trajectory tracking system 

7 

(33a) 

(33b) 

(33c) 

---- -- -----------------------------------------------------
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(3) Optimizing feedback 

Assume that ft (t) can be computed on the basis of the model. The optimal control 
can be determined by a peak-holding controller, performing the operation 

max ( -0.5 u'Ru +ft 'Bu). (34) 
u 

Such a structure- see [9]- is called the (open-loop) optimizing feedback. 
Because the function which is maximized at each instant of time does not depend 
on h explicitly, this structure has the same sensitivity as the classical open-loop 
structure. 

The adjoint variable can be determined as well in the closed loop, as a function 
of the state, and then we obtain a closed-loop optimizing feedback structure. Ana
logously, this structure is also as sensitive as the Classical closed-loop structure. 

Because the process is linear, the second-order term of the sensitivity measure 
approximation has the form: 

T 

Si(h)=0.5 (x~'(T)FX;(T)+ j ex;' QX;+ UtRUD dt) h2 +o (h 2
). (35) 

0 

The linear variation of the optimal value of the performance functional can also 
be easily computed 

T 

c5l =x~ (T) F r5x+ j x~ Q r5x dt. (36a) 
0 

where 

r5x(0)=0. (36b) 

5. An example 

To clarify the methodology of the sensitivity analysis and to illustrate the con· 
clusions we take now a simple example. 

Consider the process presented in Fig. 2: 

.X (t)= -x (t)+x (t-h)+u (t), x(t) = l, tE[-h,O]. 

Fig. 2. Process considered in the example 

The cost functional is assumed to have the fonn: 
1 

I(x, u)=0.5 (x2 (1)+ J (bx 2 +u2 fb) dt) 
0 

where b is a positive parameter. 
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Setting h=O we obtain 

x0 =u, x0 (0)=1 

and the optimal solution 

where K(t) = - 1. 

The basic sensitivity functions satisfy the equations: 

Xh=bN11 +B e-bt, 

Nh =bXh -b e-bt, 

Hence M(t)=eb<t- 2) and 

X 11 (t) =0.5 e- 2b(ebt_e-bt)+bt e-bt, 

The structural sensitivity functions of the considered structures are: 

X 0 =X +e-bt-1 
h h ' 

u; = -bXhl +b eb<t-2)' 

X 1 =X -bt e-bt 
h h ' 

u;=Oh+be-bt. 
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In Fig. 3 the behaviour of the second-order approximation of the sensitivity 
measure and the performance linear variation for h = 0.1 are shown. If b > 1 than 
the performance losses for the closed-loop structure are close to zero. The closed
loop is the least sensitive structure considered. Moreover, the feedback optimal 
controller, based on the nondelayed model, can be very easily constructed -see 
Fig. 4 . 

.-.....101 

N 
t:: 
~ 100 ,......., 
~ 
~ 10-1 

·--;_;;; 

0 

Fig. 3. Second-order sensitivity approximation 
and ideal performance variation for h=O.l versus 

b for systems considered in the example 

Process 

Fig. 4. Optimal feedback control system 
for the example 
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6. Conclusions 

The method, presented in this paper results from the general theory of sensiti
vity. Solving the time delay optimization problem is usually extremely difficult 
but can be mitigated. The performance losses due to neglecting the time delay can 
be rather easily estimated. For instance, the local sensitivity analysis of the closed
loop systems requires less effort then the global synthesis. The example presented 
shows that the performance losses can be very small. Moreover, the sensitivity 
analysis allows the comparison of different optimal control structures. 

Acknowledgment. The author wishes to thank Professor Andrzej P. Wierzbicki 
and Dr S. Kurcyusz for their kindness in discussing this problem. 

References 

1. WIERZBICKI A. P., DoNTCHEV A. L., Basic relations in the performance sensitivity analysis of 
optimal control systems, Contr. and Cybern. (Warszawa) 3, 3-4 (1974). 

2. WIERZBICKI A. P., Unified approach to the sensitivity analysis of optimal control systems, Pre
prints of the IV congress of IFAC. Warszawa 1969, Sess. 68. 

3. KuRcYusz S., A local maximum principle for operator constrains and its application to systems 
with time lags, Bull. Pol. Ac. Sci. (1974). 

4. ELLER D. H., AGGARWAL I. K., BANKS H. T., Optimal control of linear time-delay systems. 
IEEE Trans. on Autom. Contr., AC-14, 6 (1969) 678- 687. 

5. 0LBROT A. W., On degeneracy and related problems for linear constant time-Jag systems. Ricerche 
di Automatica 3, 3 (1972), 203-220. 

6. O'MALLEY R. E., jr, On the asymptotic solution of initial value problems for differential equa
tions with small delay. SIAM J. of Math. Anal. (1971) 259-269. 

7. SANNUTI P., REDDY P. B., Asymptotic series solution of optimal systems with small time delay. 
IEEE Trans. of Autom. Contr. AC-18, 3 (1973) 250- 259. 

8. VASILEVA A. B., BuTUzov B. F., Asymptotic series of the solution of singular perturbed equations, 
(in Russian). Moskwa 1973. 

9. GosiEWSKI A., WIERZBICKI A. P., Dynamic optimization of steel-making process in electric arc
furnace. Automatica, 6 (1970) 767-778. 

Appendix 1. In order to prove the Theorem 1 we present following simple 
lemmas. 

LEMMA 1. Consider a composite function f(g (x)), where f is real valued 
functional with domain B9 and g: Bx---+B9 ; Bx, B9 are Banach spaces. Suppose f(g) 
is twice differentiable and J;,(g0) = 0 for g0 = g (x0 ). Suppose g (x) is differentiable 
and gx(x) is Lipshitz-continuous in x=x0 • Thenf(g(x)) = lfl(x) is twice differen
tiable with respect to x and 

(1.1) 
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Proof. Obviously tp (x) . is differentiable with respect to x. 

Atpx= tpx{Xo + Ax)- tpx{Xo) = h (go + Ag) 0 gx(xo + Ax) = 

101 

= / 0 (go + Ag) [gx (Xo + Ax) - gx (xo)] + h (go+ Ag) gx(xo) · 

Since the differentiability of _(g(g) and Lipshitz-continuity of gx(x) we have 

lim [[f0 (go+Ag) [gx(xo+Ax) - gx(Xo)][[ j [[Ax[[ = O. 
ll <~x ii ~O 

Because of the composite function theorem 

Hence 

and the proof is complete. 

LEMMA 2. Consider a function f(x, y), x, yE [a0 , at]. Let f(x, y) = O for each 
x = y and f(x, y) be differentiable with respect to x in a neighborhood of x = y, 
yE [a0 , ad (with one-side derivatives at a0 , a 1). Let fx(x, y) be continuous with 
respect to x, y for x = y. Then f(x, y) is also differentiable with respect to y for 
x=y and for each x = y we have 

Proof. 

f(y, y+Ay) 

Ay 

fx(x, y)=-/y(x, y). 

f(y + Ay, y+ Ay) - f(y, y + Ay) 

Ay 

(1.2) 

fx(y+eAy,y+Ay) Ay 
= - Ay = - fx(Y, y)+O (Ay) 7

) 

because the uniform continuity of fx· Hence (1.2) holds. 
Let us now prove the Theorem 1. The sensitivity measure can be presented in 

a form 

S 1(a, ex) =L(X1(a, ex), U1(a, ex),N(ex), ex)-L(X(ex), O(ex),N(ex), ex) 

where a, ex E [a0 , at]. Since the optimality 

Because of the lemma 2 there exists S! = - S~ for a= ex and the first part of the 
theorem is proven. Apparently, S! can also denote the right-side derivative at a= 
= ex = a0 . 

Consider now S! (a, ex). Since the assumptions of the theorem and the Lemma 1 
there exists S!a for a=ex. But S!(a, ex) = O for a=ex and the structural derivatives 
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have continuous derivatives with respect to a, a for a = a. Then the Lemma 2 can 
be applied and there exists S~a =- S!a for each a= a E [a0 , at]. 

Let a, a E [a0 , ad and ba = a-a. 

Si (a, a)=0.5 ( (X;*(a1), lxx(al) X!(al)) + 
+ 2 (X;* (al), lxu (a1) u; (al)) +( U6*(al), luu (al) U! (a1))) oa2 

where a 1 = a+eoa. 

Since the continuity 

and we have 

x; (a1)=X; (a)+O (ba)=X! (a)+O (oa), 

1xx(a1) =lxx(a) + 0 (oa) =lxx (a) +0 (oa) 

Hence, there exists s;a = D for a=a and S~a=s;a. Since the continuity this equa
lity holds also for the one-side derivatives and the approximation (10) can be per
formed. 

Appendix 2. We prove first the Theorem 2. Consider the equations (25) and (27). 
0 

x (t, h) = eA,t rp (0) + J eA,(t - r- f•) A 2 rp (r) dr+ 
-/I 

t t 

+ J eA,(t - r- /1) Az X (r, h) dr - -J eA,(t - r- h) Az X ( r, h) dr' 
0 t-h 

t 

x 0 (t) = eA'trp (0) + J eA,(t - r) A 2 x 0 (r) dr. 
0 

Since the continuity of rp (x) 

1 0 

lim- J eA,(t - r-h)A 2 rp (r) dr = e.4,tA 2 rp (0) 
h-+0+ h - h 

and the continuity of x (t, h)- see [8] 

1 0 

lim h J eA,(t - r- h) A 2 x (r, h) dr = A2 x 0 (t). 
h-+0+ -h 

Using the Taylor expansion 

e-A,Il = 1-A1 h+O(h) 

and denoting L1x(t,h) = (x(t,h) - x 0 (t))/h we obtain 
t 

Ax(t, h) = eA,tA2 rp (0)+ J eA,(t - r)A 2 L1x (r, h) dr - AzXo (t) 
o t 

(2.1) 

(2.2) 

- A 1 J eA,(t - r) A 2 X0 (r) dr+O (h). 
0 

----- ------------------------------------------------
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But 
t t 

A1 J eA,(t - rlA 2 x0 (r) dr = A 2 x 0 (t) - eA''A2 x0 (0) + J eA,(t - rlA 2 x0 (r)dr o 
0 0 

We have 
t t 

LJx (t, h) = J eA,(t-<l A 2 L1x ( r, h)- J eA,(t-r) A 2 x0 ( r) dr + 0 (h) 0 (2o3) 
0 0 

Hence, for every t E [0, T] 

lim LJx (t, h) = Xn (t) 
~~~o + 

which is defined by (26)0 

In order to prove the Theorem 3 we use analogously (201), (202) for the equation 
(1 5b) and obtain 

t 

rJ (t, h) = - e- A,'(T-tlFx (T, h) - J e - A,'(r - t)A~ fj0 (r) dr-
T 

t t 

- A 1 h J e - A,'(r-t)A~ f/ 0 (r) dr+ J e-A,'(r-tlQx (r, h) dr -
T T 

- hA 2 f/ 0 (t) + O (h) o 

Hence, denoting LlrJ(t,h) = (rJ(t,h) - fj 0 (t))/h 

But 

t 

L1YJ (t, h)=e- A,'(T-tlFLJx(T, h) - A 2 fj0 (t) + A~ J e- At'(r - t)A2 f/ 0 (r) dr + 
T 

t 

+ J e - A,'(r-tlQLJx(r,h)dr + O(h)o (2.4) 
T 

t 

A~ J e-A,'(r - t) Ll2 f/ 0 (r) dr = A~ f!o T) ) - e-At'(T-t)A2 f/ 0 (T) 
T 

t - J e- A,'(r-tl A 2 ~0 (r) dr 
0 

(2°5) 
T 

Combining (203-5) we have 

c 

.Llx (t, h) = J eA,(t -rl( L1 2 LJx (t, h) + S LlrJ (t, h)- A 2 jo ( r)) dr +0 (h), 
0 

L1 YJ (t, h)=- ( F L1x (T, h) - A 2 f/ 0 (T)) e- A,'(T-tl -

t 

- J e- A,'(r-t)( - QL1x (r, h) + A2 no (r)) dr. 
T 

This implies (28a, b) when h~Oo 
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Analiza wrazliwosci ukladow sterowania optymalnego 
z malym opo:inieniem czasowym 

A. DON'l'CHEV 

Przedstawiono analiz~ wrazliwosci r6znych struktur uklad6w sterowania optymalnego z ma
lym op6znieniem czasowym. Zaproponowano metod~ obliczeniow~ dla przypadku liniowo-kwadra
towego. Zastosowanie melody zi lustrowano przykladem. 

AHailH3 qyBCTBHTenbHOCTH CHCTeM ODTHManbHOrO ynpaBneHHH 
C He60nbWHM BpeMeHHbiM 3aDa3~biBaHHeM 

B CTaTbe rrpep;CTaBJieHO aHaJIH3 'IYBCTBil.TeJibHOCTH pa3JIM'1HbiX CTpyKTyp CHCTeM OllTHMa
JlbHOIO yrrpaBJieHHH C He60JibffiHM BpeMeHHbiM 3aiia3,!l;biBaHHeM. flpep;rraraeTCH pac'!eTHbiH MeTO,ll. 
.LJ:JIH JIHHeHHO-KBa,ll.paTHOIO CJiy'laH. 

IIpn:MeHeHHe MeTo,ll.a rrpon:rrmocTpMpoBaHo Ha rrpMMepe. 


