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The problem of discrete approximation for closed and convex sets of admissible control is formu
lated. It is shown that for a broad class of such sets the discrete approximation exists and is deter
mined uniquely. 

Two types of discretization are considered. For each of them the method of constructing of ap
proximations of sets of admissible control is presented. Such construction requires solving of a two
points boundary-value problem for an ordinary differential equation. 
The obtained results are illustrated by examples. 

1. Introduction 

For majority of optimal control problems for continuous systems it is impossible 
to find optimal control analytically, mostly due to difficulties connected with solving 
of state equation. 

Therefore instead of solving initial problem of this type, we approximate it by 
anoth.er finite dimensional problem, which can be solved using a computer. 

The solutions of such approximating problems depend on some parameter of 
discretization 1: (it can be a vector) which is destinated to tends to zero. It is said 
that the approximation is formulated properly if the solutions of approximating 
problems are convergent in some sense to the solution of initial one for ?:->0. 

In order to construct an approximating problem for a given problem of optimal 
control, subject to constraints of control functions, it is necessary 

1) to approximate the state equation 

2) to approximate control functions and the set of admissible controL 

First of this tasks can be performed using one of many known methods of ap
proximate solving of state equation (it may be differential equation: ordinary or 
partial or functional equation) for example finite elements or finite differences. 
methods (see e.g. [1 ], [6], [8]). 
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On the other hand the author do not know any paper concerning the problem 
·Of approximating sets of admissible control. This problem is trivial for simple cases 
·of such sets and becomes important for more complex cases. 

Generally speaking the problem of approximating of given set of admissible 
·control Uad can be formulated as follows: introducing the discretization of the 
state equation we introduce also some approximation of control functions. Often 
such approximating functions are less regular then admissible controls (for example 
.continuous controls can be approximated by piece-wise constant ones). 

We would like to construct the set V,3d approximating Uad in such a way that 
1) the approximation of each element of Uad (i.e. of each admissible control) 

belongs to Vrad 

2) for each elem~nt of Vrad there exists an admissible control (an element of 
u.ct) close, in some sense, to this element. 

More detailed discussion of these condition can be found in [5], [7]. Here we 
restrict om·self to heuristic statement that condition 1) assures that the set Vrad 

is rich enough, while condition 2) assures that having the solution of properly 
formulated approximating problem we can construct an admissible control, which 
converges to optimal one for r-->0. For r small enough such a control function 
·Can be treated as a good approximation of optimal control. 

This paper is devoted to the problem of constructing of sets Vrad for a class 
·Of sets Uad in the cases where discrete approximation is used. 

2. Problem statement and method of solution 

In the sequel we shall assume that the controls are scalar functions belonging 
to the space 

U=V(O, T) 

where (0, T) is a fixed interval of time. 
The set of admissible control is given by 

Uact={uEH'(O, T):r;:?;1, u<ml(O)=O, O~m~p~r, J(u)= 

T 

= J uT(t)Au(t)dt~1} (2.1) 
0 

where r- is a given integer, H'(O, T)- is the Sobolev space [10] of functions 
square summable together with all its derivative up to r-th (the derivatives are 
understood in the sense of distributions). Recall that 

H'(O, T)c C'- 1 (0, T). 

uT(t) = [u (t), u(l) (t) ... , u<rl (t)] is a (r + 1) -dimensional vector of values at 
t of the function u and its r derivatives. A= [au], i,j=O, 1, ... r is (r+ 1) x (r+ 1) 
-dimensional symmetric matrix, non-negatively definite. 
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It is assumed that the quadratic form J (u) satisfies condition 

J (u);;?: o: llull; o:>O VuE H~ (0, T) (2.2) 

-where ll-llr denotes the norm in Hr (0, T) and closed subs pace H~ (0, T) c Hr (0, T) 

IS given by 

H~ (0, T)= {u E Hr(O, T): u Cml (0)=0 ; O~m~p}. (2.2a) 

The condition (2.2) implies 

arr>O. (2.2b) 

Note that the set u.ct is convex, bounded and closed both in L 2 (0, T) and Hr(o, T) 
topologies. 

Remark: if the initial conditions are not imposed on functions u then H~ (0, T) = 
=H'(O, T). 

The controls are approximated by piece-wise constant functions, i.e. as the 
:space V, approximating U we choose 1\rl-dimensional space E, (0, T) of functions 
of the form 

M-1 

v (t) = .2; v (ir) W; (t) (2.3) 
i=O 

where Mr = T and W; (t) is the characteristic function of interval [ir, (i + 1) r). 

On the space Hr(o, T) there is defined a linear operator f!Jl, mapping Hr(o, T) 
onto V,. We shall consider two types of operators given respectively by 

M-1 

f!Jll<u(t)=v 1 (t)= .2; u(i, r)W;(t) (2.4a) 
•=0 

M-1 (i+1)t 

f!llz, u (t) =V2 (t) = 2-; ~ J u (t) dt W;(t). (2.4b) 

i =0 ir 

We are looking for a closed convex and bounded set Vrad cE, (0, T) which ap
proximates Uact in the following sense 

\fv E Vrad 3 U E U ad: f!ll , U =V. 

It 1s easy to see that conditions (2.5) imply in particular 

VuE Uad 3v E v,.d: llu-vl lo=O (r) 

\fv E Vrad 3 u E Uad: llu-vlio =0 (r) 

(2.5a) 

(2.5b) 

(2.6a) 

(2.6b) 

where ll ·l lo denotes the norm in L 2 (0, T) and 0 (r) denotes a function which tends 
to zero at least as fast as r. 

Note that conditions (2.6) are necessary to estimate the rate of convergence of 
approximation for a class of optimal control problems [5], [7]. 
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Let us denote 
Er0 (0, T) = fdr H~ (0, T). (2.7) 

It is obvious that Er0 (0, T) is a closed space. In the case where fdr = fd 2r we have 
Er0 (0, T) =Er (0, T) and in the case fd, = fd, 1 the space E, (0, T) is the (M -1)- di
mensional subspace of Er (0, T) of functions v satisfying initial condition v (0) =0. 

For each element v E E~ (0, T) we define the element uv satisfying the conditions 

(2.8) 

where the set fd; 1(v) eH' (0, T) denotes the counterimage of the element v restricted 
to the subspace H~ (0, T). 

The element u" satisfying (2.8) exists and is defined uniquely. Indeed fd; 1(v) 
is the set of all functions u EH~ (0, T) satisfying the finite number of additional 
linear conditions: M-1-conditions u(ir) = v(ir), i=1,2, ... ,M- 1 in the case 

, I (i+l)r 

fdr=fd 1r or M-conditions~ J u(t)dt=v(ir),i=1,2, ... ,M in the case 
it 

fd, = fd 2,. Therefore gz; 1(v) is a closed subspace with codimension (M -1) or M. 

By (2.2) the functional J (u) is strictly convex and radially unbounded on H~ (0, T) 
hence it assumes the unique minimum u" on the closed subspace gz; 1(v) [12]. 

Note that 
(2.9) 

is a subspace of H~ (0, T) :--(M -1 )-dimensional in the case of operator fd 1 r and 
M-dimensional in the case of fd 2 .. 

Indeed an element uv satisfies (2.8) if 

(2.10) 

where (} is the zero element of E~ (0, T). 

The set f?lt; 1 ((})cH~(O, T) is the subspace with codimension (M-1) (for fd1r) 
or M (for fd 2r) hence taking into consideration the form (1.1) of J(u) we conclude 
that the condition (2.10) is equivalent to 

T 

J uT(t)Auv(t)dt=O (2.11) 
0 

It follows from (2.2) and from the form of f!l; 1((}) that the set U, characterized 
by (2.11) is really a (M -1) or M dimensional subspace. 

Let ~r denotes the restriction of f!l, to the subspace Ur. It is a linear operator 
which maps U, onto the space E~(O, T) of the same dimension, hence it has the 
inverse ~; 1 and 

(2.12) 

The above results enable us to construct the approximation of Uad· Namely 
we put 

(2.13) 
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It is easy to see that the set (2.13) satisfies (2.5). Indeed, let u be any arbitrary 

element of the set u.ct, i.e. J(u)~l. Let us put v=Yi,u. Taking into account (2.8) 

we get 

J (u~)~J (Lt)~ 1, 

hence v E V,.ct and (2.5a) is satisfied. Condition (2.5b) is obviously satisfied for 

Moreov~r the set (2.13) is the only set satisfying (2.5). Indeed it is easy to see 

that the set smaller then (2.13) can not satisfy (2.5a). We shall show that none set 

larger than (2.13) can satisfy (2.5b). Assume that ; does not belong to the set (2.13), 

i.e. J (u;) > 1, then from (2.8) we have 

1 <J(u~)~J(u) VuE Yt- 1
(;) 

and for ; condition (2.5b) is not satisfied. This completes the proof of the unique

ness of vrad· 
Taking advantage of (2.12) we can rewrite the definition (2.13) of the set V,.ct 

in the form 

(2.14) 

Note that it follows from (2.1) and (2.2) that J ( ~- 1(v)) is a quadratic form po

sitive definite on E~(O, T), hence the set V,.ct given by (2.14) is closed, convex and 

bounded. Therefore it is the required approximation of the set Uact· 

The above results are summarized in the following. 

THEOREM 1. If the set of admissible control u.ct is given by (2.1) and the condition 

(2.2) is satisfied, then there exists the uniquely defined closed convex and bounded 

approximating set v,.ct, which satisfies conditions (2.5). This set is given by (2.14). 

It follows from Theorem 1, that the construction of the set v •• ct can be reduced 

to determination of the operator ~; 1 . It turns out that this last problem is not 

a simple one. 

The next parts of the paper are devoted to determination of operator ~; 1 • 

The cases where Yi, is given by (2.4a) and (2.4b) are considered successively. 

3. Construction of the set V, ad in the case Yi,- Yi 1, 

To find the operator P4; 1 we shall use the formula (2.11) characterizing elements uv. 

In our case the set Yi; 1(B) is given by 

g?;/(B)={u E Hr(O, T): u (ir) = O, i =0, 1, ... ,M -1, 

u(m)(O)=O, m=1, 2, , ... ,p}. (3.1) 
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Rewriting integral (2.11) in the form of the sum of integrals over the intervals. 
[ir, (i + 1) r) and performing elementary transformations, we get 

M-1 r (i+ 1) r 

.2; }; J aJuv(t)uU)(t)dt=O (3.2}: 
i :::;Q j::::; 0 i-r: 

where aJ denotes the (j+ 1)-st verse of the matrix A. 

Let us assume arbitrarily that the function u" E Hr(O, T) is more regular, namely
that on each interval (in (i+ I) T) it is of the class C2 r. 

Each integral in (3.2) we integrate by parts j times. After some elementary trans
formation we get for the interval (ir, (i + 1) r) 

r (•+1)t 

}; J aJuv(t)uU)(t)dt= 
j=O it: 

[ 

r- 1 r J l(i + 1)" 
= }; }; (-1F-k-1aJu~i-k-1)(t)uCk)(t) . + 

k=O j=k+l "' 
(i + 1)" [ r ] 

+ J iJ; ( - 1)i aJ u~)(t) u (t) dt .. 

Hence the condition (3.2) takes on the form 

+ ()l)r [j~ (-1)iaJu~)(t)] u(t)dt}=o, Yu E f!ll~/ (B). (3.2a} 

Taking into account definition (3.1) of the set &r;/(B) as well as the fact that 
functions uv (t) are of the class c- 1 (0, T) we find, that the condition (3.2a) is equi
valent to the following system of equations 

r 

}; (-1)iaJu~i)(t)=0, t E (ir, (i+ 1) r), i=O, 1, ... , M-1 (3.3} 
j=O 

r 

~ (-l)i-k-l aJT_ u<vi-k-l (0) =0 k + 1 1 .L.; =p ' ... , r- (3.3a) 
j=k+1 

r 

_2 (-1)i-k-laJJu~-k-l)(ir)=0; 
j=k+l 

i = 1, 2, ... , M- 1, 
k = 1, 2, ... , r- 1 

(3.3b)-

r 

}; (-1)i-k- 1 aJu~-k-l)(T)=0 k=0,1, ... ,r-1 (3.3c} 
j=k+ 1 

where Juv (ir)=uv (ir+) - uv (ir_) denotes the difference between right and left 
limits of the function Uv at the point ir. 
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Using definitions of vectors aJ and u~j) (t), the initial conditions of u" and taking 
advantage of symmetry of matrix A after tedious transformations we rewrite (3.3) 
in the form 

r 

~ b · u(2i) (t) = 0 · 
~ 2J V ' 

t E (ir, (i+ 1) r); i=O, 1, ... , M-1 
j=O 

where 

k+l=2j 

Duv(O)=O 

Fou"(ir)=O, i=1,2, ... ,M-l 

Guv(T)=O 

where 

(3.4} 

(3.4a} 

(3 .5) 

(3.6) 

(3.7} 

The components of matrices D=[dkm], G=[gkmJ, k=O, 1, 2, ... , r-1; m=O, l, ... , . 
... , 2r-1 and ofF= [,hm], k= 1, 2, ... , r-1; m=O, 1, ... , 2r-1 are given respect ively 
by 

where 

-{ {; ( I)j-k-1 gkm- .LJ - aj,m-j+k+l 
J=Pkm 

for 

for 

f3km=max {k+ 1, m-r+k+ 1} 

l'km =min {k+m+l, r} 

k~p 

k>p 

k+m<2r 

k+m?::-2r 
(3.8a} 

(3 .8b} 

(3.8c} 

Recall that we are looking for the function uv E Hr(O, T) hence, for a function 
of class cr- 1(0, T). This implies that 

ou~m)(ir)=O; i=l, 2, ... , M-1; m=O, 1, ... , r-1 (3.9a} 

Substituting (3.9a) to (3.6) and taking into account (3.8) we find that the system 
(3.6) reduces to the homogeneous system of (r-1) equations with (r-1) un
knowns ou<r)(ir), ou<r+ 1)(ir), ... , ou<zr-z)(ir). The matrix of this system is a triangle 
matrix with elements on diagonal of the form (-J)k-larr· Hence taking into account 
(2.2b) we get from (3.6) 

ou~m)(ir)=O; i= 1, 2, ... , M -1 ; m=r, r+ 1, ... , 2r-2. (3.9b) 
/ 

Summing up the above results we conclude that if the function uv is of class 
C 2

' on each interval (ir, (i +I) T) then it must satisfy the following conditions 

On discrete approximation fair a clas·s of sets 

and (3.7) together with (3.13) imply 

M-1 

• GI/J (T) iiv (0) + GI/J (T) }; rp-1 (ir) ezr-z ci =0. 
i= 1 

The system (3.14) we rewrite in the matrix form 

where 

is (2r x 2r )-dimensional matrix 
and 

M -1 

ciiv (0) = }; (i ci 
j=1 

c-[D J GI/J (T) 

(=[~J 
is 2r-dimensional vector, such that e is r-dimensional zero vector and 

-
We shall assume that 

(i = - GI/J (T) rp- 1 (ir) e2 r-z. 

Then from (3.15) we obtain 
rank C=2r. 

113 

(3.14b) 

(3.15) 

(3.15a) 

(3.15b) 

(3.15c) 

(3.16) 
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(i) on each interval (ir, (i + 1) r) the function uv is a solution of homogeneous 
ordinary differential equation (3.4) of order 2r 

(ii) the initial conditions in the form of the system of equations (3.5) are satisfied 
(iii) there are satisfied the conditions uv (ir) =v (ir) as well as smoothness condition 

in the form of requirement that the derivatives u~"), m= 1, 2, ... , 2r- 2 are 
continuous at the points ir, i=, ... , M-1, in other words UvE czr- 2(0, T) 

(iv) the final conditions in the form of the system of equations (3.7) are satisfied. 

It is more convenient to rewrite (3.4) in the form of a normal system [2] of 2r 
equations of first order 

t E (ir, (i+ 1) r); i=O, 1, ... , M-1 (3.10) 

where Q is Frobenius matrix. 

Note, that it follows from (iii) that all components of the vector u~ except the 
last one have to be continuous at the points ir. The last component u~2 r-l) can 
have jumps at these points. 

Let us denote 

C·= s:.u(Zr-l)(z'~)=u(zr-l)(z'~ )-urzr-l)(z'~ )· z' 1 2 M 1 
< U V 

0 
V 

0 + V 
0

- ' = ' ' '"'' - (3.11) 

Hence taking into account (3.11) and the form of matrix Q we conclude that 
in the whole interval (0, T) uv must satisfy the following inhomogeneous differential 
equation 

M-1 

~v(t)=Quv(t)+ezr-2}; ci J (ir) t E (0, T) (3.12) 
i= 1 

where 

eJ = [0, 0, ... , 0, 1, 0, ... , 0] is 2r-dimensional vector, the (J+ 1)-st component of 
which is equal to 1 and the other to 0, 

<5 (t)- denotes Dirac's measure. 

Any solution of (3.12) has the form 

=lP(t)[uv(O)+ i~
1 

cp- 1 (ir)e2 r_ 2 l(t-ir)c;] (3.13) 

where cp (t) is fundamental matrix of solutions [2] of system (3.10) satisfying con
dition cp (0) =1, and 

1 (t)={ ~ for 
for 

t>O 
t::;.;;O. 

We are looking for solutions satisfying boundary conditions (3.5), (3.7). 

These conditions impose some restrictions on vector uv (0). Indeed from (3.5) 

we have 
Duv(O)=O (3.14a) 
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and (3.7) together with (3.13) imply 
M-1 

• GcP(T)uv(O)+GcP(T)}; cP- 1 (ir)e2 ,_ 2 c;=0. 
i= 1 

The system (3.14) we rewrite in the matrix form 

where 

is (2r x 2r)-dimensional matrix 

and 

M-1 

Cuv(O) = }; ~i c; 
i~l 

is 2r-dimensional vector, such that e is r-dimensional zero vector and 

~i = - GtfJ (T) t[J-l (ir) ezr- 2 • 

We shall assume that 
rank C=2r. 

Then from (3.15) we obtain 

113 

(3.14b) 

(3.15) 

(3.15a) 

(3.15b) 

(3.15c) 

(3.16) 
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Note that the condition uv (0) =v (0) =0 is fulfilled for the initial conditions (3.5} 
are satisfied. 

We can rewrite the system (3.20) in the matrix form 

V=Yc (3.21} 

where V= [v (r), v (2r), ... , v ((M -1) r)] is a (M -1)- dimensional vector, and Y 
is a (M+ 1) x (M+ 1)- dimensional matrix, the verses of which are given by 

(3.21a} 

If for a given vector t1 the equation (3.21) has a solution c, then we can find the 
function uv substituting c to (3.19). 

We shall show that (3.21) has the solution for any v. Indeed, suppose that it 
is not so. It would mean that the matrix Y is singular, and therefore for some vectors. 

(namely those for which Cappella's condition [11] is satisfied) equation (3.21} 
would have more than one solution c. It would imply that to these vectors v (and 
hence to functions vEEr (0, T)) would correspond, according to (3.19), more then. 
one function uv. This is impossible since the operator P1; 1 in (2.12) is unique. 

Hence the matrix Y is nonsingular. Therefore for any arbitrary v we get from 
(3.19) and (3.21) 

(3.22} 

This formula defines the operator P1~/ which we were looking for. The above results. 
can be summarized in the following 

THEOREM 2. If 

(i) the set of admissible control is given by (2.1), where condition (2.2) is fulfilled 
(ii) the operator f?ltr is given by (2.4a) 

(iii) condition (3.16) is satisfied 
then the set Vrad approximating u.d is given by (2.14), Whtre the liriear operator 
P1; 1 is defined by (3.22) . . 

Note that to verify condition (3.16) we have to know the fundamental matrix 
of solutions cP (t). However for some cases it is possible to show that (3.22) takes. 
place without verification of (3.16). 

Let us assume that the elen:.ents dkm• gkm of matrices D and G satisfy conditions. 
r-1 r-1 

}; [dk, v dm, 2r - v-1- dk, 2r-v-1 dm, v] = }; [gk, v gm, 2r-v-1-

v =O v= O 

- gk, 2r-v-1 gm, v]; k, m=O, 1, ... , r-1 (3.23) 

and let us consider ordinary differential operator 

r 

A (u) = }; h2i u(li) + (b0 + 1) u (3 .24} 
j = l 

defined on the domain 

~(A)= {u E H 2
' (0, T):Du (0)=0; Gu (T)=O}. (3.24a} 
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Since it is assumed that conditions (3.23) are satisfied, then the O"ferator A is ([3] 
-p. 1331, [4] p. 235) a regular self-adjoint formal differential operator. Therefore the 
:Spectrum of A is a sequence of points of the real axis with no finite limit point and 
;the resolvent R 1• exists for every }, which is· not an eigenvalue of A. 

Therefme if A.= 1 is not an eigenvalue of A, then the operator 

r 

(A- I) (u) = ,2 b2j u< 11l (3.25) 
J=O 

:has the inverse R 1 . This implies that the inhomogeneous equation of the form (3.12) 
.along with the boundary conditions (3.5), (3.7) has the unique solution for any 
.arbitrary inhomogeneous term. In the case where this term does not belong to the 
·domain of R 1 (like in (3.12)) it is the generalized solution. 

We shall see that A= 1 can not be an eigenva!tie of A. Indeed if A= 1 would have 
been such an eigenvalue, then there would had existed a non zero solution u of the 
homogeneous equation 

r 

(A-I) u= ,2; b21 u< 21l=O (3.26) 
i = 0 

.along with boundary conditions (3.5), (3 .7). 
But then it is easy to check, that we would get 

T 

J(u)= J ur(t)Au(t)dt=O . 
0 

Hence it follows from (2.2) that u (t) = 0. Therefore 'A.= 1 is not an eigenvalue 
·of A and equation (3.12) along with boundary conditions (3.5), (3.7) has the unique 
solution for arbitrary values of parameters c;, i=1, 2, ... , M-1. This imply that 
·condition (3.16) must be satisfied. 

The above consideration yields the following 

CoROLLARY I. Theorem 2 is true if instead of (iii) we substitute (iii ') conditions 
{3.23) are satisfied. 

·4. Construction of the set Vud in the case R, = R2 , 

:Like in Chapter 3 we start from the definition of the set P4- 1(8) which in this case 
.has the form 

{ 
I 

(i+l)t 
1 ~ . 

P4;, (8)= u E H'(O, T): - J u (t) dt=O ; i =0, 1, ... 
'1: it } 

... , M-1; u<'"J(O)=O; m=O, 1, ... ,p . (4.1) 

Assuming, like in Chapter 3, that uv is of class C2' on each interval (ir, (i+ 1) r) 
:and integrating (3.2) by parts, we obtain the condition of optimality in the form 
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(3 .2a), but this time the set PA- 1(0) is given by (4.1). Taking advantage of the form 
of this set we get conditions on uv analogous to (3.3) 

r 

}; (-IF aJu~i)(t)=c;; tE(ir,(i+l)r); i = 0,1, ... ,M-1 
i=O 

r 

}; ( - I)i - k-1 aJu~i - k-1)(0) = 0 
i=k+1 

r 

\"1 c- 1)j-k-1 T ~ u-k-1)c· ) = o · .LJ aiuuv lT . , 

i=k+1 
r 

k=p+ 1, ... , r - l 

i = 1, 2, ... , M- 1 ; 

k = O, 1, ... , r-l 

~ ( - l)i - k- 1 aJu~i-k-l)(T) = O k = O, 1, ... , r-l 
i=k+1 

where c; are arbitrary constants. 

(4.2) 

(4.2a) 

(4.2b) 

· (4.2c) 

In exactly the same way as in the cases of (3.4), (3.5) and (3.6) we obtain from 
(4.2) 

r 

\"1 b · u<Zi) = C· • .L..J 2J V 1' 

i =O 

where b2i are given by (3.4a), 

tE(ir,(i+1)r); 

Duv(O)=O 

Gouv(ir)=O 

Guv(T)=O. 

i = O, 1, ... , M-1 

i = 1,2, .. . ,M- 1 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

The components of r x 2r- dimensional matrices D and G are given by (3.8a) 
and (3.8c) respectively. 

Using the same argument, as that used to obtain (3.9), and taking into account 
that (4.2b) must be satisfied also for k = O, which was not the case in (3.3b), (in (4.5) 
the matrix G is substituting for F in (3.6)) we obtain 

ou~m>(ir)=O; i= 1, 2, ... ,M -l; m = O, 1, ... , 2r - 1. (4.7) 

Conditions (4.7) together with (4.3) show that in the whole interv..al (0, T) the 
function uv is a solution of the same inhomogen.eous differential equation. Passing 
from one subinterval [ir, (i + 1) r) to the other changes only the value of constant 
C; on the right-hand side of the equation. Therefore we can write 

r M-1 

\"1 (2 ") \"1 .LJ b2i uv 1 (t) = .LJ c;W;(t), t E (0, T) . (4.8) 
i=O i=O 

Summing up the above results we conclude that if the function uv is of class 
C27 on each interval (ir1 (i + 1) r) then it must satisfy the following conditions 

(i) uv is a solution of (4.8) 
(ii) the initial conditions (4.4) are sati~fied 
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(iii) on each interval (ir, (i+ 1) r); i=O, 1, ... ,M -1 the following equality takes 
place 

1 (i+1)t 

v(ir)=-J uv(t)dt i=O,l, ... ,M- 1 
T h: 

(4.9) 

(iv) the terminal conditions (4.6) are satisfied. 

Like in Chapter 3 we rewrite (4.8) in the form of inhomogeneous normal system 
of 2r equations of first order 

M-1 

~v(t)=Quv(t)+e2 ,_ 1 }; C; WJt). (4.10) 
i=O 

Repeating the argument of Chapter 3 we conclude that if (3.16) is satisfied then 
the solution of (4.10) satisfying boundary conditions (4.4), (4.6) has the form 

(4.11) 

where 

iiv .(O) = C--;- 1 YJi 
I 

(4.1la) 

the matrix C is given by (3.15a), 

(4.llb) 

is 2r- dimensional vector, such ,that e is r-dimensional zero vector and 

T 

~;=-Gcf>(T) J cp- 1 (s)e2 ,_ 1 W;(s)ds= 
0 

(i+ 1) t 

=-Gcf>(T) J cp- 1(s)e2 ,_ 1 ds . (4.1lc) 
it 

The function uv, which we are looking for, is given by: 

where 

are M-dimensional vectors and 

X,i(t) = e~cf>(t)[uv,(O)+ j cp- 1 (s)e 2 ,_ 1 W;(s)ds]. (4.12a) 

Using (4.12) we rewrite (4.9) as 

1 (i + 1) t 

v(ir)=~ J XT(t)dtc; i=O,l , ... ,M-1 (4.13) 
it 
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or in the matrix form 
V=Zc (4.14) 

where vT=[v(O),v(r), ... , v((M-l)r)] is M-dimensional vector and Z is Mx 
X M-dimensional matrix, the verses of which are given by 

1 (i+1)t 

Z[=--; f XT(t) dt 0 (4.14a) 
it 

Using the same reasoning as in Chapter 3 we conclude that the matrix Z is non
singular and from (4.12), (4.14) we find 

Uv(t)=xT(f) z-1 f.l. 

This formula defines the needed operator ~; 1 • 

The above results are summarized in the following 

THEOREM 3. If 

(4.15) 

(i) the set of admissible control is given by (2.1), where condition (2.2) is fulfilled 

(ii) the operator rJllr is given by (2.4b) 

(iii) conditions (3.16) is satisfied 

then the set Vrad approximating U ad is given by (2.14), where the linear operator 
Bl; 1 is defined by ( 4.15). 
In exactly the same way as in the case of Corollary 1 we get 

COROLLARY 2. Theorem 3 is true if instead of (iii) we substitute (iii') condi
tions (3.23) are satisfied. 

Note, that in the case where none initial conditions are imposed on control 
functions, i.e. if H~(O, T)=Hr(O, T) we have D=G and conditions (3.23) are sa
tisfied. 

5. Examples 

5.1. The case of operator rJll lt 

Example 1. Let 

U.d={tfEHr(O, T): r;?::l; u<m>(O)=O; O<m<r-1; J(u)= 

= l (u<r)(t)) 2 dt<1}. (5.1) 

It is easy to check that condition (2.2) is satisfied. 
Equation (3.4) takes on the form 

u~2 r>(t)=O; tE(ir,(i+1)r); i=0,1, ... ,M-1 (5.2) 
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and the elements of matrices of boundary conditions D and G are given respecti
vely by 

dk,m=Ok,m; k=0,1, ... ,r-1; m=0,1, ... ,2r-1, 

gk,m=Ok+r,m; k=0,1, ... ,r-1; m=0,1, ... ,2r-1. 

Hence conditions (3.23) are satisfied. 

(5.2a) 

(5.2b) 

It follows from (5.2) that on each interval (ir, (i+ 1) -r) the functions uv must 
be polynomials of (2r-1) - order. Moreover condition (3.9b) implies that uv are 
of class C2'- 2 (0, T) . The functions of this type are called spline functions of order 
(2r-1) [9] . -

They are usually defined along with boundary conditions of type (5.2a) ·at both 
ends of the interval (0, T) and it is convenient to express them in terms of Hermite 
polynomials of order (2r-1). 

Below two simplest cases r = 1 and r = 2 are considered in details 

r=l 

It follows from (5.2) that functions uv are piece-wise linear. They must satisfy 
conditions 

Uv(i-r)=v(i-r) i=0,1,2, ... ,M-1 

and the terminal condition following from (5.2b), which has the form 

u~1)(T)=0. 

From this last condition and from linearity of function uv we get 

Uv(T)=uv(<M -1) -r) . 

Conditions (5.3) fully define function Uv. 
In particular we have 

T M-2 

J (uv)= J (u~l)(t))Z dt= ? ~ [v ((i+ 1) -r) -v (ir)]Z 
0 •=0 

and 

M-2 

(5.3a) 

(5.3b) 

=}; ~ [v((i+1)-r)-v(i-r)]2~1}. (5.4) 
i=O 

r=2 

In this case the functions uv belong to the class of cubic splines, therefore they can 
be expressed [9] in the form 

M 

uv(t)=}; (si hi(t)+sih:(t)) (5.5) 
i=O 
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where 
i=O, 1, ... , M 

(5.6a) 

h; (t) and h ~(t) . are given by 

h;(t)=H(:-:- i) i = O, 1, ... , M 
' 

hf(t) = H 1
(: -i) 

(5.6b) 

i = O, 1, ... , M 

H (t) and H 1(t) denote here cubic Hermite polynomials. Using (5.5) and performing 
some tedious computations we get 

T 4 M-1 l3 
J(uv) = J (u~2l(t)) 2 dt=~ ,2) ~(s;+ 1 -s;)l+(sD2 + 

0 i=O 

+(sf+1) 2-! (S;-t 1 -s;) (si+sf+ 1)+s~ sf+ 1l (5.7) 

Note that (5.6a) implies 

S;=v(i7:), i=O, 1, ... ,M-1, (5.8) 

s6=0. 

The other (M+ 1) unknown coefficients sM, sf, i= 1, 2, ... , M can be computed 
from the condition of minimizing (5.7). 

To do this note that due to (5.2b) the terminal condition (3.7) takes on the form 

u<ml(T)=O m = 2, 3 . . (5.9) 

Differentiating (5.7) with respect to unknown coefficients, put!ing results equal 
to zero and taking into account (5.5), (5.6), (5.8) and (5.9) we find that these un
known coefficients are given by linear equation 

(5.10) 

where elements of vectors z=[z1 , z 2 , ... , zM+ 1], k=[kl> k 2 , ... , kM+l] and of matrix 
B= [bii], i,j= 1, 2, ... , M+ 1 are given by 

i=l, 2, ... , M 

i= M+l 

( I[v(Ci+l)r) - v(Ci-t)r)] 

I ; 
k;=~ --v((i-l)r)) 

I ; V ((M -I) ') 

i=l, ... , M-2 

i=M-l,M 

i=M+l 

---------------------------------------------------
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4 l~j= i~M-1 

2 j = i = M 
r 

j = i=M+ l 
2 

bu = 1 l~j= i - l~M - 1 and 2~j~i+ 1~M 

- 1 j=M+1; i = M - 1, M 
3 

j = M - l,M; i = M + l 
r 
0 otherwise 

Substituting (5.10) to (5.7) we find J (uJ as a quadratic form of v (ir), and 
then we find vrad • 

Example 2. Let 

Uaa = {uEH1 (0,T): u(O) = O; J(u) = l[(u(t))l+(u<1)(t))2]dt~1}. (5.11) 

In this case equation (3.4) takes on the form 

u~2>(t) - uv(t) = 0 ; t E (ir, (i+ 1) r); i=O, 1, ... ,M - 1 (5.12) 

and the boundary conditions (3.5), (3.7) are reduced to 

Uv(O) = O; u~1>(T) = 0. (5.12a) 

Any solution of (5.12) is given by 

uv(t) = a eh t + /3 sh t. 

For each interval (ir, (i + 1) r ], i = 0, .. . , M - 2 boundary conditions uv (ir) = v (ir) 
have to be satisfied. On the other hand it follows from (5.12) that for interval 
[(M - 1) r, M,] we must have 

uv((M - 1)-r) = v((M-1)-r); u~1 l(Mr) = 0. 

Hence we find that the function uv is given by 

where 

and 

uv(t) = aicht + f3isht; t E [ir,(i+l)r] 

v (ir) sh (i+ 1) r - v ((i+ 1) r) sh ir 
rxi = 

sh r 

v ((i+ 1) r) eh ir - v (ir) eh ((i+ 1) r) 
pi = sh r i = O, 1, ... , M - 2 

chMr 
rxM-l =V ((M- 1) r)-h-, 

c r 

shMr 
f3M-l =-V ((M- 1) r)-h-. 

c r 

(5.13) 

(5.13a) 

(5.13b) 
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Using (5.13) we get eventually 
T M-2 

J(uv)= J[(uv(t))2 +(u~1)(t)) 2]dt=2cth-r .2; v2 (i-r) + 
0 i=1 

2 
M -2 

+(cth -r+th r) v 2 ((M -1) -r)- sh -r .2; v (i-r) v ((i+ I) r) (5.14} 

and thus we can find the set V<ad· 

\ 

5.2. The case of operator ~2< 

Example 3. Let 

Uad ={u E H 1 (0, T): u (0) =0, J (u)= l ( u(l) (t))Z dt:!(; 1 }· 

In this case equation (4.8) reduces to 
M-1 

u~2>(t)= }; c;W;(t) 
i=O 

along with boundary conditions 

Uv(O)=O, u~1)(T)=0. 

Moreover conditions (4.9) must be satisfied. 

(5.15)-

(5.16) 

(5.16a) 

Like in (4.10) we rewrite (5.16) in the form of inhomogeneous normal system 
of first order equations. We have 

[
ilv(t)] [O,I][uv(t)] [0]~

1 

u~1\t) = 0, 0 u~1l(t) - . 1 -6-t C; W; (t). 
(5.17} 

The solution of this system is given by 

[
uv(t) ] [ 1, t] [uv(O) l [ 1, t] It [::-S] '~

1 

u~l)(t) = 0, 1 u~ll(O) - 0, 1 
0 

1 f!r; C; W; (s) ds · 
(5.18) 

The initial condition uv(O) is given by (5.16a) and the initial condition u~1l(O) 
can be found from terminal condition (5.16a). Using this condition we obtain from 
(5.18) 

M-1 

u~1 ) (0) = -r }; C;. 

i=O 

(5.19} 

Therefore the solution (5.18) in the interval (h, (k+ 1) r) we can rewrite in the 
form 

[
uv(t) ]=["t] ~

1 

C;- ~ C;[tr-(i+-!)r
2
]-[-! (t -h)

2]ck 
u<ll(t) -r .L.J .L.J -r t-h 

V . i=O i=O 

or 
M-1 k-1 

Uv(t)= --!ck(t-h)2 +t-r _l1 
c;+r2

}; (i+-!) C; , (5.20a) 
i=k i=O 
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M-1 

~~1>(t)= -ck(t-kr)+r}; C;. (5.20b} 
i= k 

Substituting (5.20a) to (4.9) we get 

k- I 

r 2
}; (i+-!) c;+r2 (k+t) ck+ 
i=O 

M-1 

+r2 
}; (k+!) C;=v(kr), k=O, 1, ... ,M-1. (5.21} 

i=k+ 1 

The system of equations (5.21) constitutes matrix equation (4.14) from which 
we find ck in terms of v (kr), k=O, 1, ... ,M -1. To find the form of J (uv) let us 
note that 

T T 

J (uu)= J (u~1>(t))2 dt=uv(T) u~1)(T)-uv(O) u~l)(O)- J u~2>(t) uv(t) dt. 
0 0 

Using (4.9), (5.16) and (5.16a) we get 
T T M-1 

J(uv)=- J u~.2>(t)uv(t)dt= J}; C;Wi(t)uv(t)dt= 
0 0 i=O 

M-1 (i+1)< M-1 

=}; C; J uv(t) dt=r .2; C; v (h). 
i=O it i=O 

Substituting to this formula the values of c; expressed in terms of v (ir) we obtain 
J (uu) as a function of v (ir), i=O, 1, 2, ... , M -1 and thus we can find Vrad· 

Appendix 

Already after the submition of the manuscript to the printer, the author noted 
that the condition (3.i6) must be always satisfied, so the assumptions (iii) in Theorem 
2 and Theorem 3 can be removed. 

The proof of this fact is given below. 
Let us consider the problem of minimizing the form 

T 

J (u) = J ll_T (t) Att_ (t) dt (A.l} 
0 

on the subspace H~ (0, T) given by (2.2a), without any additional constraints. It 
is clear that due to (2.2a) this problem has the unique solution 

u0 (t)=O. (A.2) 

On the other hand using the same argument as in the proof of Theorem 3 we 
show that any solution u0 (t) of (4.8) with homogeneous right-hand side and along 
with the boundary conditions (4.4), (4.6) minimizes J (u). Such solution exists 
if the vector £!0 (0) of initial conditions satisfies (3.15) with homogeneous right-hand 
side, i.e. if 

C£!0 (0) =0. (A.3) 
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But by (A.2) the only possible vector of initial conditions is the zero vector. 
Hence (A.3) can not have any non-zero solution, which implies that the matrix 
.C satisfies (3.16). Q. E.D. 
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0 aproksymacji dyskretnej pewnej klasy zbiorow sterowan 
dopuszczalnych 

Formuluje sit< problem aproksymacji dyskretnej domknit<tych i wypuklych zbior6w sterowan 
dopuszczalnych. 
Pokazuje sit<, :i:e dla szerokiej klasy takich zbior6w aproksymacja dyskretna istnieje i jest okreslona 
w spos6b jednoznaczny. 

Rozwa:i:a sit;: dwa typy dyskretyzacji i dla ka:i:dego z nich podaje sit< metodt< konstruowania 

aproksymacji zbior6w sterowan dopuszczalnych. Konstrukcja taka wymaga rozwiqzania zadania 
dwubrzegowego dla r6wnania r6:i:niczkowego zwyczajnego. Uzyskane wyniki ilustrowane Sq przy

kladami . 

0 ,lJ,IICKpeTHOH annpOKCIIMa~lfll HeKOlOporo KJiaCCa MHOlKeCTB 
,LJ,OUYCTIIMbiX ynpaBJieHIIH 

<J.>opMyJIHpyeTCll 3a)l;a'Ia !l:HCKpeTHOM arrnpOKCHMal\HH 3aMKHYTb!X H BhiiiYKJib!X MHOlKeCTB 
)l;OnyCH!MblX ynpaBJieHHM. 

TioKa3aHO, 'ITO CyiUeCTByeT il:llCKpeTHall annpOKCHMaliHll ):(!Ill lllHpOKOrO KJJaCca TaKllX MHO
lKeCTB, H 'ITO OHa Onpe)l;eJieHa O)l;H03Ha'IHO. 

PaCCMaTpHBaiOTCR )l;Ba THT!a !J:HCKpeTH3al\HH H )l;JJll KalK)l;OfO H3 HHX )l;aeTCll MeTO!l: TIOCTpO

eHHll ynpasrreHHM. TaKOe IIOCTpOeHHe Tpe6yeT pellleHllR !l:BYXTO'IHOH KpaeBOM 3a)l;a'IH )l;JJll 06bJKHO
BeHHOfO il:H<_P!j:JepeHUHaJJbHOfO ypaBHeHHll. Tiony'IeHHbie pe3yJibTaTbl HJIJIIOCTpHpyiOTCll Ha rrpn:
Mepax. 
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