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Synthesis method of a controller, which reduces small disturbances and at the same time ensures
maximization of the stability region for dynamical system described by ordinary differential equa-
tions is considered.

Two tasks are solved; the first — choosing proper structure of the controller, which performs
two functions mentioned above and the second — estimating and maximizing of stability region.

The first function is realized in form of the decomposition. In order to reduce small distur-
bances the classical method with linearization of the system and solving linear-quadratic problem
is used. In order to maximitze the stability region, paralelly to linear controller the nonlinear one
is used. The output of this last controller depends on the second and the higher powers of error
signal. In consequence of that the linearized system is not changed.

The problem of the stability region estimation is solved using the second Liapunov method.
Practical algorithm for determination of the optimal quadratic Liapunov function is presented.
The Liapunov function parameters are determined in such a way to maximize the measure of sta-
bility region for fixed system parameters. Later on, the parameters of nonlinear controller are chosen
in such a way to maximize the measure of stability region estimate for closed-loop system. Compu-
tation results for autorefrigerated chemical reactor are also presented as an example.

1. Introduction

In the analysis and design of control systems one must recognize the virtual
inevitability of known or unknown disturbances on the system. It is the function
of the controller to maintain the system in the desired state in the face of such dis-
turbances. The present work is a study of control-system behaviour for:

1) small disturbances using typical linear theory methods;
2) large disturbances where the disturbances cause large changes in one or more
of the state variables.

The need for considering such large disturbances arises from the fact that quite
large disturbances do occur in real control systems. Therefore if a controller cannot
maintain the desired state of a system when subjected to large disturbances it may
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often be considered a failure. The need for considering nonlinear phenomena in
control systems is obvious from their universal occurrence. Linear approximations
fail to predict many types of system behaviour which could only be classified as
failures of the control system. Usually in such situations one must use the hand-
controlling. However it is very important to neutralize the results of large distur-
bances as soon as possible. Hence there is the need of a particular process-controller
combination, which assures proper work of the system when the large disturbances
occur. '

In the present work the controller synthesis method is proposed in such a way,
as to maintain the system state in the desired point. The function of the controller
is decomposed. The state stabilization task is realized by the controller as a linear
one. The neutralizing of the results of large disturbances is realized by the coatroller
as a nonlinear one. In that way from theoretical point of view the control system
realizing the state stabilization function as a matter of fact works as a linear one
near the desired point and the control system counteracting the results of large
disturbances works as a nonlinear one. Such a controiler can be named the controller
with internally changing structure or the adaptive controller with respect to the kind
of the disturbances.

2. Problem statement

The disturbances from 1 and 2 group interacting in finite time and causing
finite changes of the system state are considered. The changes of the system state
after the end of disturbance acting are considered. The function of the controller
is to lead the system to desired state.

Let the process be described by a set of ordinary differential equations of the
‘form j

x=f(x,u),x(t)e R, u(t)e R", f: R"X R">R". 1)

(Notice that, the Eq. (1) describes the process considering the system state after
the end of disturbance acting).
~ It is assumed that the function f (x, #) has continuous second partial derivatives
with respect to x and u.
For x,e€ R", ue C° [t,, T] the unique solution of the system (1) exists.
There is an equillibrium point (x,, u,), for the system (1), which is a soluticn
of the algebraic vector equation

S (e, ue)=0. @

The control-system synthesis which ensures the state of the system (1) near
desired equillibrium point (x,, #,) is wanted to be done.

It is assumed that the form of the controller function u=u (x, p), where p € R®
is the controller parameter vector, is known.
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It is also assumed that the function u=u (x, p) is such that ensures the stability
of the closed system

J’c=f(x, u (x, p)).

Then there is the neighbourhood S of the equillibrium point, named asymptotic
stability region or attraction region of the equillibrium point, which is defined in
the following way

S [pl={xo € R" lim x (t; to, X0, P) =%}, 3
t— +00 5
where xo=x (to; fo, X0, P)-

It is easy to notice (Fig. 1), that if there is larger stability region S, then longer
time-period of large disturbance acting and larger disturbance will be admitted
without failure of the system. On the Fig. 1 there is shown the trajectory in the
situation when large disturbance acts, the first (dashed line) with time-period
7'=t,—t, and the second (continuous line) with time-period t''=¢," —¢,. In the
first case at the moment of the end of disturbance acting the system state is in the
asymptotic stability region S. The controller can lead the system state to the equil-
librium point x,. In the second case — the time-period 7'’ is too long to allow to
do it and the disturbance will lead the system state outside the asymptotic stability
region S. Then the state stabilization will be impossible. In order to avoid such
a situation the control-system should be designed to assure sufficiently large stabi-
lity region near the desired equilibrium point.

4

Fig. 1

Since for the closed loop system the stability region (3) depends on the controller
parameters, the problem. of the parametric synthesis can be formulated as follows:
choose the parameter vector p in such a way, to get the largest possible stability
region in the sense of a given measure of that region.

The measure of the set is difined as follows. .

Definition. The number me R* is called the measure of the set Z<R", if

m=¢E(Z), &E2°-RY,  E@)=0, @
N E(Z)<L(Zy). )

Z,<Z, <R
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Since the stability region depends on the controller parameters, then the mea-
sure of that region also depends on that parameters

m=m (p)=¢ (S [p]).

The task of the parametric controller synthesis algorithm, constructed in order
to extend the stability region, is to choose the parameter vector p so as, to receive
maximum of the stability region measure:

m=max {m(p)}, (6)

DEP

wher P is the set of the physically realized parameters.

Tt is known that the extending of the stability region can undesirably change
the dynamical properties of the closed-loop system. The system can become “‘slowly
working” and consequently the disturbances will be ineffectively damped. That
fact is of great importance in the case of the small disturbances, which act more
frequently than the large disturbances.

To the controller synthesis one can use the fact, that the amplitudes of distur-
bances of 1 and 2 group differ very much.

It can be used one of generally known linear theory methods to ensure the pro-
per work of the control system near the equilibrium point. It means, that one sear-
ches the solution of local optimization problem (in such neighbourhood of the
equilibrium point, in which linearization of the system is justified) in sense of chosen
criterion. It is easy to notice, that such method of solving of the optimization problem
is sufficient for damping of small disturbances. Tt also allows to avoid the system
complication, which arises in nonlinear optimization problem.

In the face of the necessity of large disturbances results reduction at the same
time it would be conveniently to solve the local optimization problem and the task
of maximization of the stability region independently.

3. Decomposed synthesis method

The purpose of the method presented in this point is to decompose the task of
local optimization and the task of maximization of the stability region. It means
that the control function must be chosen in such a way as to allow to solve the
local optimization problem and the task of maximization of the stability region
independently.

Consider the control function represented by equation

u(x!p)=ue+M1(x_xe)_l'(x_xe)TMZ(x_xe)'i' ey (7)

where the m x n matrices M, M, have the elements, which are constant with respect
to the state x, but depend on the parameters p.
Consider the parameter vector p which is represented as follows:

i
P‘{pz}' ®
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It is assumed that the elements of the matrix M; depend on the parameters p,,
and the elements of the matrix M, depend on the parameters p,.

For the control function defined above, the parameters p, can be chosen in
order to solve local optimization problem and the parameters p, can be chosen in
order to maximize the stability region.

It is easy to notice, that the control function (7) satisfies the following conditions:

1. The assurance of the maintaining desired equilibrium point.

It means, that the equation, which assures the maintaining of the steady state is
satisfied

/\ Ue=U (xea P) . (9)

pEP

2. The assurance of the possiblity of solving of local optimization problem.

For the small state and control deviations from equilibrium point, which can
be characterized by

0X=X—X,, ou=u—1u, (10)

the linearized system state equation of the system is the following

ox=A ox+B du, (11)
where
af (x, u) } af (x, u) [
A= ox i P du ik (£2)

For the example one can take the quadratic criterion, which is obvious for the
small state and control deviations from the equilibrium point:

J(éu)=% f (0xT Q Sx+0uT U du) dt, (13)
tg

where Q,x,— the symetric semi-positive defined matrix, U, x, — the symetric
positive defined matrix. There are no constrains on Ju.

Moreover it is assumed, that the system (11) is completely controlable, or that
the uncontrolable part of the system (11) is stable.

As the solution of the linear — quadratic problem (minimalization of the per-
formance (13)) one obtains the analytic form of the local optimal control [2]

ot ()= —U"'BTK 6x (t) (14)

where the matrix K,,, has the constant elements. The matrix K is the solution of
the nonlinear Riccati matrix equation

—RA-A"R+RBU-'BTR—0=0. (15)

For the linear system, which has m control variables and n state variables the
matrix M, has m rows and n columns, it means m-n elements. It follows that the
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sufficient condition of the possibility of the local optimization solution in sense
of the criterion (13) is the existence of the solution (with respect to p,) of the equation:

M=l iBER s = (16)

For the existence of the solution of the Eq. (16) it is sufficient to assume the condi-
tions:

dim p;=m-n ' (17)
and
my
m
=1 (18)
m,

where the column vector m; is the row number i of the matrix M.

It must be emphasize, that in order to design the linear part of the control
function one can use the other methods of the small disturbance reduction. It
may be for example the expanding of the maximal band width frequency of the
control system or so on.

3. The possibility of the maximization of the asymptotic stability region without
influence on the local optimization.

It means, that the task of maximization of the stability region measure can be
solved by choosing vector p,

ri=max {m (p)}, ﬁ={pl}, (19)
P2EP P2 3
where vector p, is the solution of local optimization problem.

It’s easy to see, that if matrix M, depends only on parameters p,, then the va-
lues of parameters p, do not affect the local dynamical properties of the system.

Hence, the control function (7), which satisfies above mentioned conditions
1, 2, allows to decompose the task of the local optimization and the task of maxi-
mization of the stability region. The first task of the controller synthesis can be
realized by choosing the para-

Ue

Up - U (Xe) r——*—<* meters p, of the linear part of
| Determination the control function (7). The

-y of the equillibrium ;
_ Plant X ke point second task of the controller
x=r{na) ‘ synthesis can be realized by

~UTB"K L—#

choosing the parameters p,
ol of the nonlinear part of the
optimization control function.

The diagram which illu-
strates the nonlinear controller

£xpanding :
B2 el Wl ... of the stability structure (7) synthesised by the
region above presented method is

Fig. 2 shown in the Fig. 2.
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It must be added, that the control function, which posses above mentioned de-
composition property, can be used in more general form

Uy =Ug; + Z % Prc (X)), . (20)
i=1

where u; — the component number i of the vector u; ¢, (x) — arbitrally chosen
set of functions of the class C* (the functions which have continuous partial deri-
vatives); «; — constant coefficients.

It was presented in details in [4].

It is easy to show [4], that the proposed method can be used to choose the
parameters of PI controller and also to choose the structure of the nonlinear PI
controller.

4, Algorithm of approximation of the asymptotic stability region

In practice it is very difficult to find the stability region (3). Using Liapunov’s
stability theory, one can propose the method of the approximation of stability
region.

The set, which approximates the stability region one can call the estimate of
that region.

The interest of the method lies in the fact that, for fixed Liapunov function
(for example quadratic form), it allows to make the best possible estimate of the
stability tegion with respect to the measure of that region. The algorithm of the
asymptotic stability region approximation uses following theorem.

Theorem [3]. Consider the dynamical system x=;(x), f(0)=0, Let ¢ (x): R"—
—RY w (x): R">R* be the scalar functions.

Let moreover

1y  P=gix) &G

2) ¢ ()=0;

3)  y(x)=<grad ¢ (x), f (x)>;

4 N (PB)={xeR"'p(x)<pf}; let N(B) be the component of N'(f) contain-
ing the equilibrium point x,=0; otherwise let N (f)=0;

5 vV A G0N (y (x) > 0)= ¢ (x,) — B

B9>0 {xy3 <N (B%
BOeR!

6) the equilibrium point x,=0 is. asymptotically stable.
Then
S2N(B°).

From the thesis of the theorem one obtains, that the set N (f°) can be used as
the estimate of the real stability region S. Note that from the condition 5 of the
theorem it follows that for the continuous functions ¢ (x), v (x) the number f°
can be defined in following way

BP=min ¢ (x), Q={xeR"|x#0Ny (x)=0} @

xeN
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and then the estimate of the stability region is given by
N(f)={xeR"¢p (x)<p°}. (22)

It is easy to notice that Liapunov function satisfies the conditions of the Theorem.
In other words ¢ (x) can be Liapunov function.

One can introduce the measure of the estimate, defined by (22), using the defi-
nition presented in the point 2. If one chooses different Liapunov functions, as
function ¢ (x), one can obtain the estimates with different measures. Hence the
following problem arises. One finds the optimal estimate in sense of the measure
and suiting to that the optimal Liapunov function.

That Problem can be solved as follows:

1. Assume the form of Liapunov function

V=€P (xa H)3

where H e R¥ — vector of Liapunov function parameters.

2. Find the value B° defined by (21).
3. Calculate the measure of the set N (5°)

m=¢ (N (89). (23)
of course the value m depends on the Liapunov function parameters
m=m (H). (24)
4. Solve the maximization problem
max m (H), (25)
Heo

where the set @ is defined as follows

O={HeR|\ A\ o H)>0ny (x, H)<0}. (26)

>0 x€K(0,8)

The condition H e @ ensures that ¢ (x, H) is the Liapunov function.
In [4] and [5] the practical numerical realization of that algorithm for the Lia-
punov function in the quadratic form

¢ (x, H)=xT Hx @7

is presented. In this case the stability region estimate is an ellipsoid. In [4] and [5]
as the measure of ellipsoid the following value is taken:

m= ” B (28)
i=1

where #; — the length of the main ellipsoid axis number i. This measure is propor-
tional to the volume of the ellipsoid. The measure (28) is maximized by changing
the length of the ellipsoid main axises and the angles of the ellipsoid rotations.
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5. Algorithm of finding the nonlinear part of the controller

The theorem presented in the point 4, can be used to design the closed control
system with the fixed parameters vector p. Then the set defined as follows

N E[H, pl={x (¢; to, X0, P) € R"| 9 (x, H)< °} 29

pDEP
Heo®

satisfies the theorem thesis
S [p]2E [H, p].

The set E [H, p] can be used as the estimate of the stability region (3).
The measure of the set £ [H, p] depends on the controller parameters and on
the Liapunov function parameters

m=m (H, p)=C (E[H, p]). (30)

Then the task of the parametric synthesis of the controller (7), which expands
the stability region can be written as follows
m=max {m (H, p)}, (31

Heo®
D2€EP

where vector p is defined by (8) and vector p, is the solution of the equation (16).

The solution of the problem (31) can be received by choosing the Liapunov
function parameters H in such a way to obta'in the estimate which approximates
the stability region in the best way, in sense of the measure. At the same time the
parameters vector p, of the controller can be chosen in such a way to receive the
maximal expanding of the best estimate of stability region, hence as the consequence
to receive the expanding of the real stability region.

Control system synthesis is done in two stages:

In the first the local optimization problem is solved and the stability region
estimate (the parameters of Liapunov function H) is found for the locally optimal
system with linear controller p,=0. In the next using the found estimate (the para-
meters of Liapunov function H) as the initial approximation, the measure of that
estimate is maximized with respect to the controller and Liapunov function para-
meters. The diagram of the method is shown in the Fig. 3.

I level - determination of the
max  m(Ap, 7,po) linear controller stability
Ah.n, p2=0 region measure

o M 17

% B 1 I level- expanding of the
max  m(Ap+8An,n+80,p2) stability region determined
e l in I level

Fig. 3 -
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Using that method one can be assured, that obtained stability region estimate
for the system with nonlinear controller will not be less, than the one for the system
without that controller. The numerical results confirmed the efficiency of that
method.

6. The numerical example

The control system synthesis presented in the work was used for the conti-
nuous stirred-tank chemical reactor in which a first order irreversible reaction
occurs A—B. Simple kinetics are chosen for purposes of illustration to make the
analysis techniques clear. Extension of the method to more complex reactions is
straightforward.

The state equations describing the reactor are respectively the component con-
tinuity equation and energy equation:

-5 Ere]
C—-—V“(CO—C)—COLCXP —m 5

o

C (32)

—E ]
R (T+460) &

4H, '1 7
T T

The state variables C, T are appropriately the concentration and temperature
of the substance A inside of the reactor. They are at the same time the output va-
riables. The variables C;, T, are respectively the concentration and temperature of
the substance A in steady state. The variables C,, T, are respectively the concentra-
tion and temperature of the substance 4 at the input to the reactor. Other
parameters in equations (32) are the physical values characterizing the reaction,
taken from [7].

Since the reactor posses the stable equilibrium point for the temperature Ty=
140°F one can use the linear controller

Wc= W0+kpc (C_CS)+kpt(T—'Ts)a (33)

where W, — the rate of coolant flow in steady state; k,., k,, — the gains of the
controller.

The concentration C; and the rate of coolant flow W, suitable to the temperature
T, can be calculated from the steady state equations. They are C;=0.253016 Ib/Ib,
W,=1098.822 Ib/hr.

From the linear analysis of the reactor one can calculate the values of gains
of the coatroller (33).

The nonlinear controller (7) for the considered reactor is the following

s
P AT~ +

Wc= W0+kpc (C— Cs)+kpt (T“Ts)‘l'Rll (C_ Cs)z &L
+2 Ry (C—C) (T—T)+ Ry (T-T,)*. (34)
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The parameter values are calculated in such a way as to obtain maximal value
of the stability region estimate measure (31).

The numerical results were obtained for two examples.

Example I. Reactor with the linear controller (33) with the para-

meters
Kpe=0, kp=T0. (35)

As the initial approximation of the Liapunov function matrix it was taken the

following one
[0.287620, 0.809765 x 10‘2]
~10.809765x 1072,  0.139491

For the above mentioned values the measure (28) of the stability region estimate:
is equal to m=0.584466 x 10~*.

As a result of the maximization of the measure (28) with respect to the Liapunov-
function parameters it was received the following Liapunov function matrix

[0.235198, 0.694158 x 10-1]
~10.694158 x 101,  0.108509

and the measure equal m=0.239540 x 10~ 2.
! ¥4

0.4}

0:3 |

0.2

o1

T L | T [ i TR TT\ S

50 100 150 200

Fig. 4

The phase plane of that reactor with linear controller (33) is presented in the-
Fig. 4. The optimal estimate of the stability region is also illustrated in the Fig. 4.

Reactor with the nonlinear controller (34), with the parameters
of the linear part defined by (35).
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As a result of the maximization of the measure (28) with respect to the Liapunov
function parameters and at the same time to the parameters R,;, R,,, R,, one
received the following matrix

[2.10328, 0.320933]
 10.320933, 1.64465

and the parameters R;; =—0.766377, R,,=1.81010, R,,=1.67776; the measure
is equal to m=0.174019 x 10~1,

Hence by adding the optimal nonlinear controller one obtained 7-times greater
measure. The phase plane of the reactor with the received nonlinear controller is
shown in the Fig. 5. In the Fig. 5 there is also illustrated: (a) — the stability region
estimate for the reactor with the optimal nonlinear controller and (b) — the estimate
for the case Ri;=R{,=R,,=0.

i TOF
0 O | N A A 50 s O |

50 100 150 200 250

Fig. 5

From the comparison of Fig. 4 and Fig. 5 it follows, that the adding of received
mnonlinear controller gives a new equilibrium point (the saddle). But at the same
time the adding of received nonlinear controller decreases danger of the failure
by considerable displacement of boundary of the stability region into direction of
the higher temperatures. In the system with the optimal nonlinear controller greater
oscillations of the conceatration can be admitted.

Example II. Reactor with the linear controller (33), with the
parameters

kpe=21.3020, k,=67.5027. (36)
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The values (36) were obtained as the solution of the quadratic criterion mini-

mization
+ o

I== f [500 (C—C,)?+500 (T—T,)? + (W, — Wo)*] dt. @7

to

For that case where the optimal Liapunov function matrix is the following one

[2.71641 0.782905]
~10.782905 0.997712

and the measure is equal to m=0.101436.

Reactor with the nonlinear controller (34) and with the para-
meters of the linear part of the controller given by (36).

As the result of the maximization of the measure (28) with respect to the Lia-
punov function parameters and at the same time to the parameters Ry, R;,, R,,
one received the following matrix

[1.77808 0.485215]
~10.485215 0.540283

and the parameters R ;= —0.463326x10"%, R,,=0.249916, R,,=1.36133; the
measure is equal to m=0.177316.

In this case, by adding the optimal nonlinear controller one obtained about
2-times greater measure.

The computations were done on CDC 3170 computer. The time of the compu-
tations for the cases with linear controller is about 5 min. and for the cases with
nonlinear controller is about 10 min.

7. Conclusions

The presented decomposing method of the controller synthesis can be used in
practice. If there is the need to satisfy the given conditions with respect to the small
disturbance reduction, it can be done and independently it can be expanded the
stability region in order to avoid the failure of the system.

It may be disscused if the linear controller synthesis method is sufficient in order
to expand the stability region or not. Very often there is such situation that the
conditions describing the dynamical properties of the system in the small neigh-
bourhood of the desired equilibrium point are desired. The expanding of the
stability region can deteriorate the dynamical properties of the system required with
respect to the local optimization criterion. Hence, there is the need of searching
of compromised solutions. The decomposing method of the synthesis makes easy
such a compromise by assuring the linear controller parameters as the solution
of the local optimization problem and by choosing the other parameters (the non-
linear part of the controller) in order to expanding the stability region.
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- It will be interesting to study decomposing method of the synthesis for the diffe-
rent criterions of the local optimization and for more general form of the control
function and also Liapunov function.

In this paper the results of the approximation of the stability region were obtained
for the simplest Liapunov function — quadratic form. The extension of the method
of the stability region approximation to more complex forms of Liapunov function

% m—1
o (x, H)= Z (xZ Hx)** (38)
k=0
is straightforward.

The problem of global minimization, which must be solved in order to find the
number B° defined by (21) seems difficult. The above problem can be transformed
to searching the global minimum with respect to (n—1) variables. But now, there
are not effective methods of searching the global minimum with respect to more than
2 variables. Hence the employing of that method for the systems n-dimensional
when n>3 can be difficult.
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Synteza regulatoréw dla obiektow nieliniowych przy warunku
ma obszar stabilnoSci

Przedstawiono metode syntezy regulatora dla uktadu dynamicznego opisywanego réownaniem
rozniczkowym zwyczajnym, ktory thumi zaklocenia o malej amplitudzie i zapewnia jednocze$nie
maksymalizacie obszaru stabilnosci asymptotycznej ukladu. W celu dokonania takiej syntezy
rozwigzano dwa zadania: zadanie doboru wilasciwej struktury regulatora spelniajacego obie
funkcje oraz zadanie estymacji i maksymalizacji obszaru stabilnosci.

Pierwsze zadanie zostalo rozwiazane przez dekompozycje. Dla realizacji ttumienia zaklocen
stochastycznych o malej amplitudzie stosuje si¢ klasyczne podejécie z linearyzacja obiektu i synteza
regulatora liniowego maksymalizujacego funkcjonat kwadratowy. Natomiast dla maksymalizacji
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obszaru stabilnosci rownolegle do regulatora liniowego wprowadza si¢ regulator nieliniowy, kt6-
rego wyjscie zalezy od drugiej lub wyzszych poteg uchybu, a wiec nie zmienia ukladu zlinearyzo-
wanego. Dzieki temu mozna dokona¢ niezaleznej syntezy kazdej czgSci regulatora.

Problem estymacji obszaru stabilno$ci zostal rozwigzany przy uzyciu drugiej metody Lapunowa.
Wprowadzono funkcje Lapunowa w postaci formy kwadratowej. Nastepnie macierz formy kwadra-
towej dobrano tak, aby zapewni¢ maksimum miary obszaru aproksymujacego obszar stabilnosci
dla ustalonych parametréw ukladu. Z kolei parametry czgsci nieliniowej regulatora dobrano tak,
aby miara estymaty obszaru stabilno$ci ukladu zamknigtego byla maksymalna.

Ponadto przedstawiono wyniki obliczen dla egzotermicznej reakcji wymiany w reaktorze che-
micznym z idealnym mieszaniem.

CunTe3 peryJsiTopoB Il HeJIMHEHHBIX CHCTEM NpPH YCJIOBHAX
Ha 66J1acTh YCTOHIMBOCTH

B pabote mpencraBiieH HOBBIf METOL CHHTE3a PETYISTOPOB IUIS IUHAMMYECKHX CHCTEM,
OIUCHIBAEMBIX OOBUIHOBEHHBIMHM UG (GEepeHIMATbHBIMY  YPABHEHUSAMHA, KOTOPLIA TrapaHTHPYET
NOOABJIEHAE TIOMEX € Maliolf aMIUTUTYION, ¥ OJHOBPEMEHHO TAPaHTUPYET MaKCHMU3ALWIO 00-
JJaCTH aCHMOTOTHYECKOM YCTOMYMBOCTH CHCTEMEIL.

g peanm3aiy 3TOM 3a[ayuy pPEIIeHBI CIEAyIoUMe MpobieMbl: 3a1aya nmoadopa CTPYKTYPBL
peryngropa ¥ 3ajada MakCuMm3alumk obiractm ycTtoiumBocTH. IlepBas 3amava Obuia pemeHa IpH
VICOOJIB30BAHMY NPHHIMNA IEKOMIO3uimd. s pelneHws 3aay¥ MOJABJIEHUS CTOXACTHIECCKAX
IoMeX C Mallol aMIUIATYAOM NPUMEHSICTCS KJIACCHYECKHN ITOIXOI — JIMHEAPU3alusd ypaBHCHMMA
CHCTEMbI M CHHTE3 JIMHEHHOrO PEryIsiTopa, ONTHMAIbHOIO B CMBICIIE KBaIPaTHYHOTO (YHKIHO-
Hana. s peNueHns 3aJavd MAaKCHEMH3aluy O0JIaCTH BBOIWTCS HENMHEHHDLIN perynsTop, paGo-
TAOWMII NapayielbHO ¢ JIMHEWHBIM. BBIXOII HAJMHEWHOTO pPerysiiTopa 3aBHCHT OT BTOPOM H
BBICIIMX CTENEHEH curHaja OIMMOKH, M He M3MEHIET BUIA JTHHCAPU30BAHHBIX YPABHEHMII CHCTEMEL.
Bnaronaps 3ToMy SIBJISIETCSI BO3MOXHBIM IPOM3BECTH HE3aBUCHMO CHHTE3 OOEHMX 4acTeil peryiis-
TOpa. 3amava ompenesieHns ONEHKH 00JacTH YCTOMYMBOCTH pPemeHa MPH MCIOJIE30BAHUE BTOPOTO
merona JIsmynosa. Beomutcs dynxuust JIsnyHOBa B BHIE KBaIPAaTHYHOM (HOPMBI; MaTpPHUIy 3TOM
{opmbl monbupaercst Tax, 4To0bl MAKCHMU3HPOBATH HEKOTOPYIO Mepy O0JacTH yCTOWYMBOCTH,
i TIOCTOSIHHBIX TapaMETPOB PETYIATOpa. 3aTeM mapaMeTpsl HENWHEHHOH 9acTH peryisropa
noabuparoTes TakuM 00pa3om, 4ToOBI Mepa 00nacT¥ YCTOMYMBOCTH 3aMKHYTOH CHCTEMBI Oblla
MaKCUMaJIbHOM.

TIpencTaBieHbl Pe3yabTATEl PAcY€TOB [JIsH CIyYasi XMMHYECKOTO peakTopa ¢ 3KCOTEPMHYECKOR
peaknmeir obmena.
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