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Synthesis method of a controller, which reduces small disturbances and at the same time ensures 
maximization of the stability region for dynamical system described by ordinary differential equa­
tions is considered. 

Two tasks are solved; the first - choosing proper structure of the controller, which performs 
two functions mentioned above and the second - estimating and maximizing of stability region. 

The first function is realized in form of the decomposition. In order to reduce small distur­
bances the classical method with linearization of the system and solving linear-quadratic problem 
is used. In order to maximitze the stability region, paralelly to linear controller the nonlinear one 
is used. The output of this last controller depends on the second and the higher powers of error 
signal. In consequence of that the linearized system is not changed. 

The problem of the stability region estimation is solved using the second Liapunov method. 
Practical algorithm for determination of the optimal quadratic Liapunov function is presented. 
The Liapunov function parameters are determined in such a way to maximize the measure of sta­
bility region for fixed system parameters. Later on, the parameters of nonlinear controller are chosen 
in such a way to maximize the measure of stability region estimate for closed-loop system. Compu­
tation results for autorefrigerated chemical reactor are also presented as an example. 

1. Introduction 

In the analysis and design of control systems one must recognize the virtual 
inevitability of known or unknown disturbances on the system. It is the function 
of the controller to maintain the system in the desired state in the face of such dis­
turbances. The present work is a study of control~system behaviour for: 
1) small disturbances using typical linear theory methods; 
2) large disturbances where the disturbances cause large changes in one or more 
of the state variables. 

The need for considering such large disturbances arises from the fact that quite 
large disturbances do occur in real control systems. Therefore if a controller cannot 
maintain the desired state of a system when subjected to large disturbances it may 
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often be considered a failure. The need for considering nonlinear phenomena in 
control systems is obvious from their universal occurrence. Linear approximations 
fail to predict many types of system behaviour which could only be classified as 
failures of the control system. Usually in such situations one must use the hand­
controlling. However it is very important to neutralize the results of large distur­
bances as soon as possible. Hence there is the need of a particular process-controller 
combination, which assures proper work of the system when the large disturbances 
occur. 

In the present work the controller synthesis method is proposed in such a way, 
as to maintain the system state in the desired point. The function of the controller 
is decomposed. The state stabilization task is realized by the controller as a linear 
one. The neutralizing of the results of large disturbances is realized by the controller 
as a nonlinear one. In that way from theoretical point of view the control system: 
realizing the state stabilization function as a matter of fact works as a linear one 
near the desired point and the control system counteracting the results of large 
disturbances works as a nonlinear one. Such a controller can be named the controller 
with internally changing structure or the adaptive controller with respect to the kind 
of the disturbances. 

2. Problem statement 

The disturbances from 1 and 2 group interacting in finite time and causing 
finite changes of the system state are considered. The changes of the system state 
after · the end of disturbance acting are considered. The function of the controller 
is to lead the system to desired state. 

Let the process be described by a set of ordinary differential equations of the 
· form 

x =f(x, u), x (t) ERn, u (t) ER"', f: Rn x R"'->Rn. (1) 

(Notice that, the Eq. (1) describes the process considering the system state after 
the end of disturbance acting). 

' It is assumed that the function f(x, u) has continuous second partial derivatives 
with respect to x and u. 

For x 0 ERn, u E C0 [t0 , T] the unique solution of the system (l) exists. 
There is an equillibrium point (xe, ue), for the system (1), which is a solution 

of the algebraic vector equation 

(2) 

The control-system synthesis which ensures the state of the system (1) near 
desired equillibrium point (xe, ue) is wanted to be done. 

It is assumed that the form of the controller function u=u (x, p), where p E R• 

is the controller parameter vector, is known. 
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It is also assumed that the function u =u (x, p) is such that ensures the stability 
of the closed system 

x =f(x, u (x,p)). 

Then there is the neighbourhood S of the equillibrium point, named asymptotic 
stability region or attraction region of the equillibrium point, which is defined in 
the following way 

(3) 
t-+ +oo 

where x 0 = X (to; to, x 0 ,p). 

It is easy to notice (Fig. 1), that if there is larger stability region S, then longer 
time-period of large disturbance acting and larger disturbance will be admitted 

. . 
without failure of the system. On the Fig. 1 there is shown the trajectory in the 
situation when large disturbance acts, the first (dashed line) with time-period 
r'=t;-t 1 and the second (continuous line) with time-period r" = t;' - t 1 . In the 
first case at the moment of the end of disturbance acting the system state is in the 
asymptotic stability region S. The controller can lead the system state to the equil­
librium point Xe· In the second case- the time-period r" is too long to allow to 
do it and the disturbance will lead the system state outside the asymptotic stability 
region S. Then the state stabilization will be impossible. In order to avoid such 
a situation the controi-system should be designed to assure sufficiently large stabi­
lity region near the desired equilibrium point. 

X; 

Fig, 1 

Since for the closed loop system the stability region (3) depends on the controller 
parameters, the problem. of the parametric synthesis can be formulated as follows: 
choose the parameter vector p in such a way, to get the largest possible stability 
region in the sense of a given measure of that region. 

The measure of the set is difined as follows. 
Definition. The number mER+ is called the measure of the set ZcRn, if 

c;(0) = 0, (4) 

(5) 
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Since the stability region depends on the controller parameters, then the mea­
sure of that region also depends on that parameters 

m=m (p)=~ (S [p]) . 

The task of the parametric controller synthesis algorithm, constructed in order 
to extend the stability region, is to choose the parameter vector p so as, to receive 
maximum of the stability region measure: 

1n=max {m (p)}, (6) 
pEP 

wher P is the set of the physically realized parameters. 
It is known that the extending of the stability region can undesirably change 

the dynamical properties of the closed-loop system. The system can become "slowly 
working" and consequently the disturbances will be ineffectively damped. That 
fact is of great importance in the case of the small disturbances, which act more 
frequently than the large disturbances. 

To the controller synthesis one can use the fact, that the amplitudes of distur­
bances of 1 and 2 group differ very much. 

It can be used one of generally known linear theory methods to ensure the pro­
per work of the control system near the equilibrium point. It means, that one sear­
ches the solution of local optimization problem (in such neighbourhood of the 
equilibrium point, in which linearization of the system is justified) in sense of chosen 
criterion. It is easy to notice, that such method of solving of the optimization problem 
is sufficient for damping of small disturbances. It also allows to avoid the system 
complication, which arises in nonlinear optimization problem. 

In the face of the necessity of large disturbances results reduction at the same 
time it would be conveniently to solve the local optimization problem and the task 
of maximization of the stability region independently. 

3. Decomposed synthesis method 

The purpose of the method present~d in this point is to decompose the task of 
local optimization and the task of maximization of the stability region. It means 
that the control function must be chosen in such a way as to allow to solve the 
local optimization problem and the task of maximization of the stability region 
independently. 

· Consider the control function represented by equation 

(7) 

where the m x n matrices M 1 , M 2 have the elements, which are constant with respect 
to the state x, but depend on the parameters p. 

Consider the parameter vector p which is represented as follows: 

(8) 
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It is assumed that the elements of the matrix M 1 depend on the parameters p 1 , 

and the elements of the matrix M 2 depend on the parameters p 2 • 

For the control function defined above, the parameters p 1 can be chosen in 
order to solve local optimization problem and the parameters p 2 can be chosen in 
order to maximize the stability region. 

It is easy to notice, that the control function (7) satisfies the following conditions~ 

1. The assurance of the maintaining desired equilibrium point. 

It means, that the equation, which assures the maintaining of the steady state is­
satisfied 

1\ Ue=U (Xe, p). (9} 
p E P 

2. The assurance of the possiblity of solving of local optimization problem. 

For the small state and control deviations from equilibrium point, which can 
be characterized by 

OX=X - Xe, OU=U-Ue (lO) 

the linearized system state equation of the system is the following 

ox=A ox+Bou, (11} 

where 

A= of(x, u) I 
OX jx=Xe' 

u=ue 

B = _af_ (_x_, u_) \ 

au I~~~= 
(12) 

For the example one can take the quadratic criterion, which is obvious for the 
small state and control deviations from the equilibrium point: 

1 +oo 

J (ou) = 2 J (OXT Q Jx+OUT U OU) dt, (13) 

to 

Where Q/1 X 11 - the symetric Semi-positive defined matriX, um X Ill -the symetric 
positive defined matrix. There are no constrains on ou. 

Moreover it is assumed, that the system (11) is completely controlable, or that 
the uncontrolable part of the system (11) is stable. 

As the solution of the linear- quadratic problem (minimalization of the per­
formance (13)) one obtains the analytic form of the local optimal control [2] 

ou (t) =- u-l Br K ox (t) (14) 

where the matrix K11 x n has the constant elements. The matrix K is the solution of 
the nonlinear Riccati matrix equation 

(15} 

For the linear system, which has m control variables and n state variables the 
matrix M 1 has m rows and n columns, it means m·n elements. It follows that the 
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sufficient condition of the possibility of the local · optimization solution in sense 
·of the criterion (13) is the existence of the solution (with respect to p 1 ) of the equation: 

(16) 

For the existence of the solution of the Eq. (16) it is sufficient to assume the condi­
tions: 

dimp 1 =m·n (l7) 

.and 

(18) 

where the column vector m; is the row number i of the matrix M 1 • 

It must be emphasize, that in order to design the linear part of the control 
function one can use the other methods of the small disturbance reduction. It 
may be for example the expanding of the maximal band width frequency of the 
control system or so on. 

3. The possibility of the maximization of the asymptotic stability region without 
influence on the local optimization. 

It means, that the task of maximization of the stability region measure can be 
solved 'by choosing vector p 2 

m= max {m (p)}, (19) 
P2E P 

where vector j3 1 is the solution of local optimization problem. 
It's easy to see, that if matrix M 1 depends only on parameters p 1 , then the va­

lues of parameters p 2 do not affect the local dynamical properties of the system. 
Hence, the control function (7), which satisfies above mentioned conditions 

1, 2, allows to decompose the task of the local optimization and the task of maxi­
mization of the stability region. The first task of the controller synthesis can be 

Ue · u (xe) 

Plant 
x = f(x,u) 

Fig. 2 

Determination 
of the equillibrium 
ooint 

Local 
optimization 

Expanding 
of the stability 
region 

realized by choosing the para­
meters p 1 of the linear part of 
the control function (7). The 
second task of the controller 
synthesis can be realized by 
choosing the parameters p 2 

of the nonlinear part of the 
control function. 

The diagram which illu­
strates the nonlinear controller 
structure (7) synthesised by the 
above presented method IS 

shown in the Fig. 2. 
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It must be added, that the control function, which posses above mentioned de­
·composition property, can be used in more general form 

r 

Ui= Uei + .2.: r:t.ik lfJk(X), (20) 
k = 1 

where ui - the component number i of the vector u; 'Pk (x)- arbitrally chosen 
set of functions of the class C 1 (the functions which have continuous partial deri­
vatives) ; rxik - constant coefficients. 

It was presented in details in [4]. 
It is easy to show [4], that the proposed method can be used to choose the 

parameters of PI controller and a lso to choose the structure of the nonlinear PI 
controller. 

4. Algorithm of approximation of . the asymptotic stability region 

In practice it is very difficult to find the stability region (3) . Using Liapunov's 
stability theory, one can propose the method of the approximation of stability 
region. 

The set, which approximates the stability region one can call the estimate of 
that region. 

The interest of the method lies in the fact that, for fixed Liapunov funct ion 
(for example quadrat ic form), it allows to make the best possible estimate of the 
stability region with respect to the measure of that region. The algorithm of the 
asymptotic stability region approximation uses following theorem. 

Theorem [3]. Consider the dynamical system x=f(x),/(0) = 0, Let rp (x) :R" -+ 
-+R1

, If/ (x): R"-+R1 be the scalar functions. 
Let moreover 
1) V= rp(x)EC 1

; 

2) rp (0) = 0; 
3) !f1 (x) = <grad rp (x),f(x)) ; 
4) N' (/3) = { x ER" I rp (x) < /3}; let N (/3) be the component of N ' (/3) contain­

ing the equilibrium point Xe = 0; otherwise let N (/3) = 0; 
5) V 1\ (x"-/-'; O) n ( If/ (x") -+ o) => rp (x")-+ /3°; 

po>O {Xn)C N (P D) 
poERl 

6) the equilibrium point Xe = O is asymptotically stable. 
Then 

I S 2 N (/3°). 

From the thesis of the theorem one obtains, that the set N (/3°) can be used as 
the estimate of the real stability region S. Note that from the condition 5 of the 
theorem it follows that for the cont inuous functions rp (x), !f1 (x) the number /3~ 

can be defined in following way 

f3° = min rp (x) , D ={x E R" l x~On !f1 (x) = O} (2 1) 
X E!J 
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and then the estimate of the stability region is given by 

(22) 

It is easy to notice that Liapunov function satisfies the conditions of the Theorem. 
In other words rp (x) can be Liapunov function. 

One can introduce the measure of the estimate, defined by (22), using the defi­
nition presented in the point 2. If one chooses different Liapunov functions, as 
function rp (x), one can obtain the estimates with different measures. Hence the 
following problem arises. One finds the optimal estimate in sense of the measure 
and suiting to that the optimal Liapunov function. 

That Problem can be solved as follows: 
1. Assume the form of Liapunov function 

V=rp(x,H), 

where HE Rk - vector of Liapunov function parameters. 

2. Find the value /]0 defined by (21). 
3. Calculate the measure of the set N (/]0

) 

(23) 

of course the value m depends on the Liapunov function parameters 

m=m (H). (24) 

4. Solve the maximization problem 

max m (H), (25) 
HEf'J 

where the set e is defined as follows 

1\ q; (x, H)>On!f/ (x, H)<O}. (26) 

The condition HE e ensures that rp (x, H) is the Liapunov function. 
In [4] and [5] the practical numerical realization of that algorithm for the Lia­

punov function in the quadratic form 

rp (x, H)=xT Hx (27) 

is presented. In this case the stability region estimate is an ellipsoid. In [4] and [5] 
as the measure of ellipsoid the following value is taken: 

11 

m= nh;, (28) 
i= 1 

where h; -the length of the main ellipsoid axis number i. This measure is propor­
tional to the volume of the ellipsoid. The measure (28) is maximized by changing 
the length of the ellipsoid main axises and the angles of the ellipsoid rotations. 
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5. Algorithm of finding the nonlinear part of the controller 

The theorem presented in the point 4, can be used to design the closed control 
system with the fixed parameters vector p . Then the set defined as follows 

/ \ E[H, p] = {x (t; t0 , x0 ,p) ER" I qJ (x, H)<fJ0
} 

p E P 
H E I?J 

satisfies the theorem thesis 

S [p]2E [H,p] . 

The set E [H, p] can be used as the estimate of the stability region (3). 

(29) 

The measure of the set E [H, p] depends on the controller parameters and on 
the Liapunov function parameters 

m=m (H,p) = C:, (E [H,p]). (30) 

Then the task of the parametric synthesis of the controller (7), which expands 
the stability region can be written as follows 

m = max {m (H,p)}, 
H E I?J 
p zE P 

(31) 

where vector p is defined by (8) and vector j3 1 is the solution of the equation (16). 

The solution of the problem (31) can be _received by choosing the Liapunov 
function parameters H in such a way to obtain the estimate which approximates 
the stability region in the best way, in sense of the measure. At the same time the 
parameters vector p 2 of the controller can be chosen in such a way to receive the 
maximal expanding of the best estimate of stability region, hence as the consequence 
to receive the expanding of the real stability region. 

Control system synthesis is done in two stages: 
In the first the local optimization problem is solved and the stability region 

estimate (the parameters of Liapunov function H) is found for the locally optimal 
system with linear controller p2 = 0. In the next using the found estimate (the para­
meters of Liapunov function H) as the initial approximation, the measure of that 
estimate is maximized with respect to the controller and Liapunov function para­
meters. The diagram of the method is shown in the Fig. 3. 

Fig. 3 

I level - determination of the 
linear controller stability 
r egion measure 

ll I eve/ - expanding of the 
stability region deter mined 
in I level 

-- --- --------------------------------------------------------------------------
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Using that melhod one can be assured, that obtained stability region estimate 
for the system with nonlinear controller will not be less, than the one for the system 
without that controller. The numerical results confirmed the efficiency of that 
method. 

6. The numerical example 

The control system synthesis presented in the work 'was used for the conti­
nuous stirred-tank chemical reactor in which a first order irreversible reaction 
occurs A-+B. Simple kinetics are chosen for purposes of illustration to make the 
analysis techniques clear. Exteasion of the method to more complex reactions is 
straightforward. 

The state equations describing the reactor are respectively the component con­
tinuity equation and energy equation: 

C= ; (C0 -C)-Ca: exp [R (T-+~60)], 
. F (-LJHR) [ -E ] 
T=V(To-T)+ Cp Ca: exp R (T+460) + (32) 

- LJHvo We-. /I-_}'_. 
vcp V TcR 

The state variables C, T are appropriately the concentration and temperature 
of the substance A inside of the reactor. They are at the same time the output va­
riables. The variables C., Ts are respectively the concentration and temperature of 
the substance A in steady state. The variables C0 , T0 are respectively· the concentra­
tion and temperature of the substance A at the input to the reactor. Other 
parameters in equations (32) are the physical values characterizing the reaction, 
taken from [7]. 

Since the reactor posses the stable equilibrium point for the temperature Ts = 
140°F one can use the linear controller 

(33) 

where W0 -the rate of coolant flow in steady state; kpco kpt- the gains of the 
controller. 

The concentration Cs and the rate of coolant flow W0 suitable to the temperature 
T, can be calculated from the steady state equations. They are C5 =0.253016 lbjlb, 
W0 =698.822 lb/hr. 

From the linear analysis of the reactor one can calculate the values of gains. 
of the controller (33). 

The nonlinear controller (7) for the considered reactor is the following 

We = Wo+kpc(C- Cs)+kpr(T-Ts)+Rll (C-Cs)2 + 
+2R12 (C-Cs) (T-Ts)+ R22 (T-Ts)2

• (34) 
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The parameter values are calculated in such a way as to obtain maximal value 
of the stability region estimate measure (31 ). 

The numerical results were obtained for two examples. 

Example I. Reacto r with the linear controller (33) with the para­
meters 

(35) 

As the initial approximation of the Liapunov function matrix it was taken the · 
following one 

[
0.287620, 

H= o.809765 x w- 2 , 

o.809765 x w- 2
] 

0.139491 . 

For the above mentioned values the measure (28) of the stability region estimate 
is equal to m=0.584466 X 10- 4 . 

As a result of the maximization of the measure (28) with respect to the Liapunov 
function parameters it was received the following Liapunov function matrix 

[
0.235198, 

H = 0.694158 x w-I, 

and the measure equal m=0.239540 x 10- 2
• 

c 

Fig. 4 

0.694158 x w-l] 
0.108509 

The phase plane of that reactor with linear controller (33) is presented in the 
Fig. 4. The optimal estimate of the stability region is also illustrated in the Fig. 4. 

Reactor with the nonlinear controller (34), with the parameters. 
of the linear part defined by (35). 
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As a result of the maximization of the measure (28) with respect to the Liapunov 
function parameters and at the same time to the parameters R 11 , R 12 , R 22 one 
received the following matrix 

[
2.10328, 0.320933] 

H = 0.320933, 1.64465 

.and the parameters R 11 =-0.766377, R12 =1.81010, R22 =1.67776; the measure 
is equal to m = 0.174019 X lQ - 1 • 

Hence by adding the optimal nonlinear controller one obtained 7-times greater 
measure. The phase plane of the reactor with the received nonlinear controller is 
shown in the Fig. 5. In the Fig. 5 there is also illustrated: (a) -the stability region 
estimate for the reactor with the optimal nonlinear controller and (b)- the estimate 
for the case R 11 =R12 =R22 =0. 

c 
0.5 

250 

Fig. 5 

From the comparison of Fig. 4 and Fig. 5 it follows, that the adding of received 
nonlinear controller gives a new equilibrium point (the saddle). But at the same 
time the adding of received nonlinear controller decreases danger of the failure 
by considerable displacement of boundary of the stability region into direction of 
the higher temperatures. In the system with the optimal nonlinear controller greater 
oscillations of the concentration can be admitted. 

Example II. Reactor with the linear controller (33), with the 
parameters 

kpc=21.3020, kp1 = 67.5027. (36) 
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The values (36) were obtained as the solution of the quadratic criterion mini­
mization 

1 + oo 

J=2 J [500 (C-C.)2 +500 (T-T.) 2 +(Wc- W0 )
2

] dt.. (37) 
t o 

For that case where the optimal Liapunov function matrix is the following one 

[
2.71641 0.782905] 

H= 0.782905 0.997712 

and the measure is equal to m =0.101436. 
Reactor with the nonlinear controller (34) and with the para­

meters of the linear part of the controller given by (36). 
As the result of the maximization of the measure (28) with respect to the Lia.­

punov function parameters and at the same time to the parameters R11 , R12 , R 22 

one received the following matrix 

[
1.77808 0.485215] 

H = 0.485215 0.540283 

and the parameters R 11 = - 0.463326x10-I, R12 =0.249916, R22 = 1.36133; the 
measure is equal to m = 0.177316. 

In this case, by adding the optimal nonlinear controller one obtained about 
2-times greater measure. 

The computations were done on CDC 3170 computer. The time of the compu­
tations for the cases with linear controller is about 5 min. and for the cases with 
nonlinear controller is about 10 min. 

7. Conclusions 

The presented decomposing method of the controller synthesis can be used in 
practice. If there is the need to satisfy the given conditions with respect to the small 
disturbance reduction, it can be done and independently it can be expanded the 
stability region in order to avoid the failure of the system. 

It may be disscused if the linear controller synthesis method is sufficient in order 
to expand the stability region or not. Very often there is such situation that the 
conditions describing the dynamical properties of the system in the small neigh­
bourhood of the desired equilibrium point are desired. The expanding of the 
stability region can deteriorate the dynamical properties of the system required with 
respect to the local optimization criterion. Hence, there is the need of searching 
of compromised solutions. The decomposing method of the synthesis makes easy 
such a compromise by assuring the linear controller parameters as the solution 
of the local optimization problem and by choosing the other parameters (the non­
linear part of the controller) in order to expanding the stability region. 

2 
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It will be interesting to study decomposing method of the synthesis for the diffe­
rent criterions of the local optimization and for more general form of the control 
function and also Liapunov function. 

In this paper the results of the approximation of the stability region were obtained 
for the simplest Liapunov function - quadratic form. The extension of the method 
of the . stability region approximation to more complex forms of Liapunov function 

m-1 

q; (x, H) = }; (xT Hx)2 k (38) 
k=O 

is straightforward. 
The problem of global minimization, which must be solved in order to find the 

number {3° defined by (21) seems difficult. The above problem can be transformed 
to searching the global minimum with respect to (n - 1) variables. But now, there 
are not effective methods of searching the global minimum with respect to more than 
2 variables. Hence the employing of that method for the systems n-dimensional 
when n > 3 can be difficult. 
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Synteza n;gulatorow dla obiektow nieliniowych przy warunku 
na obszar stabilnosci 

Przedstawiono metodt; syntezy regulatora dla uklad1.1 dynamicznego opisywanego r6wnaniem 
r6:Zniczkowym zwyczajnym, kt6ry t!umi zakl6cenia o ma!ej amplitudzie i zapewnia jednoczesnie 
maksymalizacj<; obszaru stabilnosci asymptotycznej uk!adu. W celu dokonania takiej syntezy 
rozwi11zano dwa zadania: zadanie doboru w!asciwej struktury regulatora spelniaj11cego obie 
funkcje oraz zadanie estymacji i maksymalizacji obszaru stabilnosci. 

Pierwsze zadanie zostalo rozwi11zane przez dekompozycjt;. Dla realizacji t!umienia zak!6cen 
stochastycznych o malej amplitudzie stosuje sit; klasyczne podejscie z linearyzacj11 obiektu i syntez4 
regulatora liniowego maksymalizuj11cego funkcjona! kwadratowy. Natomiast dla maksymalizacji 
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obszaru stabilnosci r6wnolegle do regulatora liniowego wprowadza si~ regulator nieliniowy, kt6-

rego wyjscie zalezy od drugiej lub wy:i:szych pot~g uchybu, a wi~c nie zmienia ukladu zlinearyzo­

wanego. Dzi~ki temu mo:i:na dokonac niezaleznej syntezy ka:i:dei cz~sci regulatora. 

Problem estymacji obszaru stabilnosci zostal rozwi'lzany przy u:i:yciu drugiej metody Lapunowa. 

Wprowadzono funkcj~ Lapunowa w postaci formy kwadratowej. Nast~pnie macierz formy kwadra­

towej dobrano tak, aby zapewnic maksimum miary obszaru aproksymuj'lcego obszar stabilnosci 

dla ustalonych parametr6w ukladu. Z kolei parametry cz~sci nieliniowej regulatora dobrano tak, 

aby miara estymaty obszaru stabilnosci ukladu zamkni~tego byla maksymalna. 

Ponadto przedstawiono wyniki obliczen dla egzotermicznej reakcji wymiany w reaktorze che­

micznym z idealnym mieszaniem. 

CuuTe3 peryJUnopos ,n:JIH ueJIIIHeiiHhiX cucTeM npn ycJIOBitHx 

ua o6JiaCTh ycToifqnsocTH 

B pa6ore npe.[ICTaBJICH HOBblll MCTO):I CHHTC3a peryJU!TOpOB .llJUI ):IHHaMl!'ICCKHX CHCTCM, 

ODHCbJBaeMb!X 06biJIHOBCHHbiM11 ):IHC:jJ<}>epeH!l;IIaJibHbiMH ypaBHCHHHMH, KOTOpb!ll rapaHrnpyeT 

DO):IaBJICHHe DOMCX C MaJIOll aMDJIHTY.L\Oll, H 0):\HOBpeMCHHO rapaHTHpyeT MaKCHMH3ai.IHIO 06-

JiaCTI'I aCHMIITOTH'ICCKOll yCTOll'illBOCTH CHCTCMbi. 

.IJ:nH peann3ai.IHH :noli 3a):la'!H peiDeHbr cne.r:~yiO!.l.\He npo6neMbi: 3a):la'la no.r:~6opa crpyKTYPbi 

perymnopa n: 3a):la'la MaKCHMH3ai.IHH o6nacTH ycroil'!HBOCTH. ITepsaH 3a.lla'la 6bma peiDeHa npH 

HCllOJib30BaHHH IIpHHI.IHDa .[leKOMD03lii.IHH . .IJ:nH pei!lCHHH 3a.lla'!H IIO.[IaBJICHHH CTOXaCTH'!CCKHX 

IIOMCX C MaJIOll aMDJIHTy,!IOH IIpHMCHHCTCH KJiaCCH'leCKHH IIO.llXO.ll- JIHHeapH3ai.IHH ypa.BHCHHll 

CHCTCMbl H CHHTC3 JIHHellHOTO peryJIJITOpa, OIITHMaJibHOTO B CMb!CJie KBa.[lpaTH'lHOTO <}>JliK.I.IHO­

HaJia . .IJ:mr peJII!lCHHH 3a):la'lH MaKCIIMIBai.IHH 06JiaCTH BBO):IHTCH HCJIHHCMHbiH peryJIHTOp, pa6o­

TaiOIIIHll napaJIJICJibHO C JIHHCHHbiM. BbiXO):I HaJIHIICHHOTO peryJIHTOpa 3aBHCHT OT BTOpOH H 

BbiCI!lHX CTCIICHCll CIITHaJia onm6KH, If He H3MCHHCT BH):Ia JIHHeapii30BaiiHhiX ypaBHCIIHH CHCTCMbl. 

nJiaTO.[IapH :HOMY HBJIHeTCH B03MO)!(Hb!M IIpOH3BCCTII He3aBHCifMO CHIITC3 o6eHX '!aCTCH peryJIH­

TOpa. 3a.lla'la ODpC):ICJICHHH OI.ICHKH 06JiaCTH YCTOll'illBOCTH peiiieHa nplf HCIIOJib30BaiiHII BTOpOIO 

MCTO.[Ia JlHJiyHOBa. BBO.llHTCH <}>yHKI.IIIH JlHDYHOBa B Blf):IC KBanpaTH'lHOH <}>OpMbi; MaTPHI.IY JTOH 

<}>opMbl IIOD:6HpaeTCH TaK, '!T06b! MaKCIIMif3HpOBaTb HCKOTOpyiO Mepy 06JiaCTif yCTOH'iiiBOCTif, 

.L\JIH rrocroHnnbiX napaMerpos peryJIHropa. 3areM napaMeTpbi Hemmei1Hoii: qacrn perynHropa 

IIO,t~6npaiOTCH TaKIIM o6pa30M, 'lT06bi Mepa 06JiaCTH YCTOM'iHBOCTII 3aMKHYTOH ClfCTCMbl 6biJia 

MaKCIIMaJ!bHOH. 
I1pe):ICTaBJICHbl pe3yJibTaThi paC'leTOB ):IJIH CJiy'laH XHMII'lCCKOTO peaKTOpa C 3KCOTCpMH'lCCKOll 

peaKUHCH 06MeHa. 




