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A finite difference approach to the problem of minimizing an integral cost functional subject to
a differential equation with delay constraint is presented in the paper. This problem is viewed as
a variational minimization problem subject to nonholonomic constraints and is treated using
Lagrange multipliers. Error estimates for the control, state and cost functional are established under
appropriate smoothness and boundedness conditions.

1. Introduction

A numerical approximation approach to the problem of minimizing an integral
cost functional subject to constraint in the form of differential equation with delay
is discussed. The method of finite difference is considered. Main objective of the
paper is to derive a priori estimates (in the sense of norm L?) for the difference
between the optimal and approximate solutions —these results are given by Theorems
(6.1) and (6.2)). To find these error bounds the method of Lagrange multipliers
is used.

The following notation is used in the paper:

H'[0,T; R*] and H?[0, T; R"] denote Sobolev spaces defined by:

df dx 2
H[0, T; R"]:{x eL2[0, T; R'];—-e I*[0, T; R"]}, (1.0)
o dx i @
H?[0, T; R"]—:{x eL* 0, T3 R ——e P [0, TL R, ~ e PP I0TS RO, (L)
{,> — scalar product in L?[0, T; R"], - (1.2)
ll+]]| —norm in L2 [0, T; R"], : (1.3)
{yr— scalar product in L?[kh[(k+1)h;R"] for k=0,1,..,m—1
where >0 and m-=T /h is assumed to be an integer (1.4)

1) All derivatives are understood in the sense of distributions.
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Il —norm in L? [(kh), (k+1) h; R"], (1.5)
|| —the norm in L, [0, T; R"], (1.6)
|+|x —the norm in L [kh, (k+1) h; R"]. (L.7)

2. Problem statement

The continuous and discrete (approximate) problems are formulated in this
section. Moreover some basic results concerning the solutions to above problems
are presented.

2.1. Continuous optimal control problem

Let xe H' [0, T; R"]; ue H* [0, T; R™].
Given pe H* [—h,0; R"],
A: R"X R"x R"—>R",
&: R"x R">R!,
Qc H!' [0, T; R"] which is assumed to be a convex closed set with a
nonempty interior.

Consider the following (nonlinear) deterministic optimal control proBlem:

minimize J (x, u) f @ (x (1), u (t), u(r)) dt subject to the constraints:

—dQ+A(x(t) x(t—k), u()=0, tel0,TI, @.1.1)
ueQ, (2.1.3)

We shall refer to the above problem as Problem 6.
The existence of the solution (x°, u°) to Problem O, is assumed throughout
the paper.
Assume that the following hypothesis are satisfied
HIl. A is the continuously differentiable (Frechet) vector function with respect
to their arguments.
H2. @ is the continuously differentiable (Frechet) vector function with respect
to their arguments.
H3. J is a radially unbounded functional with respect to u (i.e. J(x,u) tends to
infinity uniformly with respect to x with |ju—o0).
H4. A4 is strongly monotonne operator i.e.:

Ja>0Vx, x, ye L2[0, T; R*] Vue L*[0, T; R"],
A (x4, y, u)—A (X2, y, W), X1 — X 01> Xy “x2||;% %)

2) A (x, 7, 1) (VL A (x @), ¥ (), u (D).
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It is a simple matter to demonstrate that the solution of problem @, must belong
to some bounded set. This result is presented in the folloving Lemma:

Lemma 2.1. Suppose that hypothesis H1, H3, H4 are satisfied. Then (x°, #°) <
cG=G,xG,cH' [0, T; R"]xH* [0, T; R"] where G, and G, are the “balls”
with centers at zero and bounded radiuses po, and po, given by (2.15) and (2.19)
respectively.

Proof. Hypothesis H3 implies that:

VM IAm>0 u|>m=J (x, u)>M. 2.1.4)

Choose (%,%7)e H' [0, T; R"]x Q2 such that (X, ) satisfy the state equation
(2.1.1.) with the initial condition (2.1.2). Denote MLy (%, @1). As a result of (2.1.4)
we get:

IAm* >0 |jul| >m* =J (x, u)> M*.

Hence, by optimality of #° we conclude that:
| <m*, so u®e G, where G, is a ball with a radius
Pou~=m*. (2.1.5)

In order to complete the proof of the Lemma we have to show that x° can be
a priori estimated. Denote by J a bounded set belonging to

HY[0,T; R"|x H'[0,T; R"]x H' [0, T; R™].
Hypothesis H2 implies that:
V6 3IL,>0Vx, y,ued |4 (x, y, w|<L;. ?) (2.1.6)

Multiplying by x (z) and integrating the state equation (2.1.1.) from 0 to /# we
get:

x2 (h) — %2 (0) + fh (A (x (@), x (t=h), u (£)) —
— AO(O, x (t—h), u (1)), x (1)) dt+ fh (4 (0, x (t—h), u (1), x (1)) dt=0.
Employing the inequality ab<2e a2+% b% and hypothesis H4 we have:
()= O+ (a4 <2 14 0,0 OS2 G @17

50-11{(0, & u);ue G,} is a bounded set.
Denote y (t)g—x (t—"h).

Now integrating the state equation from kh to (k+1) h for k=1,...,m—1 we

obtain: g

1

4e

(et 1) Ky —or? (kh)+(u - )nxuz@a 140, 3, W

3) Although hypothesis H2 may seem unnecessary at this point, (since to obtain (2.1.6) it is
sufficient assume 4 to be bounded operator) this requirement will be essential in the sequel.
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Hence

1
x2 ((k+l)h)+(cv. —Z) X2 <2 [L2+L2_ + ... +L2 14+ % (0)

1
where for e¢>—
4ot

2¢
&0, 3, 0); Iyl ——— L2 +L2 + ... +L%_1+

OC‘"_

4e x%(0) ' ]
+—-——1— and weG,|. (2.1.8)
e
Then we conclude:
= o mx? (0)
el = > el 2 @+ o +IG)+—— .
k=0 ) o = o= _4:
So x° belongs to the ball G, with a radius
x2 (0)
Pox Z L2 + (1 (2.1.9)

o — —

4e

where J; is defined by the requirence formula (2.1.7)-and (2.1.8). Q.E.D.
Additionally assuming some regularity conditions imposed on A4 the following
result concerning the regularity of optimal solution x° can be obtained.

Lemma 2.2. Assume that:
(i) Hypothesis H1, H3, H4 are satisfied.
(ii) A Satisfies Lipschitz condition on the set G with a constant L°, where

GL{(x, y, u) e PC [0, T; R"} x PC [0, T; R"] x
XPC [0, T; R™; |IxlI<px IVI<px+lol- 1, ull<pa}. *)

where p,~=max (Pox, p1x) With pox, pou given by (2.1.5), (2.1.9) and pis, puo
defined in Appendix C
df
pu— max (pOua plu)-

(iii) The norms (A4, (x,y, u)|, Ay (x, y, u)l, IA (x, s u)| are bounded by M?°
for all (x,y, u) e G.

Then:
(l) “x0“<px'
dx°® )
(ii) “d— <g:, where g, (defined in (A.1)) depends on:

px, LO7 H(DH—ls ptn ||A (09 09 0)” =

“YPC [0, T; R ] denotes a space of piecewise continuous functions.
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|d

7 <g, where g, (defined in (A2)) depends on:

e ||

MO; L09 an pu’ “(0“—1’ ? ’ ”A (O: O’ 0)” #

ak
dt fj-1’

The proof of the Lemma is given in Appendix A.

Problem 6, is a problem of minimization of a functional over a Hilbert space
subject to constraints. The classical approach to solving problems of this form is
with the use of Lagrange multipliers (see [1], [2], [3]). For this purpose consider
the Lagrange multiplier A€ L? [0, T; R"] and define the Lagrangian L:H; [—k, T;
R x H* [0, T; R*x L%[0, T: R*]—R"' as:

d
L(xu, NZET(x,u)+ <E x+A4 (x, y, ), ,1> : (2.1.10)

In view of this definition, the theory of Lagrange multipliers provides the fol-
lowing result °): (see [4]) 34°e H, [0, T); R, A (T)<0 such that:

(Ox L (x°, u%, 32), 8,5 +<8, L (x°, u°, 7%, ,5>=0 2.1.11)
S.€ H [—h, T; R"]; 6,(6)=0 for Oe[—h,0];

where :

and a
0, (£)=0x(t—h),

8, L (x°, u%, 2°)=0, (2.1.12)
{0, L (x° u®, 2%, u—u»>0 for any ue Q. (2.1.13)

In addition to the preceeding hypothesis assume the following one:

HS. The second variation of the Lagrangian is strongly positive in some bounded
convex neigborhood of (x°, u° A°) that is: there exist neighborhoods: N (x°) <
c{x e H' [-h;T,R"]; x(O)=¢(0),0c[—h,0]}; N(A)eL?*[0,T; R"]; N )<
<= such that:

Lo Ay "B (%,
e e 1] [
Lx’u (x5 u? A) uu (x’
where y>0 and x'g[x, y] for any %eN (x°),deN @), ieN (1).
Observe that hypothesis H5 constitute a local sufficiency condition for the uni-

queness of a solution for Problem ©,. Now it is a simple matter to demonstrate
the Saddle Point Behavior of the Lagrangian.

Lemma 2.3. Suppose that HS5 is satisfied. Then the Lagrangian (2.1.10) possesses
a degenerated saddle point at (x°, u°, A°) on the set:

{xe H'[-h, T; R"]; x (O)=9¢ (0),0 € [—h, 0]} x 2 x L* [0, T; R"],

that is: L (x° u®, A)=L (x°% u°, A°) <L (x,u, A°) for any xeN (x°),ueN ),
AeN (1.

5) At this point recall that hypothesis H2 is satisfied.
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Proof. The left-hand side equality follows directly from noting that (x°, u°)
satisfy (2.1.1). The right-hand side inequality is result of the strong positivity con-
dition. Indeed, expanding L into a Taylor series about the point (x°, u°), we have

L (x, u, A°)=L (x°, u°, A°)+{0x L (x°, u°, A°), x—x°>+
+<0, L (x°, w®, 1), y—y°> +<6, L (x°, u®, 1°), u—u°) +

i <{Lx,x,(~, 1, A% Ly (%, /1")] [x'—x"’] [x’—x"’]>
Lx'u (56’ i, Ao)’ Luu (i, i, Ao) u—u’ i u—u° p
We note that all first order variational terms are greater than zero by virtue of
(2.1.11), (2.1.13), and hypothesis H5 implies that

L (x, u, 2°)=L (x°, %, 2°)+y lu—w’|*=L (x°, u°, 1%

which establishe the Lemma.

2.2. Discrete problem

In all cases, except very simple ones, it is impossible to determine the optimal
solution to problem @, analytically. Therefore some approximation of this problem
must be applied. We are going to use finite difference approach. To accomplish
this first we must introduce a space approximating L* [—h, T; R"]. Let be given

- = aa T ar B .
a time interval >0 such that p:T; 1 i~ are integers.

The approximating space E, [—h, T+7; R"] in defined as follows (see [5], [6])

p
E[—h, T+r; Rn]i{x, (0)="D) x.(rd) Wr (0); x.(r2) eR"},
r=-—1

where Wr (t) denotes the characteristic function of interval [rr; (r+1) 7).

We shall consider a family of spaces E;[—#h, T+7; R"] depending on parameter
7; such that 7;—0 and 7;,=k;; 7; for any i>; where k;;>1 an integer.

Given an operator P,: H' [—h; T; R"|-E, [—h; T+7; R"] such that:
dx

dt

2,9
] . (2.2.0)

Vxe H'[-h,T; R"] HPfx—XH-1+|lex—xH<T[ a7

=1

A convex closed set 2, Q< E, [0, T; R™] is said to be an approximation of Q if
the following conditions are satisfied:

du |

VueQu, e P, Q2 llu—ul< “Et- T 2.2.1)
du

Yu,e . 23ue Hu—u’||<H_d—t_ T 2.2.2)

Letx, € E, [0, T+7; R"]; u, € E, [0, T; R"].
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x(+1)—x(t
We define Vx, (t)i(—z——(l

As an approximation of the initial problem ©, the following problem @, is
T

introduced: minimize f Cb(xI (1), u. (t)) dt subject to the constraints:
0

V. (8)+ A4 (. (), x. (¢ —h), u, (£))=0, ¢te[0, T], (2.2.3)
X(0)=0.(0)P.¢(6), Oe[-h0), (2.2.4)
x.(0)=¢(0), (2.2.5)

ue?, Q. (2.2.6)

As a result of the problem assumptions (hypothesis H1-H3) there exists (x, u®) —
an optimal solution of the problem @, (see [12]).

A result analogous to Lemma 2.1 is now established for the discrete optimiza-
tion problem O, (the proof is given in Appendix B).

Lemma 2.4. Suppose that hypothesis H1, H3, H4 are satisfied. Then there
exists 7,>0 such that for any 7<7,:

(x2, uD)e G c{lx, W) e PC[0, T; R % PC [0, T; R™ Ixl<p1x; [0l €p1a}

The finite dimensional analogue of L is the functional L.: E, [—h, T+1; R"] x
xE. [0, T; R"]xE, [0, T+7; R"]-R! given by

Ly (Xey Uy A) =T (s )+ VX A (X, Yy 1)y Ard 2.2.7)

where . (t) x (t—"h).
The classical theory of Lagrange multipliers [4] applied to L, (x,, u,, 4,) implies
that due to hypothesis H2 there exists A2 € E, [0, +7; R"] such that

{0x, L, (%2, u, 19), 6x,) +<dy, L, (%2, u®, 29), dy,>=0, (2.2.8)
where dx, € E.[—h, T+7; R"}; dx, (©)=0 for © € [—h, 0]; and 5y,(t)£5xr(t—h).
05 Lo (x0, w2, 20)=0, (2:2.9)
(Ou, L (x%, u2, A°), u,—u’)»>0, Vu,e? Q. (2.2.10)
Assume additionally the following hypothesis:
HS’ er’x’(in ﬁu Zr)a Lrux’(xta z
o W N

th’u (x‘f’ u't’ AT)’ Lruu (x‘t’ ‘t A‘
for all X, €N (x°),d, eN ), . e N(A°) where N (x*)={xeE,[—h, T+1;R"];
x.(0)=0.(0) 0 € [-h, 0); x.(0)=9 (0)}; N () € Z.Q, N (i) € E.[0, T+7; R"] (hy-

pothesis H5' implies the uniqueness of a solution for problem 8,).
This hypothesis leads to the finite-dimensional analogue of Lemma 2.3.
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Lemma 2.5. Suppose H5' is satisfied. Then the Lagrangian L, has a degenerated
saddle-point at (x?, u2, A%) on the set;

{xtEEt ['—h7 T+T’ Rn] Xr(@)zprs(@)a Oe [—h1 0), X (0)=8 (0)}X
xP.QxE.[0, T+7; R"]
that is:
Lt (xgs u?’ Ar) =Lr (XS, u?? l?)gLr (xv Uzy A:-))

for all x,e N (x2), u.e N (), 2,e N (12).

The proof is almost identical to that of Lemma 2.3 and is therefore omitted.

Observe that an approximating control u° does not belong to the admissible
set of controlers. Therefore by employing of u° we construct another control «’
close to u® such that u; € Q (it is possible due to (2.2.2)).

Our main purpose is to find the bounds for [u®—ul|, [x°—x]| (where x: is
a solution of (2.1.1) corresponding to u;) and J (x}, u;)—J (x°, u%). In order to
find these error bounds we are going to estimate successively:

1° [x°—x?| in terms of [ju®—ull;

2° |[A°=2 in terms of [u®—uf| and [x°—x?||;

3° |ju°—u?|| in terms of [[x°—x?|| and [[A°—A?2|| (these estimation is obtained by
Saddle Point Theorem with help of hypothesis H5 and HS')

4° |u°—u?|| by a constant convergent to zero with 7 — what will be easily de-
duced from 1°, 2°, 3°)

5° |u°—u}]| on the basis of 4° and condition (2.2.2);

6° |x°—x}| using 5° and state equation (2.1.1);

7° J (x5, u))—J (x° u°) with help of 5° and 6°.

3. Estimation of the difference between optimal and approxi-
mate solutions of the state equations

In this section we are going to estimate |[[x°—x?|| in terms of |[u°—u?|. In prepa-
ration for the main result of the section we first present a Lemma which will be
essential in the sequel.

Lemma 3.1. Suppose that:-
(i) P.:H'[0,T; RY—E, [0; T+7:R"] is such that:
P
P.x (=) x ) W:(0)
r=0
where t.e[rr;(r+1)7] and t.,.,—t.=7; %)
(i) xe H*[0, T; R"].
Then
— d%x
V2| —

) It is easy to check that P, defined by (i) satisfies condition (2.2.0)).

o
7
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Proof. On the basis of mean value theorem we obtain
d 5 p—1(r+1), 4 5
" VP x—— x| = 2 f — (Pex (149 —Pex (0) = —-x ()| di=
r=0 r,
p—1t1), d o
= T(X (t,.+2)—x(t,+1))—zx(t) di=
r=0 r,
P—l(r+1), dx (tr) d 2
= _dt = I x ()| dt
r=0 r,
Where tr+2 € [(r+ l)n (r+2)t]: Zr+1 € [rt; (r+ 1)1’]’ tr € [rr; (r+2)t]
After applying Schwartz inequality we get
d 5 p=L1{r+1), tr dzx(s) 5
= == e s <
” VP x " e ds| di<
r=0 rg t
p—1(r+1), (r+2), d2 o (S) > d2 il
A 2
<7 75 ds dt<2t ar Q.E.D.
r=0 r.

We are now ready to find the bound for the error of approximation of the state.

Theorem 3.1. Suppose that all assumptions of Lemmas 2.2 and 3.1 are satisfied.

[0
Moreover assume that 7 is chosen in such a way that T<ﬁ' Then: [ix”—xfllzs
0
<Gy |ue—ul|]>+C, t* where C, given by (3.17) depends on: L, o, m; C, given
by (3.18) d d L de i M°
y ( 4 ) epen 5 on: 0> pxa pm dt —15 dt ¥ =m'

Proof. Theorem 3.1 is proved using step by step method.
Denote: £2-£P, x°; 32 (1)==x°(t—h), t [0, T1;

3.0 (V (2 () —%2(1), x2(0)— %2 (1) +

+ (A (x2(0), y2 (1), w2 (1) — A (%2 (0), y2.(0), w2 (1)), X2 (D) — X2 (1))
Observe that:

PPl \L10) i

(it is easily deduced from the definition of V).
After applying (3.0) and hypothesis H4 we have:

h 1
[ oy de s 1B - RBE=FIV (¢~ +a lw—%E.  G.D
0
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Making use of the fact that x° and x? are solutions of state equations (2.1.1),

(2.2.3) respectively and that A satisfies Lipschitz condition we get:

IV (x2—%7) Hllg=—<4 (x7, y3, uD), V (x{ — XD +

T

d
+ G R =TRV (2 =5) > <A (), V (= E)o<
A 0

< HA (xo, yoa uo)_A (x:: y-‘r)a ”?)”o HV (x:_fg)”o'l‘

+iov~o
dtx—— Xz

= ass
Hllp—oull— s+l —ulllo]+7 V2 H?

! v (X?—fﬁ)lloS{Lo [l —x2llo +

0} IV Gr? = Fllo -

The last term in parentheses is obtained due to Lemma 3.1. From this estimation

using (2.2.0) we get

IV (2 = EN<Lo [llx° — x7llo + lu® — 7l ] +

e

Substituting (3.2) into (3.1) we obtain

do

dt

dx® |

A2
dt ;,o

dt?

)+va|

+ \

J

=

4 1
féf(t) diz7 |x: (h) =% (WI? + (2 —27 L) lIxg — %215 +27 Lg [lu® —ugllg —
0
_,T3 [Lo (

1
ab<2sa2+7‘;b2 for any £>0.

d? x°
dt?

dy
dt

dxe |
dt

J+vi]

i

=T

Using inequality

Lemma 3.1 and Lipschitz condition we obtain:

; d
J 6.@ di= o x0 =V, 33—y oA (57 3, u)+
0

1
—A (X2, ), X0 = XDo< o {Lﬁ [lIx°—%3 llo + llo — el -1 +

.
|

|
0

2x0

dt?

2
+l
0

1
}+48 le:’—fi’llf,\z—g{ZLﬁ [w—ullo+

2 I d2 x°
—1) _l_f. dt?

+|u* —ugllo]* +27

2

do
dt

dt

' dx°

202 [Lg ( ]}+4a [x0— 2|12

0

J

(3.2)

(3.3)

(3.4)

(3.5)
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Combining (3.3) aad (3.5) we arrive at:

1
(=20 L§—4e) [x° = Zillg + - 12 () = X2 (W)* <

2 1 o 2 1 dxo |
<2Lg\T+ flue —u?ll2 +27* L] 7:+ o 0+
+“d(0' ]2 42< N 1)‘d2x” -
| dt ||-1 LA 4e dt® o (5:6)
In the same way we can prove for k=1, ..., m—1 that:
(k+1)h 1 1
i 8.(0) dr< |x2 (k+ 1) h=52 (k1) h* = |x2 (k) — X2 (k)| > +
kh
+ (=27 LY) [0 — %7 — 27 L |w® — w2l — 2t L3 [x2— %°|2_, +
A |
B ! 7 |, 3.1
and
(k+1)h

1
[ a0 dtsg{ZLf, e — )+ 4L |2 — S, +

5

2

a2 xe
dr?

ax?
dt

dx°
dt

k}+ 4e ||x0— %22 (3.8)

) +272

+412L3(
k— 1
Combining (3.7) and (3.8) we see that:
1
(x—2t L —4¢) Hx"—i‘,’l],f+5|x;’(k+1)h—)€;’(k+1) h|*<

1 1
<2L2(r+ )Hu ——u°]|,£+4L2(‘c+ % )Hx Rz +

e [L2<f+ 1)( B e )2+
9 2 dt 7 |-t dt ||,
1\] a2
+(21+ = Il ol IR EA OB (3.9)

Let & be such that: «a—27 L2 —4e>0 (it is possible since o—27 L5>0).

Denote:

aogoc—2‘rL(2)—48, ) (3.10)
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df 0 0[12 2 ( 3 +% d¢ )2 4 2( + ! )l dzx? ;
o= oy [l —ucllo +7% o {| =7 L) T T A |
af 0 0]|2 2 2( X dxo )2+
= oy [ —ugll; +204 7 dat |, dar |,
42( +1)”d2xo2 3.11
+47°| 27 48“d12 (3.11)
for=k=1, ..., m—1.
Using notations (3.10), (3.11) we rewrite (3.6) and (3.9) in the form:
1
%o |1x°— %213 o e —X (h*<ao, (3.12)

1
o o= SIZ + 32 G+ 1) h— 2 (k1) hP <yt
1
o 1 () — 32 (kI + 20, [0 =By (3.13)

Hence (3.12) and (3.13) imply that:

1 20 ke
%o Hx:—i:[],fﬁ*; X2 (k+1) h—32(k+1) h|2<ao( ~ =+ 1) +

%o
2“1 k=1 20(1
+a, | + oty 3

%o 0

+1)+a,c for k=0,1,...,m—1.

Hence

20{1

+ l)m_ Jm—1)a,+

%o

m—1 1
pe—zp= Y le:’—fi’llf\—(
k=0 %o

m—1 20,
+(Mm—=2) a1+ ... +lu_]< (

m—1 m—1
i a.. (3.14
- ) . @1

Recalling the definitions of a¢; we obtain from (3.14)

m—1 (20{1

%o

%o

2

||

m—1
+1 ) . [Zcxl o — 2| + 272 (ocll

It =21 < =

0 -1

| abc"|2 1| a*x i
+4oc11 7 I +.2 2T+Z; “ 72 - G15)
It is easy to see that
| dx° |2
e =307 <2 It~ R 42 18— P <2 I — TP+ 202 (3.16)

(the last estimation follows from Lemma 3.1).
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We arrive at the desired result by combining (3.15) and (3.16). So

[Ix° = x2 < Co Il —ugl* + Cy 72

where A -
o N = (m—1 )( ) . (3.17)
1
ao|4] sl "'C°(2’+7*?>+ [
S V0 P S e | R

and oo, o; are given by (3.10), (3.11).
- Now applying Lemma 2.2 we complete the proof of the Theorem.

4. Estimation of the difference between the optimal and
approximate Lagrange multipliers

An estimation of the norm [|2°—22|| in term of ||x?—x°|| and |[u? —u°|| is presented
in this section. As a result of (2.1.11) adjoint equation of the following form is
obtained:

7;{[- 2°(t)— A (x°(2), x° (t—h), u° (1)) 2° (1) — A, (x° (¢ + h), x° (), u® (t +h))
2 (4R =B,(x* (1), u* (1)) for t€[0,T—h]  (4.1)

with the terminal condition:

d
20— A (¥ (0, X (1= ), 1w (1) ()= (x° (1), w0 (1);
2(T)=0 for tel[T—-hT].
Some properties of Lagrange multiplier 1° are given in the following Lemma:
Lemma 4.1. Assume that all hypothesis of Lemma 2.2 and HI1 are satisfied.
Moreover suppose that:
() For all (x,y,u)eG the norms |de (6y,0)l; [Asy (X, p, W), A (x, 3, W),
D ex (%, 8)], [P (x, )], | Dy (x, )], [Py (x, u| are bounded by M;>0 7). Then

@® 1l<gs
where g3 depends on: My, M, and is given by (C.1))

(i1) H 7 S84
where g, depends on M, M, and is given by (C.2)
d? A?
(iif) 7l<gs
dlo 0
where g5 depends on: py, pu, lloll_ 1, I ! |}), H ut {, My, M° and is given:
by (C.3). — "

) & (x, 1) ()L B (x (1), u(®).
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The proof of the Lemma is given in Appendix C. Equality (2.2.8) leads us to the
following finite-dimensional analogue of adjoint equation (4.1).

V2L ()= A (37 (8), x2 (t—h), w7 () 22 (1) —
+ A, (x2(2+h), x2(t), u? (t+h)) 22 (t+h) =D, (x2 (), u2 (1))
for te[0, T—H],
V() — A (X2 (1), x2 (t=h), uZ (£)) 22 (8) = D (2 (2), u2 (1))
2(T)=0 for te[T-hT]. (42)

We are now ready to present the estimations of errors commited in aproximating
the Lagrangies multipliers. This result is given by the following.

Theorem 4.1. Let hypothesis of Lemmas 3.1, 4.1 are satisfied. Moreover
suppose that A,, 4,, @, satisfy Lipschitz condition on G with constants L,, L,, L,
respectively. Then

22— AP < C; [Ix°— x12 + C [[u* — 2 |2 + Cy 72
where C,, C3 depend on Ly, L,, Ly, m; py, pu, My, M, and are given by (4.16),

s ldp] [ |
: and C, depends on L., L,, L, m, py, pu, Mo, M4, ||@ll_1, ar “ 5
and is given by (4.18). -1
Proof. Note that without loss of generality it can be assumed that the matrix
A (x2(2), x2(t—h), w2 (1)) is positive definite in the sense of L*-norm i..:
(k+1n

[ (A2 @, x2=h), w2 (), A1) dr= B 1302 ®) 43)

kh

for k=0,1,...,m—1; f>0.

In order to proof Theorem step by step method is used:
Denote:

T@)Lp @) forte[0,T); and L(T)=0
5. ()= (V (B O=1(0), 22— 220+

— (A (x2 (), x2 (1= h), w2 (1)) (A2 () —22(8)), 22 ()= 22 ).
Observe that by (3.1)

F=n T
r—h [ Vik@Pdi+7 [ VA (0)* dt { T
J (V@ k@) di=— e >5[ VikoPr.

If A, (xg (@), % ), u? (#)) does not satisfy (4.3) we can introduce a transformation of
variables putting A,=A:' P, (exp a* t). For variable A: equation (4.2) will have the same form as
before, but with operator 4, depending on a* and such that (4.3) is satisfied for a* large enough
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After integrating &, (¢) from T to T—#h and applying (4.3), (4.4) we have:

h

3 1 1
0. (1) dr?; ll‘,’(T—h)—ZS(T—h)lz—3 |42(T)—

He— =

—ETP+B1A -y, @5)
On the other hand using (4.2), (4.2) and inequality (3.4), Lipschitz condition
to be satisfied by A4, and Lemma (3.1) we get:

—ilt

8 (1) dt =( D (x7, uD) — Dy (x°, %), 12— A1 +

M N

(A s Vo )= A0, 5 U)) B, =D Dy +

dr
dt

A ) B =20, Be= A+ (VI By <
X m—1

1 Y
<35, {ZLi [le® — 22012 _ ¢ + llu® —2ll2_ ]+ 3 14912 L2 [[lx>—x2)2_ , +

| %
| dr

{2

oo = X2l -+l =l ]+ MG 72— |
m—1
+ 272 “ a> x {2

ll ar* |

m—1

}+88 A~Zlaey.  (46)

Combining (4.5) and (4.6) we arrive at
> 1 o
(B—8e) Il/lz—/lftl,i_1+71/1:(T—h)—,13(T—h)12<

1
<—2_8{(2Li+3L% |,10|2) on_xg||3!_1+3Li. | 42| on_x:”'i_2+

[ die |2
+(2L24-3L2 | 2°%) |lu® —ull|Z_  + 72 [Mg] 7 ; -+
i m— 1
| a2 2 |
+2“ P m—l]}. 4.7)
In the same way we estimate
T—(kc+Dh :
f o:(t)dt for k=1,2, .., m—1:
T—kh
T—(k+1)h 1
f & (0 dr=—- 22 (T— (k+1) h)=22(T— (k+1) h)|?+
T—kh

1 & <
—71/1;’(T—kh)~/l;’(T—kh)[2+/3|M§’~/1$H,ﬁ_1 (4.8)



50 I. LASIECKA

and

T—(k+1h

f 617(0 dt=<¢x(x:7 ug)_¢x<xoa uo), ZZ'—/I:>m-—k—1+
T—kh
+<(Ax (x;), }’f, u:)—Ax (xo’ y°= ua)) /1:, }': '} /m k— 1+
<Ay (0, 3% %) (A0 =72, 22— A2 1+ (Ay (%2, 32, D) +
— Ay (%, 3%, 7)) 2, 10— 2+ (32, 3%, u?) (A2 — Ay, T A e

dar°
+ < — Ve, do— 12 > - @49
d m—k

After applying inequality (3.4), Lipschitz condition to be satisfied by A,, 4,, D,
and Lemma (3.1) we obtain from (4.9)

T—(k+1)nr 1
[ adsg Pl - el )+
T—kh
+3L3 14212 [ll® — x2l7_ e 1 + 160 = %2l e — 2217 ]+
+3L3 141 [l — 7l o+ 16° — %215 - 1 + e —2iZl15,_ ]+
+ M2 T — A2, 427 [Mgidi” 2 |2 ]}+
R 2 i e

+126 A=A . (4.10)
Combining (4.83) and (4.10) we have for k=1, .., m—1

|/1°(T (k+1) h)—12(T— (k+1)h)i2+(ﬂ 128) |4 - 222 _, 1<
- 1
<7 AT — k)= 2 (T—Kh)[* +—— { L2+

+3 212 (L3 +LDT bx® =307 o +3L7 1A I —x)5 5+
3L3 1421 11— %5l -+ [2L2 + 31T 12°12] 1 — g3 _p— o +
+3L3 1% Nl —ullly_ o+ MG A — 22012 _

SR
+212[M01| 7 H a2 1m-—k—1 . (41D
Denote:
B f—12e; /friMé,
b, = 21 {[2L2+3L2 (29121 %= X2 _ ; +3L3 1222 [|x* — x%)2_, +

i 2 )0 |2
+[2L5+3L7 12°1°] e —wllfp - o+ 72 [M “——ﬂf‘” 1““ e lrr ]}

fm1

for k=1, .., m~—1;
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bmkl

= {[2L2+3L2M°12] [ A
+3L2 1212 [0 = X0Y2 __  + 32 |20 o — X212 _ +

+[2L2+3L3 |2°)2] llue —ul|2 __  +3L3 | 2°)* |ju° —u"l)2 an

e :
’ . (412
m—k—1

P H dt?
Using these notations we rewrite (4.7) and (4.11) in the form:

+2172 [M2

M"(T R)—Z(T—h)1+ Bo 12— 222 <b (4.13)
%11:(T—(k+1)h)—ig(T—(k+1)h)|2+'
+ Bo A2 — 2202 - 1 SBmiem s + B A= T2+

1 i _ .
+ o BTk LTk for k=1,..,m—1. (414

B . :
Let ¢ be choosen such that a<-13 (it is possible since f>0).

Combining (4.13) and (4.14) we have:

B

k
B
/))Oi]lg_ t!'m k— 1\(ﬁ +l)bm—1+~--+(1+El)-)bm—k—2+bm—k—1

for k=0,1, ..., m—1.

Hence
N m—1 . m ﬁl m—1 m—1
0 0j|2 _ 0 . FOl2.er.
va-or= 3 -1 <ﬁo(ﬁ0+1) P
- (ﬁ‘+1) {[2L2-'rWiZ(6L2+3L2)]||x"—x°]|2+
\2,308 ﬂO 4 1 2 T

+[202 4 (312 +3L2) [2°12] llu® — ul]|2 4 72 [3L; |Ao|2 H dt

s oo 22 ];.. ot

If we denote:

A (ﬁﬂ)m_lm +(6L2+3L2) 1777] (4.16)
5 2f0 € \ fo { ,
o (E+1)m_1[2L2 3L2 4312 |202] 4.17)
3 2ﬁ08 ﬁ() 4+( 1+ 2)! 2 ('
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atapr ) [sete ]

J, 4.18)

+2M2‘ H e

where f;, fo one given by (4.12), then after applying Lemma (4.1) we complete
the proof of Theorem 4.1.

5. Estimation of the difference between the optimal and
approximate controls

In this section the difference between u° and u! is estimated by a constant con-
vergent to zero with 7. In order to find this error bound the Lagrange multipliers
method is used. Two cases are considered independently. One is unconstrained prob-
lem where @ is equal to the whole space H' [0, T; R™]. The other constrained
optimization problem where Q is a real subset of H' [0 T, R"].

S. 1. Unconstrained optimization'problem

In this case conditions (2.1.13), (2.2.10) take on the form:
ouL (x°, u®, 1°)=0, (5.1.1)
ou, L, (x2, u2, A2)=0,

(it is easily deduced from standard arguments in the calculus of variations). This
fact will be essential to the proof of the main result of this paper given by the fol-
lowing.

Theorem 5.1. Assume:
(1) (x° u°) and (x, u?) are the solutions of problems Q, and Q. respectively.
(ii) Hypothesis H1—HS5 -are satisfied.
(iii) The operator A4, A,, 4,, A,, D, D, satisfy on G Lipschitz condition with
the comstants Ly, L, L,, L3, L,, Ls respectively.
(iv) The norms |4, (x, y, W), |4, (x, y, W, 14 (x, p, w)l, Dy (x, W), |D, (x,u)l,
[Axx (%, 7, W), [Axy (6 9, W5 [ A (%, 7, )], (@i (%, W), [Py (x, w)| are bounded
"by a constant M -=max (Mo, M,) for all (x,y,u)eG.
(v) Operator 2, satisfies assumption of Lemma (3.1).
o
(vi) T<7I—€.
(vi)) Q=H'[0, T; R"].
Then |ju*—u?||<Ctr where C depends on (oc, v, Loy Ly, Ly, Ly, Lay Lsy M, gl ¢ »
| de || dw |

\] T H K l ’ m,) and is given by (5.1.13), (5.1.12), (5.1.10), (5.1.8).




Finite difference approximation of optimal 53

Proof. Denote gg”, #°. On the basis of Saddle Point Theorem (see Lemma
2.5) for L, (x,, u,, &) we get:

J &2, u)y =L, (x2, ul, A< L, (%2, A7) . (5.1.2)

On the other hand recalling the result of Lemma (2.5), expanding L, (x?, u?, l,)
by Taylor’s formula about (%, #%, 1) and applying hypothesis H5' we obtain the
following lower bound for J (x?, uf)

J (x2, u?) =L, (x°, u?, A% =L, (x u®, 2)=L, (%, &, 1%+
0, L O, B2, A2); %0 —Z) 440, L (%5, 8,40, yo—FE>+
+48, L, (%2, @, 1), u — iy +y |u—a°|>. (5.1.3)
Adding (5.2) and (5.3) we obtain:

¥ Il — BRP< Le (R, 182, 29) — L (32, @2, 22 +
+<5 L (~:5 Ng: r)ax _x0>+<5 L (~g: ~1C:‘9 /10) y‘t f:>+
+ 10, Lo (R0, @, 2)| |ug—a2l|.  (5.1.4)

In order to proof Theorem the following expressions must be estimated:

L (%2, 2, A2)—L, (%2, &, 12); (5.1.5)
{0, L (R, 0, 22), o> +<0, L (%2, i85, 12), ), (5.1.6)
where o, ()= «, (t—4) and o (©)=0 for @ e [—h, 0];
16, L. (%, @, 1°)| . (5.1.7)
By definition of L,, Lemma 3.1, Schwartz inequality and Lipschitz condition
we obtain:
L (%, i3, A)—L, (%, @7, 22) =< VX +A(x?,J7§', ), A~ A=

== 1y A 3 )

| ]
| dr |

[
— A (x°, y°, w), =< | V2 |7z || tELo |2

Il

|
|

| o
“ g M =T (.135)
Recalling that {J,L (x° u° 2°), ayy+{J, L (x°, u°, 2°), ,»=0 [see condition
(2.1.11)] and after applying again Lemma 3.1, Schwartz inequality and (4.1) we
see that

<6 L (&0 e )‘0)’ O(1>+<5 L (zg) Ng, /’{0) “2>:<¢x(£25 iz'lz7 -

1:’1: T

— @, (x° u%); 0y ) +{ A (X%, 3°, u%) (A —29), oy ) +< (A (R2, J2, i0) —
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— A, (20, 3°, u) J0, o>+ <— Jo—vie, oc1> L

<Ay (%% 1% u) (A2 —2%), 02+ (A, (%2, 372, @) —

| die
i [ 5 & ol 2
dx° d d2 )0
e '”"[21 it |||+{7f” +H H+V = H] o1+
+7 |M,,|’c?° “ L, |2 [ H+“7€Zi l——h ][ocZII. (5.1.6)

Since condition (5.1.1) is satisfied then:

T

184, Lo (32, 82, 22

r’r

[Q—‘"u @, &) —Du(x° (1), w (0]' =

A (R 72, 80) — Ay (X% 3°, U°), A2+ Ay (%2, 1°, u%), 20— 20| <

Y I NE A EANE]
il Pl

|7 | F]7ar |

| 2

ap
dt

|
M

) |4°] +M°“ H] (5.1.7)

*ar

"l
Denote:
e b2 1)
o EH ] nf e
o8] ool 2]
MR MIENTR
e sl
ot ael e L AL e
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Substituting (5.1.5), (5.1.6), (5.1.7) into (5.1.4) and using notation (5.1.8) we get:
y 1 — @2 <7 [Cs 14— |+ Co 162 — 22|+ C 1 — 2111+
+Cs 12<7 [Cs |22 = A2+ Cé g — x|+ C [lug —u°l]+

2 Ty L
[CS+C5H 72 e I e
Since
R 7 PN 74
U — WPyl —u ,” I +727 [ug ulI” % |
then:
7 g —w|*<7 [C-s (14 — A%+ Ce llxg —x°||+
oy ZyH_lu '”3‘“"“]“2 [C'”C's @n“’s | . H*
S| el | dw |
i I |7+7“ di H]' ()
Set
P
S (5.1.10)
H O du® ‘2
cavofihalEhel Sl

Using notations (5.1.10) we rewrite (5.1.9) in the form
y [ =22 <7 [Cs 42— A%l + Co llx° — x2l| + C7 [l —ul] + Cs 72, (5.1.11)

Applying Theorems 3.1 and 4.1 to the terms [|A°— A% and ||x°—x?|| respectively
we conclude that:

y =2 [P<t [Cs (V C, X — X2 +V Cs Il —ull|+V Cs 7) +
+Cs(V Co llu0—u2l|+V Cy7) +Callu?—ul + Cs 12<
<t [u—u?ll (Cs¥/'C5 Co +C5VCs +Cs V' Co +Co)+

+7%(Cs V€. C, +Cs Va+cs I/C_1 +Cs).
Denote:

B“‘i‘f"cs]/ao C, +Cs VC_3+C5 ]/C_0+C7 5

axsns_ . el (5.1.12)
B1d:fcs ]/C1 C, +Cs l/C4 +Cs I/C1 +Csg.

So we get:
? lu® =l — B [[u® —ull|<7*B, .
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Completing the square on the left-hand side of the inequality, and taking the

square root of it we have:
[ —w]|< Cr (5.L.13)

1 B2\1 B
where Ci—f-—y— [(B1 +27)2 +—27] with B, B; defined by (5.1.12), (5.1.10), (5.1.8).
Using this fundamental error bound, it is a simple matter to show that similar
bounds hold for the state and cost functional. These results are summarized in the

following:

Corollary 5.1. If the assumptions of Theorems 5.1 are satisfied then:

e —xll <=V, c+vell
and - -
J (22, u)—J (20, u) <M (C+V Co C+V/ Cy)

where C,, Cy, C, are defined in Lemmas 3.1. and 5.1.

5.2. Constrained optimization problem

In this case the following estimation takes place

Theorem 5.2. Assume:

(1) (x°% u°) and (x2, u?) are the solutions of problem @, and @, respectively;

(i1) Hypothesis H1—HS5 are satisfied;

(iii) Operators 4, A, A,, 4,, D, satisfy Lipschitz condition with the constants.
Lo, Ly, L,, Ly, L, respectively on G;

(iv) The norms |4, (x, y, )|, |4, (x, y, W), | YA, (x, y, )], Py (x, u)], |, (x, u)]
are bounded by M>0 for all (x, y, u) e G;

(v) Operator P, stisfies assumption of Lemma 3.1.

(vi) Q#H' [0, T; R"];

then

llw® —ugll < C. t

where C defined by (5.2.16), depends on:

|dol | @ |
%, Vs LO: Ll: L25 L37 L45 M, “8“—15 E 3 dt ,m, .
-1
Proof. By Lemma 2.5 we have:
L, (x°, u, A9<L, (%, i, 1°). (5.2.1(

Using x? and u#? we construct the functions: £€ H' [—A, T; R"] and die Q
satisfying the following conditions

£(@)=¢(0), Oe[—h;0], ' (5.2.2)
[ —xzl|<7dy, (5.2.3)
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1% _vxol<ea,, 9 (5.2.4)
| dr |
la—ugl<edy, 20) (525

where dy, d,, d; are given constants.
Denote § (1)~=%(t—h), tel0,T].
Conditions (2.1.11), (2.1.13) imply that:

{0, L (x° u®, A°), £—x°)+<, L (x°, u°, 1°) —y°>=0, (5.2.6)
{0, L (x° u®, 2°), 1—u’y>=0. (5.2.Ty

Applying Taylor’s formula to L (%, 4, A°) about (x°, u° A°) and taking into
account conditions (5.2.6), (5.2.7) as well as hypothesis H5 we obtain:

L (%, 4, 2°) 2L (x°, u®, A°)+<0, L (x°, w’, 2°), a—u’) +
+<0, L (x°, u°, %), £—x°Y+<J, L (x°, u®, 2°), —1°) +
+y lla—ue>=L (x°, u®, 2%+ [[d—u*. (5.2.8)
By (5.2.8) off nad Lemma 2.5 we have:
L, (o, 2, ) =L (x2, 0, J) =L, (<2, u, 1)+
—~L (%, . 2°)+L (£, &, A°)=L,(x°, u®, 29 —L (%, 4, A°)+
+L (x°, u®, 2+ [la—uv|>. (5.2.9)
Combining (5.2.1.) and (5.2.9) we arrive at:
y la—ul2<L, (%, 8, 2 —L (x°, u?, 2%)+L (%, 8, 1) —L, (%, u

‘E’ k4.4

Ty, (5.2.10)

1:’1:

After same inequality manipulations similar to those performed in the proof
of Theorem 5.1. we obtain:

T
L%, @ )L (w0, 1= [ [ (20, % (0) +

d
— @ (x (1), w ()] i+ VR —- X%, 40> +CA (%0, 72, )+

dt
PPN o L N )m |22
SAREE ] Rl 7R M Hw :
a2 Y Tl [ l
+“(HdzHWd! HdHM*KT i
G “d “@H”uW“)
- + i 5201}
] 2| [Tl |l e G
9) For x we can take for example a piece-wise linear function such that X (r7)= x, (r7) for
r=0,1,...,, p. This time dl—H 7 H and d,=0. )

10) Such # exists due to condition 2.22).

11) Observe that ||A; ”<

(the proof of this fact is almost identical to that of Lemma 2.4)..
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Employing conditions (5.2.3) and (5.2.4) we have
T
L& 4,29 —L.(x% ut, 2)= [ [@ (% (), & ()~ (x°(2), w (8))] dt +
0
dﬁ 0 o o SR - R ) ] 0 0 [
+ <7t —Vx2, A >+-<(A %, 9, ) — A (x2, 2, ud)), A°><

<t [M (di+d5)+d; |X°1+Lo (dy +ds+lpll-1) 14°]. (5.2.12)

Denote:

Y ML W L RN Ld

“ul a5 e
Fal A% o ]
., Tl H)+M (dy+ds)+dy |41 +Lo (dy +ds + gl - 1) 121 (5.2.13)

Substituting (5.2.11), (5.2.12) into (5.2.10) we get:

7 llE—w?<7Cs. (5.2.149)

Since
lJorg — || < llusg — @l + [u® — ]|
then
Cy\? -
[l — || < (79) ttprds<ti C (5.2.15)
‘where
. C %
@g«f)+ﬁ%_ (5.2.16)
dx° d?x°

Using results of Lemmas 2.2., 4.1 on the terms with A° in- (5.2.13)

*dt’ dt
‘we complete the proof of the Theorem. Theorem 5.2 implies the following analogue
to Collorary 5.1.

Corollary 5.2. If the assumptions of Theorem 5.2 are satisfied then:

e —x3l|<(V Co C+V/C; 7)o
and
J (x2, u0)—J (x°, u )< M (C'+]/E‘; Cl+;/ZfT%) 4

where C,, C;, C are defined by (3.17), (3.18), (5.2.16) respectively:

As it was stated earlier the main object of the paper is to find the error bounds
for |lu®—u’|| where u} € Q is some admissible control in H* [0, T; R"] constructed
using #?. This result is given in the next section.
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6. Error estimation for the difference between an optimal
and approximate in H' [0, T; R control

Let u; be admissible control corresponding to u constructed according to con-
dition (2.2.2).
Observe that

g — ]| < e} — ]|+ 2 — u]]

For the case of unconstrained optimization as a result of Theorem 5.1 and con-
dition (2.2.2) we have:

el

where C is given by (5.1.13).

Denote by x; solution of equation (2.1.1.) corresponding to u and satisfying
initial condition (2.1.2).

We wish to estimate J (x°, u®)—J (x}, u}). To accomplish this, the difference
between x° and x| must be estimated. This result is given in the following Lemma:

Lemma 6.1. Assume that:
(i) Hypothesis H2, H3, H4 are satisfied,
(ii) A satisfied Lipschitz condition on the set G with a constant L,
Then '
e = x7ll< C 1w |
where
¢ 4m 21

m—1
C:—Lz(l | ——) and a<i'
e a—2¢ 2.°

Proof. To prove this Lemma step by step method is used. Recal that x° and x}
satisfy the following equations:

ax°

> +A(x° (), x°(—h),uw®)=0; x(O)=¢(O), Oc[—h0], (6.1)

dx:(t) % * * %
S AR, X—h), X)) =0;  x1(©)=p (0), Oc[-h 0.  (62)

After substructing (6.1) and (6.2), multiplying the result by x°—x. and integra-
ting from 0 to 2 we have

SO P+ [ (460, 0 E-h). 0 O)+

—A (x:= (), o (t—h), u} (), x* () —x, (¢)) dt=0. 6.3)
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h
Adding and substructing term f (4 (x7 @), x°(t=h), w (@), x°(O)—x; (1)) dt,
(0]

applying hypothesis H4, Lipschitz condition and inequality (3.4) we obtain:

1 * *12 1 2. % 2

= B =X (= 26) o= 23 35~ L3 T} 3. (6.4)
Using the same argument for k=1, ..., m—1 we get:
1 1
5 [ ((k+1) B)—x ((k+ 1)+h)|2—3 |x° (k) — x (k)| +

1
(=28 [ =< Lo (e =Xl o+ =) . (6:5)

From (6.4) and (6.5) it follows that
1
> o (k+1) h—xT(k+ 1) A2+ (2 —2¢) [|x°—x}]12<

1 1 2Ly \*
<gp LA~ o+ 2314 -tz

2¢ 2 o—2¢
1 2L, \F
=—L2|{1+——| |l —wll+ ... +|u]—wl2].
28150[(1 “_zg)Hur wll+ o+l ulik]
Hence
et 2L, \""* 4m L%
o_ ¥z 0. T2 0 *_ 0||12
e 2 <2 & xr|!k<(1+ _28) i — ] 6.6)

where ¢ is chosen such that o—2e>0. Q.E.D.
Lemma 6.1 implies the following result.

Theorem 6.1. If all assumptions of Theorem 5.1 are satisfied then:

du’®
dt

xe—x})|<C <C+H )T (6.6)

(C, C are given by Lemma 6.1 and Theorem 5.1), and

0

dt ||

T, ul)—T (x°, uo)<M<c+“ )(1+C)T.

Proof. The estimation (6.7) is obtained by direct substitution of (6.1) into ine-
quality result of Lemma 6.1. The second inequality is obtained by expanding
J (%%, 1)) in Taylor series about (x° u° and by employing (6.1) and (6.7). For con-
strained case the result analogous to Theorem 6.1 is obtained:.

Theorem 6.2. If all assumptions of Theorem 5.2 are satisfied then:

ldu

0 __ *<~ _+
e-sii<e 0+ 5

o

f%) T (6.8)
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and

T (6}, up)—J (x°, u) <M ( C‘+H r%) 1+t (6.9)
where C is defined in Theorem 5.2.

The proof uses arguments the same as those in Theorem 6.1 (In order to obtain
(6.8), (6.9) observe that condition (6.1) must be replaced by the following one:

£

i|uf—u°||<( tl

Conclusions and remarks

A finite difference approximation of optimal control problem for systems with
delay was investigated in the paper. Such an approximation problem can be effecti-
vely solved using computer. In this way we obtain a suboptimal control for real
system. As examplified in the work [7, 8, 9] finite difference methods usually pro-
duce simple computational algorithm. A number of useful itterative methods are
available for treating problem of this type [10, 11]. A priori estimates for differen-
tial between such suboptimal and optimal controls were derived.

The cases of unconstrained and constrained optimization problems were consi-
dered independently.

I. It was shown that for unconstrained problem the obtained suboptimal
control converges to the optimal one with the rate 0 (7) [see Theorems 5.1, 6.1],
whereas for constrained problem this rate is equal to 0 (¢?) [see Theorems 5.2, 6.2]

II. In order to obtain convergence of suboptimal control to optimal (without
estimation of its rate) the weaker assumptions than those of Theorems 5.1 and 5.2
are required.

It is enough to assume that hypothesis HI—HS5 (and H5') are satisfied and that
Ay, A,, @, are bounded operators in the sense of L (G).

III. Results given in the paper can be extended to the case where 4 and @
depend explicity on time z. In order to obtain the error bound in this case let us
consider the following “‘auxiliary” approximation of initial problem minimize

I Cx, )= f @, (x (t), u (1)) dt subject to the constraints:

d()+A (x @), x(t=h), u(®))=0, 1€l0,T]

x(0)=¢e(Q) @e[—h 0]
ueQ, xe H' [0, T; R"
where @, (x, u) and 4. (x, y, u) are defined as

®, (x (1), u (€)= & (x (1), u (£), 1,)
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and for ¢
A (x (O, 7 0 1 (D)= A (x (@), y (), u (1), 1,1)

where 1., t,, € [rt; (r+1) ].

We shall refer to above problem as problem @,. It easy to see that problem @
can be vieved as an optimization problem of the same form as before (since 4 and
@ do not depend on time). Then to obtain the desired result the difference between
the optimal solutions of initial optimization problem and problems @; must be
estimated additionally. The error bound commited in such approximation (approxi~
mation @,)isderived on analogous way to that given in the proof of Lemma 5.1
and therefore is omitted here.

IV. Results given in the paper are available for the case where 4 doesn’t depend
on x(¢). This time strong monotonne condition (hypothesis H4) is not headed at all.

Appendix A

Proof of Lemma 2.2

(i) follows directly from Lemma 2.1.
We are going to prove (ii).
(ii) Taking advantage of Lipschitz condition we get from (2.1.1)

{i—IIA (x% »° w)lI< |4 (x°, y°, ) — 4 (0, 0, 0)]| +
+ 14 0, 0, O)lI<Lo [lIx°l+ [yl +w°l1+ |4 (0, O, 0)][-

Applying this time the result of Lemma 2.1 to terms [|x’||, [|y°|| we obtain
” K'SLO [2 [l + llll - 1 + w1+ 14 (0, 0, 0)]| <

<Lo [2px+putlloll- . +14 (0, 0, 0)].
Denoting

81 Lo [2p.+put gl 11+ 140, 0, 0)] (A1)
we arrive at (ii)
(iii) is proved by differentiating tha state equation (2.1.1) with respect to #.
Namely

| @] . o Jaco il g
“ g “\IAx(x",y,u)]’ 7 “+!Ay(x,y,u)i H = +
B oo ' 0[!dx" ‘ ‘du l
a0 | o <ve (| H ar IS
) e ]
=i [2 e
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Denote

dp| |
of | 2 ]
8= [:Zg1 Ud ” 1+’ | (A2)
then by virtue of (ii) we get:

x|
n e }<g2 what completes the proof of the Lemma.

Appendix B

Proof of Lemma 2.4

First we wish to show that there exists some constant p,, such that [u®|<py.
for all 7<7,.In order to prove this, let us denote by (x2, 4%,) and (x?2,, #2,) the opti-
mal solutions of problem @,, and @.; respectively.

Suppose that 7, is a fixed discretization and z, is less than 7,. Let x,; be a solu-
tion of (2.2.3) with the initial condition (2.2.4), (2.2.5) (for the step of discretization
equal to 7,) corresponding to control u, (since 7; <7, then u2, may be considered
as an element of E, [0, T; R™]).

Then by optimality we obtain

‘I (xgl’ ugl)s'] (xrh u:o) . o (BO)

We are now going to show that |J (x,, #%,)| is bounded independently on 7. In-
deed, note that x., satisfies the following equation

thl (t)+A (xtl (t)’ x‘:l (t_h)’ u:o (t))=0
%1 (0)=0,4(0), ©e[~h0), | (B.1)

X.1 (0)=¢(0).
Denote

ar X1 (H‘u)‘!‘xu ®)
xrl( )_ 2 <

After multiplying (B.1) by %, (¢), and integreting from 0 to +#4 we obtain
h ' h
[ (V1 (0), Fex (1) di+ [ (A (Fer (1), 9ex (1= ), 1 (1)) —
(0] (0]
h
_(A (Oa Pz1 (t—h)’ ugo (t)): -i_tl (t)) dt+ f (A (xtl (t)n (231 (t_h)3 u:o (t)) =
(6]

= A (Fer (), Py (1= D), wlo (1)), %oy () i+ [ (A (0, o (1), uly (£)))=0
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By employing hypothesis H4, inequality (3.4) and continuity of 4 we see that

1 h2___l__ 02 ’_.L (o <2 h2 LZ
5 P B2 = x O) +(a 2£)nxun\ e lheg+L]]

‘where '
{0, g, u%0) €EL[0, h; RIXE,[(—h; 0); R X E[0,h; R} (B2)

and L, denotes the maximal value of 4 over the set y,. Since [x¢; — X4l .o >0
then by continuity of 4 for any fixed ¢,>0 there exist r; such that for any 7, <7,

”A (xrla P15 ugo)_A (xrls D15 u:o)”<80 .

By the identical arguments we prove that for p=1, ..., m—1

1 , 1 y(2 1 2 2 2
Elxu(k'!'l)h[ —_2‘|xz1(k'1)f ¥ T e 122111 <2e [eg A+ L3, ]

‘where

2= |0, x, 1) € E, [k, (k+1) h; R x E, [(k—1) h; kh; R"] x

Yk—1

;)
X E, [kh; (k+1) h; R", |xllo S— [ke2 h+L2+L2_ +x*(O)]| . (B3)

2e

Combining the above results we arrive at

2e 1
||xt1\[2<——--1— [eg T+m (Lﬁu-i— JrLfk+x2 (0))], 8<H’ (B4)
———

2¢

‘where yo ... ¥, are defined by requrence formula (B.2) and (B.3). Since J is a bounded
operator then (B,0) and (B,4) imply that |J (x?,, u2,)| is bounded independently on
7. Furthermore by hypothesis H3 we conclude that there exists p;,<oc such that:

[ugyl|<piu  for all 7,<7o (B.5)

(the proof of this fact uses arguments similar to those given in the proof of Lemma 2.1)
In the some way as was obtained (B.4) it is now a simple matter to show that
there exists p;,>0 such that

I N<pix  for all 7,<7,. Q.E.D. (B.6)

Appendix C

Proof of Lemma 4.1
Using Gronwall’s inequality [13] we obtain from (4.1).
|2lm= 1 B N|Bre (32 8|l 1 (XD [14 (X% 5 )l B])*.
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Furthermore for k=1, ..., m—1 we have:
(A%l —tem 1P [P (X% ) —i— 1 ((CXP [”Ax(xoa Yo W e h])2+

+ (B 114y x°, Y54 -1 (%P [[142 (2% 35 4 lm-r—1 B])*+1) |12 mmic-
Hence for k=0, 1, ...,m—1

k

%l mre- 1 SEM (exp (Mo B)* D) [hM (exp (Mo h)>+1]%

Then o
22| <hM (exp (M, h))? mj [AM (exp (M, B))?+1]'.
Denoting i
g3 = hM (exp (M, h))? 571 [AM (exp (Mo B))?+1]! (C.1)

we obtain (i).
We are going to prove (ii). To accomplish this we estimate:

ar |
‘|

d

|
' <@ (%% )l 1+ 1A% (X% % U1 (XIS M+ M g5
m—1

and

E=h 3

rold ]2 \2
(J i r dt) SM+M°gs+
0o

+ [f [(4y (x° ¢+ B), x° (2), w* (t+h)) /1°(t+h))]2 dtr<M+2M°g3.

So

where
e ZoM+3M° g, . (C2)

In order to prove (iii) we differentiate (4.1) with respect to ¢ and obtain

‘d?‘la 0 ooo” i 0 1,0 ;0 y”i
!—:i?— SMI ‘Axx(xay’u)!] dt +1Axy(xay’u)| dr l+
| e | £ o ite g g 2o :
+leu(x°,y",u")I‘ 7 ‘+¢xx(x,y,u)l 7 |+45xu(x,u")l g o}
I o” s [ 0
+l*(’it—"|Ax(x,y,u)[+lﬂ-| [y (x%, ¥°, u°)| 7
f H du® | dae
+ |4y, (x°, 3, u%)] 3 + [y %, 3 u")I” 7 +“ | (4, (x°, y°, u9)| .
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Hence
‘ d* ¥ P [ 1 dx° | ” do || +l du’ l+
I e o e
M[ |]+2 M+ M; [2“ s “]
£ Hdt||| £ M+Mes (2] 50| F) G |-
After applying Lemma 2.2. we arrive at:
Il g 22 do du® ] ” du’ ]
St
“ g <Mg3[4g2+}‘. =3 2 &3 | +M 7 ||+g2+2g4 k
Denoting
& 5 [4 +“d¢‘ e ]+ [“ ool PP ] ok
&8s Mg3|48> !dt“ “ dt M‘dt I 82T 484 (C3)
and after recalling the result of Lemma 2.2 we arrive at (iii). (Q.E.D)
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Aproksymacja réznicowa sterowania optymalnego dia ukladéw
opisanych nieliniowymi réwnaniami rozniczkowymi z opoz-
nieniem

Artykul jest poswiecony aproksymacji roznicowej problemu sterowania optymalnego dia
ukladow opisywanych nieliniowymi rownaniami rézniczkowymi z op6znieniem. Problem optymali-
zacji rozwazono stosujac teoric mnoznikow Lagrange’a. Podano oszacowania r6znicy normy
(w sensie przestrzeni L?) sterowania i stanu optymalnego dla problemu doktadnego i aproksymo-
wanego.

O pa3sHOCTHOH ANNPOKCHMAUHE OHTAMAJHOIO YIPABJICHHS
JUISL CHCTEM ODHCHIBAEMBIX HeJmHeHHbIME TuddepenunabHbi-
MH ypaBHEHHSIMH C 3aa3JbIBaHueM

CraTbs IOCBAIIEHA PA3HOCTHOW AaMIPOKCHMALUX 3aJa4Yy ONTHMEIBHOTO YIPaBIICHHS s
CHCTEMBI OINCHIBAEMON HeNWHEHHBIME NuddepeHHa cHEIMAE YPABHEHHSME C 3ala3IbIBaHAEM.
3amaya ONTEMHU3ALUMKA DPAaCCMATPHBAETCA NPH KCIOIL30BAHHM TEOPHH MHOXWHTened Jlarpamxa.
JlaeTcsi omeHKa DPa3sHOCTA HOPMBI (B CMBICHE NpocTpaHCcTBa L2) ympaBlleHHST M ONTHMAIBHOTO
COCTOSIHHS JIsi TOYHOTO W ANMPOKCHMUPOBAHHOTO DEINEHWs 3aJa4Hd.
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