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A finite difference approach to the problem of minimizing an integral cost functional subject to 
a differential equation with delay constraint is presented in the paper. This problem is viewed as 
a variational minimization problem subject to nonholonomic constraints and is treated using 
Lagrange multipliers. Error estimates for the control, state and cost functional are established under 
appropriate smoothness an? boundedness conditions. 

1. Introduction 

A numerical approximation approach to the problem of minimizing an integral 
cost functional subject to constraint in the form of differential equation with delay 
is discussed. The method of finite difference is considered. Main objective of the 
paper is to derive a priori estimates (in the sense of norm L2

) for the difference 
between the optimal and approximate solutions -these results are given by Theorems 
(6.1) and (6.2)). To find these error bounds the method of Lagrange multipliers 
is used. 

The following notation is used in the paper: 
H 1 [0, T; R"] and H 2 [0, T ; R"] denote Sobolev spaces defined by : 

H 1 [0 T·R"]dr x EL 2 [0 T·R"] ·-EL2 [0 T·R"] { 
dx · } 

1
) 

' ' ' ' ' dt ' ' ' 

df { dx ' d
2 

x } 
H 2 [0 T·R"] = xEL2 [0 T · R"]·-EL2 [0 T · R"] -EL2 [0 T·R"] 

' ' ' ' ' dt ' ' ' dt 2 
' ' ' 

(,)-scalar product in L 2 [0, T; R"], 

11·11 -norm in L 2 [0, T; R"], 

(,)k-scalar product in L 2 [kh[(k + 1)h;R"] for 

where h>O and m df T/h is assumed to be an 

1) All derivatives are understood in the sense of distributions. 

k = O, 1, ... , m - 1 

integer 

(1.0) 

(1.1) 

(1.2) 

(1 .3) 

(1.4) 
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!ll·llk- norm in L 2 [(kh), (k+ 1) h; Rn], 

1·1 -the norm in L 00 [0, T; Rn], 

l·lk - ·the norm in L 00 [kh, (k+ 1) h; Rn]. 

2. Problem statement 

I. LASIECKA 

(1.5) 

(1.6) 

(1.7) 

The continuous and discrete (approximate) problems are formulated in this 
section. Moreover some basic results concerning the solutions to above problems 
are presented. 

2.1. Continuous optimal control problem 

Let x E H 1 [0, T; Rn]; u E H 1 [0, T; Rm]. 
Given rp E H 1 

[ -h, 0; Rn], 
A: Rn X Rn X Rm-+Rn, 
tf>: Rn X Rm-+Rl, 
Q c:;: H 1 [0, T; Rm] which is assumed to be a convex closed set with a 

nonempty interior. 

Consider the following (nonlinear) deterministic optimal control problem: 
T 

minimize J (x, u) df J tP (x (t), u (t), u (t)) dt subject to the constraints: 
0 

dx (t) 
dt-+ A (x (t), x (t-h), u (t)) =0, t E [0, T], 

x (Q)= rp (e), e E[ -h, O], 

uEQ, 

We shall refer to the above problem as Problem e0 . 

(2.1.1) 

(2.1.2) 

(2.1.3) 

The existence of the solution (x0
, u0

) to Problem eo is assumed throughout 
the paper. 

Assume that the following hypothesis are satisfied 

Hl. A is the continuously differentiable (Frechet) vector function with respect 
to tkeir arguments. 

H2. tP is the continuously differentiable (Frechet) vector function with respect 
to their arguments. 

H3. J is a radially unbounded functional with respect to u (i.e. J (x, u) tends to 
infinity uniformly with respect to x with llull-+oo). 

H4. A is strongly monotonne operator i.e.: 

3 cx>O Vxt> x 2 y EL2 [0, T; Rn] Vu EL2 [0, T; Rm], 

(A (x 1 , y, u)-A (x 2 , y, u), X1 -Xz)k~cx llx1 - Xzl l;. 2
) 

2 ) A (x, y, u) (t) df A (x (t), y (t), u (t)). 
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It is a simple matter to demonstrate that the solution of problem 8 0 must belong 
to some bounded set. This result is presented in the folloving Lemma: 

Lemma 2.1. Suppose that hypothesis Hl, H3, H4 are satisfied. Then (x0
, u0)c 

cG=Gx x G11 cH1 [0, T; R"] x H 1 [0, T; Rm] where Gu and Gx are the "balls" 
with centers at zero and bounded radiuses Pox and Pou given by (2.15) and (2.19) 
respectively. 

Proof. Hypothesis H3 implies that: 

VM3m>0 ll ul l >m~J(x, u)>M. (2.1.4) 

Choose (x, u) E H 1 [0, T; R"] x Q such that (x, ii) satisfy the state equation 

(2.1.1.) with the initial condition (2.1.2). Denote M*~-J (x, u). As a result of (2.1.4) 
we get: 

3 m* >0 llull>m* ~J (x, u)>M*. 

Hence, by optimality of U0 we conclude that: 
l luo l l~m*, so U

0 
E Gu where G" is a ball with a radius 

Pou df m*. (2.1.5) 

In order to complete the proof of the Lemma we have to show that X
0 can be 

a priori estimated. Denote by J a bounded set belonging to 

H 1 [0, T ; R"] x H 1 [0, T; R"] x H 1 [0, T; R 111
]. 

Hypothesis H2 implies that: 

VJ 3L6 >0 \ix, y, u E J IIA (x, y, u) I I~L6 . 3
) (2.1.6) 

Multiplying by x (t) and integrating the state equation (2.1.1.) from 0 to h we 
get: 

h 

x 2 (h)-x2 (0)+ J (A (x (t), x (t-h), u (t))-
o h 

-A (0, x (t-h), u (t)), x (t)) dt+ f (A (0, X (t-h), U (t)), X (t)) dt = O. 
0 

1 
Employing the inequality ab ~ 2e a2 + 4e b2 and hypothesis H4 we have: 

x 2 (h) - x 2 (0)+( rt.- :e) llx ll~~2e IIA (0, e, u) ll~~2e (L6o)2 (2.1.7) 

<50 df {(0, e, u); u E Gu} is a bounded set. 
df 

Denote y (t) = x (t-h). 
Now integrating the state equation from kh to (k+ 1) h for k= 1, ... , m - 1 we 

obtain: 

3
) Although hypothesis H2 may seem unnecessary at this point, (since to obtain (2.1.6) it is 

sufficient assume A to be bounded operator) this requirement will be essential in the sequel. 

------------------------------------------------------------------
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Hence 

X
2 ((k+ 1) h)+ (a --

4

1 
) 11x11;~2e [L; +L; + ... +L; ]+x2 (0) e k t-1 o 

1 
where for e> 

4
1X 

ak ctr (0, y, u); [ [y[ [k~---=-- [L:o +L:, + ... +L:._J+ 

1 
2e 

IX - -
4e x 2 (0) 

+ 1 and 
IX~~ 

4e 

Then we conclude: 

So x 0 belongs to the ball G .. with a radius 

IX-~ 

4e 

where ak is defined by the requirence formula (2.1.7) and (2.1.8). Q.E.D. 

(2.1.8) 

(2.1.9) 

Additionally assuming some regularity conditions imposed on A the following 
result concerning the regularity of optimal solution X 0 can be obtained. 

Lemma 2.2. Assume that: 
(i) Hypothesis H1, H3, H4 are satisfied. 

(ii) A Satisfies Lipschitz condition on the set G with a constant L 0
, where 

G df {(x, y, u) E PC [0, T; Rn] xPC [0, T; Rn] X 

x PC [0, T; R'"]; [ [x [[~Px I IY II ~Px+I IIP II -t' l l u ii ~Pu}. 4
) 

df 
where Px = max (Pox, P1x) with p0 .., Pou given by (2.1.5), (2.1.9) and Pt.o Ptu 
defined in Appendix C. 

(iii) The norms (Ax (x, y, u) [, [Ay (x, y, u) [, [Au (x, y, u) [ are bounded by M 0 

for all (x, y, u) E G. 
Then: 

(i) [[X0
[[ ~Px· 

(ii) 11 ~o ll~g1 , where g1 (defined in (A.1)) depends on: 

Px, Lo, IIIPII-t, Pu• [[A (0, 0, 0)11. 
4 ) PC [0, T; R ] denotes a space of piecewise continuous functions . 
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(iii) \1 d~: \\~gz where g2 (defined in (A2)) depends on: 

Mo, Lo, Px, Pu, IIVJII-1> 11: ,,_
1

, 11 ~o \\. IIA (0, 0, 0)11. 

The proof of the Lemma is given in Appendix A. 
Problem eo is a problem of minimization of a functional over a Hilbert space 

subject to constraints. The classical approach to solving problems of this form is 
with the use of Lagrange multipliers (see [1], [2], [3]). For this purpose consider 
the Lagrange multiplier A. E L 2 [0, T; Rn] and define the Lagrangian L:H1 [ -h, T; 
Rn] x H 1 [0, T; Rm] x £2 [0, T; Rn]~R1 as: 

df < d ) L (x, u, A.)=J (x, u) + dt x+A (x, y, u), A. . (2.1.10) 

In view of this definition, the theory of Lagrange multipliers provides the fol
lowing result 5): (see [4]) 3A.0 E H 1 [0, T); Rn], A. (T) eO such that: 

where: 

and 
df 

Oy(f)=Jx(f-h), 

O;.L (x0
, U0

, A0 )=0, 

(011 L (x0
, U0

, } ,
0
), u-u0)~0 for any u E Q. 

In addition to the preceeding hypothesis assume the following one: 

(2.1.11) 

(2.1.12) 

(2.1.13) 

HS. The second variation of the Lagrangian is strongly positive in some bounded 
convex neigborhood of (x0

, U0
, A0

) that is: there exist neighborhoods: N (x0
) c 

c{ X E H 1 [ -h ; T, Rn]; X (e)=QJ (e), e E [ -h, 0]}; N(A.0
) E L 2 [0, T; Rn]; N (u0 )c 

c Q such that: 

<[Lx'x(x, i1, X), L,x,(x, ii, X)] [x'l [x']> · 2 _ _ , ~y !lull 
Lx'u(x,u,A.), Luu(x,u,A.) uj u 

where y>O and x' df [x, y] for any x EN (x0
), i1 EN (u0

), X EN (A.0 ). 

Observe that hypothesis HS constitute a local sufficit<.l_lCY condition for the uni
queness of a solution for Problem e0 • Now it is a simple matter to demonstrate 
the Saddle Point Behavior of the Lagrangian. 

Lemma 2.3. Suppose that HS is satisfied. Then the Lagrangian (2. 1.10) possesses 
a degenerated saddle point at (x 0

, U
0

, A.0 ) on the set: 

{x E H 1 [ -h, T; _Rn]; x (e)= QJ (e), e E [ -h, 0]} x Q x£2 [0, T; Rn], 

that is: L (x0
, U0

, A.) =L (x0
, U0

, A0)~L (x, u, A0
) for any X EN (x0

), u EN (u0
), 

A EN {).0
). 

5 ) At this point recall that hypothesis H2 is satisfied. 
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Proof. The left-hand side equality f~llows directly from noting that (x0
, u0

) 

satisfy (2.1.1). The right-hand side inequality is result of the strong positivity con
dition. Indeed, expanding L into a Taylor series about the point (x0

, u0
), we have 

L (x , u, A0 )=L (x0
, u0

, A_o)+(JxL (x0
, u0

, A_o), x-x0 )+ 

+(JyL (xo, uo, A_o), y-yo)+(JuL (xo, uo, A_o) , u-uo)+ 

We note that all first order variational terms are greater than zero by virtue of 
(2.1.11), (2.1.13), and hypothesis H5 implies that 

L (x, u, ;._o)-;::L (xo, uo, A_o)+y llu -uoii2"?3:L (xo, uo, ;._o) 

which establishe the Lemma. 

2.2. Discrete problem 

In all cases, except very simple ones, it is impossible to determine the optimal 
solution to problem 6 0 analytically. Therefore some approximation of this problem 
must be applied. We are going to use finite difference approach. To accomplish 
this first we must introduce a space approximating L 2 

[ -h, T; Rn]. Let be given 

. . ctr T ctr h . 
a time mterval r>O such that p = -; != -are mtegers. 

T T 

The approximating space E, [ -h, T +r ; Rn] in defined as follows (see [5], [6]) 

where Wr (t) denotes the characteristic function of interval [rr; (r+ 1) r). 
We shall consider a family of spaces Et; [ -h, T+r; Rn] depending on parameter 

r; such that T;--->0 and T;=ku ri for any i>j where ku>l an integer. 
Given an operator P<: H 1 [ -h; T; R"]->E, [ -h; T+r; Rn] such that: 

Vx E H 1 
[ -h, T; Rn] IIPt x-xll - 1 + IIPt x -xll~r [ ~~ -~~ ,,_

1 
+ I/ ~~ 11] . (2.2.0) 

A convex closed set f!i>< Q cE< [0, T; Rm] is said to be an approximation of Q if 
the following conditions are satisfied: 

VuEQ3u<Ef!i><Q llu-ut11~ 11 ~; ll r, (2.2.1) 

Vu< E f!i>, Q 3uEQ llu-utll~ /1 ~: 1/ r · (2.2.2) 
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df x (t+r)-x (t) 
We define Vxt (t) = . 

T 

As an approximation of the initial problem eo the following problem et is 
T 

introduced: minimize J i.P(xt(t),ut(t))dt subject to the constraints: 
0 

Vxt(t)+A (xt(t), xt(t-h), ut(t))=O, tE [0, T], 

df 
xt(e)=rpt(e) = Pt rp (e), e E [ -h, 0), 

xt (0) = rp (0) , 

ut E &t Q . 

(2.2.3) 

(2.2.4) 

(2.2.5) 

(2.2.6) 

As a result of the problem assumptions (hypothesis Hl-H3) there exists (x~, u~)
an optimal solution of the problem et (see [12]). 

A result analogous to Lemma 2.1 is now established for the discrete optimiza
tion problem et (the proof is given in Appendix B). 

Lemma 2.4. Suppose that hypothesis Hl, H3, H4 are satisfied. Then there 
exists r 0 >0 such that for any r<r0 : 

(x~, u~) E G1 c{(x, u) E PC [0, T; R"] xPC [0, T; R111
] llxii~Plx; ll u ii ~PI.. } . 

The finite dimensional analogue of L is the functional Lt: Et [- h, T + r; R"] x 
x Et [0, T; R111

] x Et [0, T + r; R"] -t R1 given by 

(2.2.7) 

df 
where Yt(t) = xt (t-h). 

The classical theory of Lagrange multipliers [4] applied to Lt (x" u" A.t) implies 
that due to hypothesis H2 there exists A.~ EEt [0, t+r; R"] such that 

(2.2.8) 

df 
where Jxt E Et [ -h, T+r; R"]; Jxt (e)=O for e E [ -h, 0]; and Jyt(t) = Jxt(t-h). 

Assume additionally the following hypothesis : 

HS' 

(2.2.9) 

(2.2.10) 

for all xt EN (x~), ut EN (u~), 2t EN (A.~) where N (x~) = {x E Et [ -h, T + r; Rn]; 
xt(e)=rpt(e) e E [ -h, 0); xt (O)=rp (0)}; N (u~) E &tQ, N (A.~) E Et [0, T +r; Rn] (hy
pothesis HS' implies the uniqueness of a solution for problem et). 

This hypothesis leads to the finite-dimensional analogue of Lemma 2.3. 
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Lemma 2.5. Suppose HS' is satisfied. Then the Lagrangian Lt has a degenerated 
-saddle-point at (x~, u~, A.~) on the set; 

{xt E Et [ - h, T+r; R"] X t(B) = P, e (8); e E [ -h, 0); X (O) = e (0)} X 

x r!l't Q xEt (0, T+r; R"] 
that is: 

for all xt EN (x~), ut EN (u~), A.t EN (A.~). 
The proof is almost identical to that of Lemma 2.3 and is therefore omitted. 
Observe that an approximating control U

0 does not belong to the admissible 
set of controlers. Therefore by employing of u~ we construct another control u: 
dose to u0 such that u; E Q (it is possible due to (2.2.2)). 

Our main purpose is to find the bounds for Jju0 - u;ll, llx0 - x; ll (where x; is 
a solution of (2.1.1) corresponding to u;) and J(x;, u;)-J(x0

, U0
). In order to 

iind these error bounds we are going to estimate successively: 
1 o J[x0

- x~ll in terms of lluo- u~ l l; 

2° IW - A.~II in terms of J [ u0 -u~ ll and l lxo-x~ll; 

3° lluo- u~ll in terms of llx0
- x~ll and lW - A.~ II (these estimation is obtained by 

Saddle Point Theorem with help of hypothesis HS and HS ') 
4° Jju0 -u~ll by a constant convergent to zero with r- what will be easily de-

duced from 1°, 2°, 3°) 
so Jju0

- u;11 on the basis of 4° and condition (2.2.2); 
6° llx0 -x;ll using so and state equation (2.1.1); 
7° J(x;,u;)-J(x0 ,U0

) with help of S0 and 6°. 

3. Estimation of the difference between optimal and approxi
mate solutions of the state equations 

In this section we are going to estimate l[x0
- x~ll in terms of lluo- u~ J J . In prepa

ration for the main result of the section we first present a Lemma which will be 
essential in the sequel. 

Lemma 3.1. Suppose that: -
(i) P<:H1 [0, T; R"]-+Et [0; T+r :R"] is such that: 

r:;;Q 

where t, E [rr; (r+ 1) r] and t r+ l - t,=r; 6) 

(ii) X E H 2 [0, T; R"]. 
Then 

6
) It is easy to check that P, defined by (i) satisfies condition (2.2.0)). 
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Proof. On the basis of mean. value theorem we obtain 

where tr+ 2 E [(r + 1),; (r+2),]: tr+l E [r,; (r+ 1),], tr E [r,; (r+2),]. 

After applying Schwartz inequality we get 

11 

d 112 v-l(r+l),lt'd2x (s) 
12 VP,x - dtx =}; J J-a;z-ds dt~ 

r=O r't r • 

Q.E.D. 

We are now ready to find the bound for the error of approximation of the state. 

Theorem 3.1. Suppose that all assumptions of Lemmas 2.2 and 3.1 are satisfied. 
IY.. 

Moreover assume that r is chosen in such a way that r< lL2 • Then: IJx0 -x~[j2~ 
0 

~C0 [[u0 - u~ [[ 2 +C1 r 2 where C0 given by (3.17) depends on: L 0 , t:~., m; C1 given 

by (3.18) depends on: L 0 , Px, Pu• 11 ~; 11_
1

, 11 ~o ((, Mo, m. 

Proof. Theorem 3.1 is proved using step by step method. 

Denote: .X~ df P, x 0
; y~(t) df x~(t - h), t E (0, T]; 

J,(t) dr (V(x~(t)-.X~(t)), x~(t) - x~(t))+ 

+(A (x~(t), y~ (t) , u~(t))-A (x~(t), y~(t), u~(t)), x~(t) - x~(t)). 

Observe that: 

(3.0) 

(it is easily deduced from the definition of V). 

After applying (3.0) and hypothesis H4 we have: 

h 1 T f J,<t) dt ;3:21 x~(h) - x~(hW-2IIV (x~ -x~)ll~+dx~-x~f l~. (3. 1) 
0 
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Making use of the fact that X
0 and x~ are solutions of state equations (2.1.1). 

(2.2J) respectively and that A satisfies Lipschitz condition we get: 

IIV (x~ - x~) Hl l~= - <A (x~, y~, u~), V (x~-x~)) 0 + 

~ I lA (x0
, yo, uo)- A (x~, y~, u~)llo IIV (x~ - x~) ll o + 

+ 11 ~ xo- Vx~ llo IIV (x~-x~)llo~{Lo [llx0 -x~l lo+ 

+ llq~- \Prll-1 + lluo- u~ ll ol + r v2 \\ a;t:o IIJ IIV (x~- x~llo. 
The last term in parentheses is obtained due to Lemma 3.1. From this estimation 

using (2.2.0) we get 

IIV (x~- x~) II ~Lo [llxo- x~ ll o + lluo- u~ il ol + 

Substituting (3.2) into (3.1) we obtain 

h 1 J Jt(t) dt?:ol lx~ (h) -.X~ (hW +(a-2r L~) llx~ -.X~ I I~ +2r L~ lluo- u~ ll ~ -
0 

Using inequality 

(3.4) 

Lemma 3.1 and Lipschitz condition we obtain: 

h d 

J J (i) dt= <- X
0

- Vx0 
X

0 -X0> +<A (X
0 y0 u0 )+ 

t dt t' t t 0 ' ' 
0 

-A (.X~, ji~, ii~), x~-x~)0 ~ ;e {L~ [ llxo-.x~ llo+llrp - \Prl l-1 + 
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Combining (3.3) aad (3.5) we arrive at: 

In the same way we can prove for k=1, ... ,m-1 that: 

(k+l)h 1 1 J b,(t) dt~2 1x~(k+ 1) h-x~ (k+ 1) hl2 -2 1x~(kh)-x~ (kh)ll + 
kh 

and 

Combining (3 . 7) and (3. 8) we see that: 

1 
(~-2r L~-48) llx0 -.X~ II; +2 1x~(k+ 1) h-x~(k+ 1) h l 2 ~ 

~ 2L~ ( r + ;
8

) lluo-u;11; + 4L~ ( r + ; 8 ) llx~-.X~ II ;_ 1 + 

+4r
2 [L6 ( r + ; 8 ) (\\ ~ X

0 llk-l + \\ d;o IIJ
2 

+ 

+(2r+ :JJJ a;t:o Jr + ~ jx~(kh)-.x~(kh)\2 
Let 8 be such that: ~X - 2r L~- 48 > 0 (it is possible since ~- 2r L~ > 0). 

Denote: 

df 2 4 ~Xo = ~X- 2r L 0 - 8 , 

(3.9) 

(3.10) 
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(3.11) 

for = k = 1, ... , m - 1. 
Using notations (3.10), (3.11) we rewrite (3.6) and (3.9) in the form: 

1 
cx0 llx0 - .X~II~ + 2 1 x~ (h)-x~ (h)l2~a0 , (3.12) 

1 
cx0 l l xo - .X~ II ; +2 1x~(k + 1) h-x~ (k+ 1) h l 2 ~ak+ 

1 
+21x~(kh) - x~(kh) l 2 + 2cx1 11x~ - .X~II;_ 1 . (3.13) 

Hence (3.12) and (3.13) imply that: 

for k = O, 1, .. . ,m - 1 . 

Hence 

m- 1 1 ( 2cx )m- 1 
llx~ - .X~ I I 2 = 2; l lx~-.X~II;~- --

1 
+ 1 ·[(m-1)ao+ 

k=O cxo cxo 

m-1 ( 2cx1 )m-1 m-1 
+ (m - 2) a 1 + ... + am- 1]~-- - - + 1 2; ak. 

tlo Ol:o k= o 

Recalling the definitions of ai we obtain from (3.14) 

It is easy to see that 

llxo - x~ll2 ~211x~ - .X~II2 + 211x~ - xo lf~2 11x~ - .X~Il2 +2r2 li ~~o \( 
(the last estimation follows from Lemma 3.1). 

(3.14) 

(3.15) 

(3 .16) 
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We arrive at the desired result by combining (3.15) and (3.16). So 

llxo-x~II2 ~Co lluo -u~l12 +C1 T
2 

where 

df (l j d 112 ~~~dxo 112 ( 
2 

Co ( 
27 

+ fe) ) 11 d2 xo 112 
cl =Co I dt -1 + 4 Ttl + ()(1 + 2 11~ 

and ()(0 , ()(1 are given by (3.10), (3.11). 
Now applying Lemma 2.2 we complete the proof of the Theorem. 

4. Estimation of the difference between the optimal and 
approximate Lagrange multipliers 

4T 

(3.17)' 

(3.18). 

An estimation of the norm IIA-0 -A~II in term of l lx~-xo ll and l lu~-uoll is presented 
in this section. As a result of (2.1.11) ad joint equation of the following form is
obtained: 

d dt A0 (t)- Ax (x0 (t), X0 (t-h), U0 (t)) A0 (t)-Ay (x0 (t+h), X0 (t), U
0 (t+h)) x 

xA0 (t+h)=4>x(X0 (t), U0 (t)) for t E (0, T-h] (4.1} 

with the terminal condition: 

d dt A0 (t)-Ax(X0 (t), X0 (t-·h), U
0 (t)) A0 (t)=4>x(X0 (t), U

0 (t)); 

A_0 (T) =0 for tE[T-h,T]. 

Some properties of Lagrange multiplier A0 are given in the following Lemma: 

Lemma 4.1. Assume that all hypothesis of Lemma 2.2 and Hl are satisfied .. 
Moreover suppose that: 

(i) For all (x, y, u) E G the norms IAxx (x,y,u)l, IAxy (x, y, u)l, Axu (x, y, u)l,. 
l4>xx(x, u)l, l4>xu(x, u)l, 14>x(x, u) l, 14>u(x, ul are bounded by M 1 >0 7

). Then 
(i) IA-0 I~g3 

where g 3 depends on: M 0 , M 1 and is given by (C.1)) 

(ii) 11 dA_O 11 ITt ~g4 

where g4 depends on M 0 , M 1 and is given by (C.2) 

... 11 d2 A_o ~~ 
(m) ~~~gs 

::e[~f). depends on: p., p., 11•11-, 11 ~; L ·11 ~'11 ·11 a:, 11• M, M' and is given 

7) </> (x, u) (t) df </> (x (t), u (t)). 
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The proof of the Lemma is given in Appendix C. Equality (2.2.8) leads us to the 
following finite-dimensional analogue of ad joint equation ( 4.1 ). 

VJc~(t)-Ax(x~(t), x~(t-h), u~(t)) A~(t)-

+Ay(x~(t+h), x~(t), u~(t+h)) A~(t+h)=q>x(x~(t), u~(t)) 

for t E [0, T -h], 

VA~(t)-Ax(x~(t), x~(t-h), u~(t)) A~(t)=(]>x(x~(t), u~(t)) 

A~(T)=O for tE [T-h, T]. (4.2) 

We are now ready to present the estimations of errors commited in aproximating 
the Lagrangies multipliers. This result is given by the following. 

Theorem 4.1. Let hypothesis of Lemmas 3.1, 4.1 are satisfied. Moreover 
suppose that Ax, Ay, (]>x satisfy Lipschitz condition on G with constants L 1 , L 2 , L4 

respectively. Then 

where C2 , C3 depend on Lu L 2 , L4 , m, Px, Pu, M 1 , M 0 and are given by (4.16), 

11 

dip [I [[duo[\ 
(4.17~ a~d c4 depends on Ll, L2, L4, m, Px, Pu, Mo, Mu II IJ'I I-u dt [_/ IITtll 
and Is given by (4.18). 

Proof. Note that without loss of generality it can be assumed that the matrix 
Ax(x~(t), x~(t-h), u~(t)) is positive definite in the sense of L2-norm i.e.: 

(k+ 1 h 

J (Ax(x~(t), x~(t-h), u~(t)), A,(t)) dt~[J l i Jc, ii~ 8
) (4.3) 

kh 

for k=O, 1, ... , m-1; /]>0. 

In order to proof Theorem step by step method is used: 
Denote: 

- df -
Jc~(t)=P,A0 (t) fortE [0, T); and A,(T)=O 

J,(t) ctr (v (Jc~(t)-X~(t)), Jc~(t) - X~(t))+ 

-(Ax(x~(t), x~(t-h), u~(t)) (Jc~(t)-X~(t)), A~(t) -X~(t)). 

Observe that by (3.1) 

T-h T 
T-h J V iJc,((t)i1dt+r J iVJc,(t)IZ dt 

1 
T-h 

J (VJc,(t), A,(t)) dt= ---"T _ _ _ _ _ 2__::_T-___::h ____ ~ 2 J V IA,(t)l 2 . 

T . T 

8
) If Ax (x~ (t), x~ (t-h), u~ (t)) does not satisfy (4.3) we can introduce a transformation of 

~ariables putting il,=il; P, (exp a• t). For variable ..1.; equation (4.2) will have the same form as 

before, but with operator Ax depending on a* and such that ( 4.3) is satisfied for a* large enough 
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After integrating ~t (t) from T to T - h and applying (4.3), (4.4) we have: 

T-h 1 1 f ~,(t) dr?;2 [ J.~(T- h) - X~(T-h)IZ - 2 [ J.~(T) -
r 

-(X~TW+P 112~ - X~il!- 1 , (4.5) 

On the other hand using (4.2), (4.2) and inequality (3.4), Lipschitz condition 
to be satisfied by Ax and Lemma (3 .1) we get : 

4 

T - h 

J ~,(t) dt=<fPx(x;, u;)-C/Jx(X0
, U

0
), X; - 2~)111 _ 1 + 

T 

- - / d).O - - ) +<Ax(x0
, yo, u0

) (A.; - A.o), A.~ - A.~)m- 1 +\-- V A.~, Jc~ - A.~ ~ 
'- dt m - 1 

~ ;e {2L; [ ll xo-x~[[!_ 1 +[ [u0 - u~ [[; _ 1]+3 [A0
[
2 Li[ [[X0 - X~ [[!_ 1 + 

[[X0
- x~ll!- 2 + [[U0

- u~ [l,~-1] +M~ ' 2
11 ~o /1:_

1 
+ 

11 d
2 

AO 11
2 

} -
+ 2r2//df2 /1m-1 +Se [[ .lc~ - A~[[;, _ 1. 

Combining (4.5) and (4.6) we arrive at 

(./3 - Se) [[ 2~ - X~[ [;_ 1 ++ j .lc~(T-h) - X~(T- h) / 2 ~ 

~-1 {(2£2 + 3£2 [.A_o[2) [[xo -xo[[2 +3£2 [A.o [2 [[ xo - Xo /[ 2 + ""2e 4 1 tm-1 1 tm-2 

+(2L; +3Li [A.o[2) [[uo-u~[[;_1 +-r2 [M 51\ ~o IL 1 + 

11 d2 },o '12 1} 
+2 lld2' . f ! m- 1 

In the same way we estimate 

T-(k+ l)h 

J ~t(t)dt fork=l,2, ... ,m - 1: 
T - kh 

T-(k+1)11 1 
f ~t(t)dt?;T/A.~(T- (k + i)h)-Jc~(T- (k+l)hW+ 

T-kh 

(4.6) 

(4.7) 

1 - --2 [ A.~(T- kh)-A.~(T- kh)IZ + p [[ A.~ -2~ [[;_ 1 (4.8) 
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and 
T-(k+1)h 

J ot(t) dt=(ifJx(x~, u~)-ifJx(X0, U0
), 1~-Jc~>m-k-1 + 

T-kh 

+<(Ax(X~, y~, u~)-Ax(X0, Y0
, U0

)) 1~, 1~- A.~)m-k-1 + 

+(Ax (X0
, J 0

, U0
) (A0 -1~), 1~ -},~)m-k-1 +<(Ay (x~, y~, u~)+ 

-Ay(X0
, J 0

, U0
)) A0

, 1~-Jc~)m-k+(Ay(X~, y~, u~) (Jc~-A0), 1~- },~>m-k+ 

<dAO - - > + -d - VJc~, A~- Jc~ · 
f m-k 

(4.9) 

After applying inequality (3.4), Lipschitz condition to be sat isfied by Ax, AY' ifJx 
and Lemma (3.1) we obtain from (4.9) 

T-(k+1)h 1 { 
j o"(t) dt~le 2L~ [l lxo-x~l l!-k- 1 + lluo-u~ll!-k- 1]+ 

T-kh 

+3Li IA0 I2 (llxo -x~ ll!-k- 1 + llxo -x~l l!-k-2 + lluo -u~ll!-k- 1 ] + 

+3L2IA0 12 [IIX0 -X0 II2 + IIX0 -X0 II 2 + llu0 -U0 II 2 ]+ 1 t m-h T m-k-1 ~ t m-k 

_ [ 'I dA
0 

'12 I' d2 /c
0 

11

2 
]} +Mg IIA~-/c~ l1!-k+2r2 

M6 j dt[ + ~ ~t-k- 1 + 

+ 12s 111~-A.~ II!-k- 1 . (4.10) 

Combining (4.8) and (4.10) we have for k=1, ... ,m- I 

T IJc~ (T-(k+ 1) h) -1~(T-(k+ 1) 11)1 2 + (fJ-12s) I IA~-1~ 11;,_ k _ 1 ~ 

Denote: 

1 - 1 { ~21Jc~(T-kh)-lc~(T-kh)IZ+2e [2L~+ 

+3 WI 2 (Li+LDJIIxo-x~ l 1!-k-1 +3Li IA0 I2 llxo-x~ ll!-k- 2 + 

3L~ IA0 I2 llx0 -X~I1!-k+ [2L~+3Li IA0 I2 ] l luo-u~ll!-k-1 + 

+3L~ Wlllu0 -u~ ll!-k+M6 111~- A~ I1!-k+ 

[ 211 d)co 112 11 d. 2. Ao 112 l} 
+lr

2 
Mo IITtll + ~ m-k-1 • 

fJO df fJ-1"~,· fJ ~ 1 2. ~ 1-2;Mo, 

bm-1 df ;e {[2L~+3Li (A0
1
2

] llxo-x~l l!-1 +3Li I A0 1 2 IIX0 -X~ll!-z+ 

(4.11) 

+ [2L~ +3Li IA0 12 ] l lu0 -U~II;_l.+r2 [ Md; A0 
/[ _

1 
+ 211 d;t:o /[_J} 

for k=I, ... , m-1; 
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bm-k- 1 df ;e {[2L~+3Li /A-0 /
2

] ttx• - x~ l l!-k - 1 + 

+3Li j},•/ 2 /lx• - x~ll! - k - z +3L; tA.•t 2 lix•-x~l 1! - k + 

+ [2L~+3Li tA.• t2 ] ltu•-u~ ll! - k- 1 +3L; tA.• t2 ltu• - u~ll;,_k+ 

. [ 211 d llz 11 az A.• 112 ]} 
+2

'
2 

Mo dt ,1•11 + I~ m- k- 1 · 

Using these notations we rewrite (4.7) and (4.11) in the form : 

1 - - -
2 /A.~(T-h) - A.~(T-hW + Po IIA.~-1.~//;, _ 1 ~bm - 1 

+ Po II A.~ - X~t l!-k-1 ~bm-k-1 + fJ1 1 12~ - X~/l;,_k + 

51 

(4.12) 

(4.13) 

1 -
+2 / A.~(T- kh) - A.~(T- kh)j 2 for k = 1, .. . , nt _.: 1. (4.14) 

Let e be choosen such that e < ~ (it is possible since fJ> 0). 

Combining (4.13) and (4.14) we have: 

• -. 2 (fJ1 )k ( fJ1) fJo i iA.,-2, 11 ,. - k-1~ fJo +1 bm-1 + ... + I+ fJo bm - k-2 +bm - k- 1 

for k=O, 1, ... ,m-: 1. 

Hence 

m-1 m (fJ )m-1 m - 1 

112~ - X~ t l 2 =}; IIA.~ - X~ t l 2 ~-fJ -fJ
1 

+ 1 }; bm - k- 1 ~ 
k=O 0 O k - 0 

~ 2~ e ( ~: + 1 r- 1 

{[2L~ + tJc• t2 (6Li + 3LDJ ltx• - x~ / / 2 + 

+ [2L~+(3Li + 3L;) /)."12 ] ttu· - u~ II 2 +T2 [3L~ /A" /2 11 ~: [+ 
211 a;.· 11

2 
11 a2 

.1· 11
2
]} 

+2Mo llat ll + 2 1~1 1 · 

If we denote: 

(4.15) 

(4.16) 

(4.17) 
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c df -- _1 + 1 3£2 1..1.0 12 __!_ ' + m (fJ )m- 1 
[ [[ d 1[

2 

4 
2/]0 e fJo 1 

11 dt 11_ 1 

2
11 d,.l

0 

1'

2 

I' d

2 

,.l

0 

11

2

J + 2M0 dt [ +2 [Jt2 , (4.18) 

where /]1 , /]0 one given by (4.12), then after applying Lemma (4.1) we complete 
the proof of Theorem 4.1 . 

5. Estimation of the difference between the optimal and 
approximate controls 

In this section the difference between u0 and u~ is estimated by a constant con
vergent to zero with -r. In order to find this error boundthe Lagrange multipliers 
method is used. Two cases are considered independently. One is unconstrained prob
lem where Q is equal to the whole space H 1 [0, T; Rm]. The other constrained 
optimization problem where Q is a real subset of H 1 [0 T, Rm]. 

S. 1. Unconstrained optimization · problem 

In this case conditions (2.1.13), (2.2.10) take on the form: 

t5u L (X 0
, U0

, A0
) =0, (5.1.1) 

(it is eilsily deduced from standard arguments in the calculus of variations). This 
fact will be essential to the proof of the main result of this paper given by the fol
lowing. 

Theorem 5.1. Assume: 

(i) (x0
, u0

) and (x~, u~) are the solutions of problems Q0 and Q, respectively. 
(ii) Hypothesis H1 - H5 are satisfied. 

(iii) The operator A, Ax, Ay, A,, rf>x, rf>u satisfy on G Lipschitz condition with 
the constants L 0 , L 1 , L 2 , L 3 , L 4 , L 5 respectively. 

(iv) The norms lAx (x, y, u) l, lAY (x, y, u)l, lA (x, y, u) l, Px (x, u) l, lrf>u (x, u) l, 
IAxx (x, y, u) l, IAxy (x, y, u) l, IAxu (x, y, u) l, lrf>xx (x, u) l, lrf>xu (x, u) l are bounded 

M -by a constant M=max(M0 ,M1) for all (x,y,u) E G. 
(v) Operator f!J, satisfies assumption of Lemma (3.1). 

oc 
(vi) << 2L2 . 

0 

(vii) !J = H 1 [0, T; Rm]. 

Then l[u0 - u~ I[ ~C-r where C depends on (oc, y,L0,L1 ,L2 ,L3 ,L~,L5 , M, lle ll - 1 , 

11 de [I If duo I[ ) . . ild!ll-
1

' IITt [' m, and IS gtven by (5.1.13), (5.1.12), (5.1.10), (5.1.8). 
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Proof. Denote u~ ctr f!JJ" U 0
• On the basis of Saddle Point Theorem (see Lemma 

2.5) for L< (xn u<> Ar) we get: 

(5.1.2) 

On the other hand recalling the result of Lemma (2.5), expanding Lr (x~, u~, X~) 
by Taylor's formula about (x~, u~, X~) and applying hypothesis H5' we obtain the 
following lower bound for J (x~, u~) 

(5.1.3) 

Adding (5.2) and (5.3) we obtain: 

y l lu~-i1~112 ~Lr(X~, u~, ).~)-Lr(x~, u;, X~)+ 

+ I J"Lr(x~,u~,X~) IIIu~-u~ll· (5.1.4) 

In order to proof Theorem the following expressions must be estimated: 

(5.1.5) 

(5.1.6) 

(5.1.7) 

By definition of L" Lemma 3.1, Schwartz inequality and Lipschitz condition 
we obtain: 

_ (' V -o _ dxo 1 o 1 ") <A ( -o -o -o) 
- X< - , A< -A< + X<, y <, U< -

" dt 

- [ - 11 d
2 

xo I[ ( I[ dxo 11 
-A (x 0 ,y0

, U
0
), A~-A~)~T V2 ~~~~ +L0 21 Tt ll+ 

11 dqJ ~~ li duo 1[ .)] -+II Tt 1-1 +II Tt l II A~-).~ J I. (5.1.5) 

Recalling that <JxL (x0
, U0

, A0
), 01: 1 )+<JYL (x 0

, U
0

, A0
), 01: 2)=0 [see condition 

(2.1.11)] and after applying again Lemma 3.1, Schwartz inequality and (4.1) we 
see that 

<JxLt(x~, u~, X~), ()(1>+<JyLr(X~, u~, X~), Ol:z>=<r:J\(x~, u~)-

- rpx (x0
, uo); 01: 1 ) + <AxCxo, yo, uo) (X~- A0

), 01:1) + <CAx (x~, y~, u~)-
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. · - [ (11 dx• 11 11 du• 1

1

1) 11 dA• 11 -Ay(x•,y•,u•))A~,Q(z)~r L ll dt" l+lldt" l +Mo ll dt 11 + 

+L1 1Aol [2 11 ~o \\+[\ ~ l/_
1 
+11 ~o 1\]+vl /1 d;t:o 11] 11 ()( 1 11 + 

+r [ M• \\ ~o li+Lz iAol [2 /l ~o 11 +11 ~; //_
1 
+11 ~o 1/]) ll ()(zl l. (5.1.6) 

Since condition (5.1.1) is satisfied then: 

~r[Ls (/1 ~· 11+ /l ~· /1)+£3 (
2

11 a;• 11 +11 .. ~; ~~ -1 + 

+1
1

1
1 ::· 11) IA"I +M· /1 :~· /\]. (5.1.?) 

Denote: 

c7 ctr Ls (11 :~· 11 +1/ ~· /1) + £3 (
2 11 :~· 1/ +// ~; //_

1 
+ 

+// ~· 11) IA"I+M· II :~· /1 ; 

Cs ctr [ M· /1 :~· 1/ +L£ IAol (2 \1 ~o 11 +11 ~; 11_
1 
+I/ ~· //)] 11 ~; 1/_

1
• (S.l.S) 
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Substituting (5.1.5), (5.1.6), (5.1.7) into (5.1.4) and using notation (5.1.8) we get: 

y lluo - u~ ll2 :( -r [ c s I lA.~- X~ II + c6 llx~- x~l l + (\ llu~ - ii~ ll l + 

+Cs r2 :(r [CsiA.~-A.~ II +C6IIx~-x~II+C7 IIu~-uolll+ 

Since 

then: 

Y llu~-U0 ll2 
:( r [ Cs iiA~- A_ oil + C6llx~- X

0
1l + 

11 duo Jl ] [ 1'1 dA.o 11 11 dxo 11 
+C72y l d( jj llu~-u0 ll +r2 Cs+Cs dt[[+C6 1\ Tt iJ+ 

- IJ duo IJ 11 duo 112 ] 

+C7jjd( jj +Y jj d( jj . (5.1.9) 

Set 

df - Jj duo 11 
C1 = c7 2y \ITt ll' 

df - Jj dA.o Jj Jl dxo 'I 11 duo Jl 11 duo J\

2
· 

Cs= Cs +Cs //at\\+ C6jjd(j + C7 atll+ Yjl d( jj . 

(5.1.10) 

Using notations (5.1.10) we rewrite (5.1.9) in the form 

Y lluo-u~ll 2 :(r [Cs11A.~-A0 II +C6 1[X0 -X~I I +C7ilu0 -u~ II]+Cs r2
• (5.1.11) 

Applying Theorems 3.1 and 4.1 to the terms IW-A.~II and llx0 -x~ll respectively 
we conclude that: 

y llu0 -U~ ll2:(r [Cs (V Cz llxo-x~ll + l/ c3 lluo-u:JI+ V c4 r) + 

Denote: 

So we get: 

+C6(V Co lluo-u:ll+ V cl r)+C7ilu0 -U~II+Cs r2:( 

:(r lluo-u~ll (CsV c2 Co +Cs V c3 +C6 V Co +C7)+ 

+r2(Cs VC1 Cz +Cs VC4 +C6 VC1 +Cs)· 

B df Cs V Co c2 + Cs V c3 + c6 V Co + c7, 

B1 df C5 VC1C2+CsVC4+C6VC1+Cs. 
(5.1.12) 
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Completing the square on the left-hand side of the inequality, and taking the 
square root of it we have: 

(5.1.13) 

ctr 1 [( B
2 )t B ] . . where C= -y B1 +4Y +2Y With B,B1 defined by (5.1.12), (5.1.10), (5.1.8). 

Using this fundamental error bound, it is a simple matter to show that similar 
bounds hold for the state and cost functional. These results are summarized in the 
following: 

Corollary 5.1. If the assumptions of Theorems 5.1 are satisfied then: 

·llxo-x;!l <-r [y Co C+ V C1 l 
and 

where C0 , C1 , C2 are defined in Lemmas 3.1. and 5.1. 

5.2. Constrained optimization problem 

In this case the following estimation takes place 

Theorem 5.2. Assume: 
(i) (x0

, u0
) and (x;, u;) are the solutions of problem 8 0 and e, respectively; 

(ii) Hypothesis H1-H5 are satisfied; 
(iii) Operators A, Ax, Ay, A,, £Px satisfy Lipschitz condition with the constants. 

L 0 , L 1 , L 2 , L 3, L 4 respectively on G; 
(iv) The norms lAx (x, y, ·u) [, [Ay (x, y, u) [, I YAu (x, y, u) [, l£Px (x, u) [, l£Pu (x, u) l 

are bounded by M>O for all (x, y, u) E G; 
(v) Operator P, stisfies assumption of Lemma 3.1. 

(vi) Q i= H 1 [0, T; Rm]; 
then 

[[U0
- u;!l <et t 

where C defined by (5 .2.16), depends on: 

( ~, y, Lo, L1, Lz, L3, L4, M, llell -1, 11 ~~ /1_
1

, 11 :~o jj , m,) · 

Proof. By Lemma 2.5 we have: 

(5.2.1( 

Using x; and u~ we construct the functions: :X E H 1 [ -h, T; R"] and u E Q 

satisfying the following conditions 

x(f9) = qJ(f9), BE[-h;O], . (5.2.2) 

(5.2.3) 
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~~ ~ - Vx~~~ ~rdz, 9) 

11u-u~ ll ~rd3, 10
) 

where du d2 , d3 are given constants. 

Denote y (t) df i (t-h), t E [0, T]. 
Conditions (2.1.11 ), (2.1.13) imply that: 

<Jx L (xo, Uo, A_o), i -xo) +<JY L (xo, uo, A_o) y- yo) =0' 

<JuL (x 0
, u0

, A.0 ), u-u0 );?:?;0. 

5T 

(5.2.4} 

(5.2.5); 

(5.2.6); 

(5.2.7} 

Applying Taylor's formula to L (i, u, A0
) about (x0

, U0
, A0

) and taking into· 
account conditions (5.2.6), (5.2. 7) as well as hypothesis H5 we obtain: 

L (i, u, A0 );?:?;L (X 0
, U0

, A0 )+<JIIL (x0
, U0

, A0
), U-U0 )+ 

+ <JxL (xo, Uo, A_o), i-xo)+<JyL (xo, Uo, A_o), y-yo)+ 

+ Y llu-uoii 2 ;?:?;L (X
0

, U
0

, A0 )+ y llzi-u0 ll 2
• (5.2.8} 

By (5.2.8) off nad Lemma 2.5 we have: 

L<(x~, u~, A.~) =L<(x~, u~, X~)=L<(x;, u~, X~)+ 

-L (i, U. A0
) +L (i, U, A0 );?:?;Lt (x~, u~, X~) -L (i, u, A0

) + 
+ L (X0

, U0
, A0

) + Y 1111- U0 ll 2 • (5.2.9} 

Combining (5.2.1.) and (5.2.9) we arrive at: 

y llu- U
0 ll 2 ~LJ.X~, u~, A~) -L (x0

, U
0

, },o) +L (i, u, A0
) -Lt (x~, u~, X~). (5.2.10) 

After same inequality manipulations similar to those performed in the proo1 
of Theorem 5 .1 . we obtain: 

T 

Lt(x~, u~, A.~)-L (x 0
, u0

, A.0 )= J [<P (x~(t), u~(t))+ 
0 

d 
- cp ( x0 (t), uo (t))] dt +<V .X~- dt x0

, l~) +<A (.X~, y~, u~) + 

(5.2.11} 

9 ) For x we can take for example a piece-wise linear function such that x (rr)=x~ (rr) for 

r=O, 1, .. . , p. This time d1 = 11 ~~ 11 and dz=O. 

10) Such [i exists due to condition (2.2.2). 

11) Observe that /)A.~//~ 2
mM (the proof of this fact is almost identical to that of Lemma 2.4)_ 
B 
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Employing conditions (5.2.3) and (5.2.4) we have 

T 

L (x, u, ).0)-L, (x~, u~, X~) = J [ <P (x (t), u (t)) - <P (x0 (t), u0 (t))] dt + 
0 

+ < ~~ -Vx~, A0
) +( (A (x, y, u)-A (x~, y~, u~)), ;,o)~ 

~r [M(dt +d3)+dz iA0 i+Lo(d1 +d3+ 11 1P ii - t) l.lcol. (5.2.12) 

Denote: 

Substituting (5.2.11), (5.2.12) into (5.2.10) we get: 

Since 

then 

where 

- ·_Ei_ ( Cg )t t d C-- +r 3· 
y 

(5.2.14) 

(5.2.15) 

(5.2.16) 

dx0 d2 X 0 

Using results of Lemmas 2.2., 4.1 on the terms with A0
, dt, ~ in · (5.2.13) 

we complete the proof of the Theorem. Theorem 5.2 implies the following analogue 
to Collorary 5.1. 

Corollary 5.2. If the assumptions of Theorem 5.2 are satisfied then: 

llxo-x~II~(Y Co C+ Y C1 r!) rt 

and 

J(x~, u~) -J(x0, uo)~M(C+YCo C1 +Y cl rt) rt 

where C0 , Cl> C are defined by (3.17), (3.18), (5.2.16) respectively: 
As it was stated earlier the main object of the paper is to find the error bounds 

for 11u0 -u:11 where u: e Q is some admissible control in H 1 [0, T; Rm] constructed 
using u~. This result is given in the next section. 
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6. Error estimation for the difference between an optimal 
.and approximate in H 1 [0, T; Rm] control 
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Let u; be admissible control corresponding to u~ constructed according to con

dition (2.2.2). 

Observe that 

For the case of unconstrained optimization as a result of Theorem 5.1 and con
dition (2.2.2) we have: 

(6.1) 

where C is given by (5.1.13). 
Denote by X: solution of equation (2.1.1.) corresponding to u; and satisfying 

initial condition (2.1.2). 
We wish to estimate J (x0

, u0
) - J (X:, u;). To accomplish this, the difference 

between X 0 and x; must be estimated. This result is given in the following Lemma: 

Lemma 6.1. Assume that: 
(i) Hypothesis H2, H3, H4 are satisfied, 

(ii) A satisfied Lipschitz condition on the set G with a constant L 0 

Then 

where 

cdf_L2 1+--4m ( 2L )m-1 
e 0 ~X-2e 

Proof. To prove this Lemma step by step method is used. Recal that X 0 and x; 
satisfy the following equations: 

dx0 

dt+ A (x0 (t), X
0 (t-h), u0 (t))=0; x(8) = q7(<9), 8E[- h, 0], (6.1) 

dx; (t) ( * * * ) ~+A xt(t), xt(t-h), ut(t) =0; x;(e)=qJ (e), BE[-h, 0]. (6.2) 

After substructing (6.1) and (6.2), multiplying the result by X 0 -x; and integra
ting from 0 to h we have 

1 h 

-IX0 (h) - x;(h) l2 + J (A (x0 (t), qJ (t-h)), U
0 (t))+ 

2 0 

-A (x; (t), q7 (t - h), u;(t), x 0 (t) - x;(t)) dt=O. (6.3) 
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h 

Adding and substructing term J (A (x; (t), X 0 (t-h), u0 (t)), X 0 (t)-x;(t)) dt, 
0 

applying hypothesis H4, Lipschitz condition and inequality (3.4) we obtain: 

Using the same argument for k = 1, .. . , m -1 we get : 

1 1 
2!x0 ((k+ 1) h)-x ((k+ 1)+h)\2 -2jx0 (kh)-x:(kh) f2 + 

1 
+(L£-2e) f lxo-x; r r:~ -28 L~(ffxo-x; rr;_ 1 + lfuo-u;rr;). (6.5) 

From (6.4) and (6.5) it follows that 

Hence 

(6.6) 

where e is chosen such that L£-2e>0. Q.E.D. 
Lemma 6.1 implies the following result. 

Theorem 6.1. If all assumptions of Theorem 5.1 are satisfied then : 

ffxo-x; r r~C ( c+ ll ~o 11) r (6.6) 

(C, C are given by Lemma 6.1 and Theorem 5.1), and 

* * ( 11 duo 11) -J(x.,ur)-J(x0,U0)~M C+ dt ll (l+C)r. 

Proof. The estimation (6.7) is obtained by direct substitution of (6.1) into ine
quality result of Lemma 6.1. The second inequality is obtained by expanding 
J (x;, u;) in Taylor series about (x0

, u0
) and by employing (6.1) and (6.7). For con

strained case the result analogous to Theorem 6.1 is obtained: 

Theorem 6.2. If all assumptions of Theorem 5.2 are satisfied then: 

(6.8) 
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and 

* * ( ~~ duo 11 ) -J(xr, u,)-J(X0
, U0)~M C+ l dt ,t (1+C)rt (6.9) 

where C is defined in Theorem 5.2. 
The proof uses arguments the same as those in Theorem 6.1 (In order to obtain 

(6.8), (6.9) observe that condition (6.1) must be replaced by the following one: 

Conclusions and remarks 

A finite difference approximation of optimal control problem for systems with 
delay was investigated in the paper. Such an approximation problem can be effecti
vely solved using computer. In this way we obtain a suboptimal control for real 
system. As examplified in the work [7, 8, 9] finite difference methods usually pro
duce simple computational algorithm. A number of useful itterative methods are 
available for treating problem of this type [10, 11]. A priori estimates for differen
tial between such suboptimal and optimal controls were derived. 

The cases of unconstrained and constrained optimization problems were consi
dered independently. 

I. It was shown that for unconstrained problem the obtained suboptimal 
control converges to the optimal one with the rate 0 (r) [see Theorems 5.1, 6.1], 
whereas for constrained problem this rate is equal to 0 (rt) [see Theorems 5.2, 6.2] 

II. In order to obtain convergence of subopt imal control to optimal (without 
estimation of its rate) the weaker assumptions than those of Theorems 5.1 and 5.2 
are required. 

It is enough to assume that hypothesis H l -H5 (and H5') are satisfied and that 
Ax, Ay, f/Jx are bounded operators in the sense of L 00 (G). 

Ill. Results given in the paper can be extended to the case where A and f/J 

depend explicity on time t. In order to obtain the error bound in this case let us 
consider the following "auxiliary" approximation of initial problem minimize 

T 

Jr (x, u) df J f/Jt ( x (t), u (t)) dt subject to the constraints: 
0 

dx (t) 
~+ Ar(x (t), x (t - h), u (t))=O, t E [0, T] 

X (8)=e (Q) @ E ( - h, 0] 

u E Q, X E H 1 [0, T; R"] 

where f/Jr (x, u) and Ar (x, y, u) are defined as 
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and for t 

A,(x (t), y (t), u (t)) df A (x (t), y (t), u (t), t,1) 

where t" t,l> E [rr; (r+ 1) r]. 
We shall refer to above problem as problem 8 1 • It easy to see th~t problem 8 1 

<;an be vieved as an optimization problem of the same form as before (since A and 
f1> do not depend on time). Then to obtain the desired result the difference between 
the optimal solutions of initial optimization problem and problems 8 1 must be 
estimated additionally. The error bound commited in such approximation (approxi
mation 8 1) is derived on analogous way to that given in the proof of Lemma 5.1 
and therefore is omitted here. 

IV. Results given in the paper are available for the case where A doesn't depend 
on x (t). This time strong monotonne condition (hypothesis H4) is not headed at alL 

Appendix A 

Proof of Lemma 2.2 

(i) follows directly from Lemma 2.1. 
We are going to prove (ii). 
(ii) Taking advantage of Lipschiti condition we get from (2:1.1) 

11 ~· 11= IIA (x", y", u") ll ::::; IIA (x", y", u")-A (0, o, 0)11+ 

+ I lA (0, 0, 0)11 ::::;Lo [l lx"ll + IIYo ll + lluolll + I lA (0, 0, 0)11 · 

Applying this time the result of Lemma 2.1 to terms llxo ll, IIY0 II we obtain 

1\ ~o \\ ::::;Lo [2 llxo ll + IIIPII- 1 + lluoll] + I lA (0, 0, 0)11:::::; 

::::;Lo [2px + Pu+ II IP II -1 + I lA (0, 0, 0)11. 
Denoting 

df 
gl =Lo [2Px+P .. + II IP11-1]+ IIA (0, 0, 0) 11 (Al) 

we arrive at (ii) 
(iii) is proved by differentiating tha state equation (2.1.1) with respect to t. 
Namely 
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Denote 

g2 df Mo[2g1 +11 ~; /1_
1 
+11 ~

0 

Ill (A2) 

then by virtue of (ii) we get: 

11 d
2 

x" 11 
11~ 1/ ::::;g2 what completes the proof of the Lemma. 

Appendix B 

Proof of Lemma 2.4 

First we wish to show that there exists some constant p1 , such that [[u"[[::::;Plu 
for all r<r0 • In order to prove this, let us denote by (x~0 , u~0) and (x~1 , u~1) the opti
mal solutions of problem e,o and et1 respectively. 

Suppose that r 0 is a fixed discretization and r 1 is less than r 0 . Let Xr 1 be a solu
tion of (2.2.3) with the initial condition (2.2.4), (2.2.5) (for the step of discretization 
equal to r 1 ) corresponding to control u~0 (since r 1 <r0 then u~0 may be considered 
as an element of Er1 [0, T; Rm]). 

Then by optimality we obtain 

(B.O) 

We are now going to show that [J (x,1 , u~0) [ is bounded independently on r 1 . In
deed, note that xr1 satisfies the following equation 

Denote 

Vxr 1 (t) +A (xr 1 (t), Xr1 (t - h), u~0 (t)) = 0 

xrl (e)=qJ,l (e), 

Xrl (0) = qJ (0). 

eE[-h o) 
' I ' 

(B. I) 

After multiplying (B.l) by .Xr1 (t), and integreting from 0 to + h we obtain 

h h 

J (Vx,1 (t), .X,1 (t)) dt+ J (A (xtl (t), qJr1 (t - h), u~0 (t))-
o 0 

11 

-(A (0, qJtl (t - h), U~0 (t)), Xr1 (t)) dt + f (A ( Xr1 (t), qJr1 (t - h), U~0 (t))-
0 

11 

-A (xt1 (!), qJtl (t- h), u~0 (t)), Xr1 (t)) dt + f (A (0, qJ,1 (t- h), u~0 (t))) =0 . 
0 
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By employing hypothesis H4, inequality (3.4) and continuity of A we see that 

·where 
df 

y = { (0, rp, U~0) E Et [0, h; R"] X Et [(- h; 0); R"] X Et [0, h; Rm]} (B2) 

.and L 10 denotes the maximal value of A over the set Yo. Since llxt1 -.Xtlllt,-.o--+ 0 
then by continuity of A for any fixed e0 > 0 there exist r 1 such that for any r 1 < i 1 

By the identical arguments we prove that for p = 1, ... , m-1 

~ ixtdk+ 1) hl2 - ~ lxt1 (kh)IZ + ( o:- ;e) 11xt1 11;~2e [e~ h+L;k] 

where 

yk= (0, x, u~) E Et [kh, (k+ 1) h; R"] X Et [(k - 1) h; kh; R"] X df ( 

x Et [kh; (k+ 1) h; R"'], llx llk- 1 ~ o: _
2
__!_ [ke,;' h+L;o +L;k_, +x2 (0)]]. 
2e -

(B3) 

Combining the above results we arrive at 

l l xt 1 11 2~-2T [e~ T +m (L;o + ... +L;k +x2 (0))], e< 
2

0: , (B4) 
o:--

2e 

where Yo ... yk are defined by requrence formula (B.2) and (B.3). Since J is a bounded 
operator then (B,O) and (B,4) imply that ll (x~P u~1 ) 1 is bounded independently on 
r 1. Furthermore by hypothesis H3 we conclude that there exists p 1 " < oc such that: 

(B.5) 

(the proof of this fact uses arguments similar to those given in the proof of Lemma 2.1) 
In the some way as was obtained (B.4) it is now a simple matter to show that 

there exists p lx > 0 such that 

Q.E.D. (B.6) 

Appendix C 

Proof of Lemma 4.1 

Using Gronwall's inequality [13] we obtain from (4.1). 

IA.o lm-1 ~h 11 4>x (x0
, uo) llm -1 ( exp [II Ax (x0

, yo, uo)llm-1 h ])2. 
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Furthermore for k= 1, ... , m-1 we have: 

\2°\m-k-1 ~h \\Wx(X0
, U

0)\\m-k-1 ((exp [\\Ax(X0
, Y0

, U0 )\\m-k-1 h])2 + 

+ {h \\Ay (X0
, Y0

,U
0 )IIm-k ((exp [I lAx (x0

, Y0
, U

0)llm-k-1 h])2 + 1) IA.0 1m-k · 

Hence for k=O, 1, ... , m-1 
k 

IA.0 Im-k-1 ~hM ( exp (M0 h))2 2; [hM ( exp (M0 h)) 2 + 1]1
• 

1=0 

Then 
m-1 

12ol::s;hM(exp(M0 h)}Z 2; [hM(exp(M0 h))Z+l)l. 
1=0 

Denoting 

(C.1) 
1=0 

we obtain (i). 
We are going to prove (ii). To accomplish this we estimate: 

and 

So 

11 !!___ 2° ll~g 
11 dt """ 4 

where 

5 

g4 df 2M +3Mo g3. (C.2) 

In order to prove (iii) we differentiate (4.1) with respect to t and obtain 

1
1 az 2o 11 [ [[ dx

0 

11 11 dyo 11 [ dfZ ::s; 12°1 IAxx(X0
, Y0

, U
0 )1 11 dt + IAxy (X0

, y 0
, U

0)1 dt + 

+ IAxu(X
0
,y

0
, U

0 )1 11 ~
0 

11] + Wxx(X
0
,y

0
, U

0)lll ~
0 

11+ Wxu(X
0

, U
0)lll ~

0 

11+ 

+11 ~
0 

\11Ax(X
0

, y
0

, U
0 )1+ 12°1 [1Ayx(X

0
,y

0
, u0)lll ~

0 

11+ 

jj dx" 11 i 11 du
0 Ill 11 d).

0 

'' + IAyy (xo, yo, uo)l ll dt + IAyu (xo, yo, uo)lll dt + 11 dt 11\Ay (x", yo, uo)\. 
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Hence 

After applying Lemma 2.2. we arrive at: 

11 a;t~o II~Mg3 [4g2 +1\ ~~~~- 1 +2 11 ~o II]+M[JI ~o l/ +g2 +2g4 ] . 

Denoting 

g 5 df Mg 3 [ 4g 2 + 11 ~~ I I_ 
1 
+ 2 11 ~o 111 + M [I I ~o 11 + g 2 + 2g 4 ] (C.3) 

and after recalling the result of Lemma 2.2 we arrive at (iii). (Q.E.D) 
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Aproksymacja r6:inicowa sterowania optymalnego dla uklad6w 
opisanych nieliniowymi r6wnaniami r6:iniczkowymi z op6z-

· .. 
nieniem 
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Artykul jest poswir<cony aproksymacji r6znicowej problemu sterowania optymalnego dla 
uklad6w opisywanych nieliniowymi r6wnaniami r6zniczkowymi z op6znieniem. Problem optymali
zacji rozwazono stosujqc teorir< mnoznik6w Lagrange'a. Podano oszacowania r6znicy normy 
{w sensie przestrzeni L 2 ) sterowania i stanu optymalnego dla problemu dokladnego i aproksymo
wanego. 

0 pa3HOCTHOU anUpOKCHMai(HH ODTHMaJIHOro ynpaBJieHHH 
,!J;JIH CHCTeM ODHCbmaeMLIX ueJIHHCHHbiMH ,li;H!IJI!JepeH~HaJibHbi
MII ypasuenHHMH c 3ana3,n;LmauueM 

CTaTbll IIOCBHI!l,eHa pa3HOCTHOH annpOKCHMal.(JHt: 3a,!la'IH OIITHMeJTbHOTO yrrpaaJieHJ(SI ,P:JIH 
·CliCTeMbi OIIliChmaeMOH HeJTIIHeHHhiMII M<I.J<I.JepeHI.IliaJibHh!Mli ypaBHeiiliHMII C 3aiia3W.IBaHIIeM. 
3a.Qa'Ia OIITIIMII3al.(liii paccMaTpiiBaercH rrpn ncrrom.3oBaHl!H reopnn MHOlKIITerreH: JiarpaHlKa . 
.lJ:aeTCH OI:(eHKa pa3HOCTII HOpMbi (B CMbiCJTe rrpocrpaHCTBa L 2

) yrrpaBJTeiiliH li OIITIIMaJibHOTO 
COCTOHHIIH ,!1JIH TO'IHOTO li aiiiipOKCHMHpOBaHHOTO pemeHHll 3a.Qa'IH. 




