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The paper deals with evaluation of integral (6) treated as the performance index of the linear,
asymptotically stable system governed by Eq. (5) and subject to a step function input. The approach
is general, applicable to systems of any order and is based on utilization of matrices (2) and (10)
and the relationship between the Liapunov functicn and the quadratic performance index. So-
lution of the problem is essentially related with the determination of some auxiliary matrix (32).
With its aid the detailed, working formulae (33)-(35), valid for systems of order n<5 and for per-
formance indices with k <2 (Eq. 6), are stated. Their generalization for any n and any &, due to
a universal character of the matrix (32), is in fact straight-forward. Special attention is given to
the choice of the weighting factors occurring in formulae (6) and (44) leading finally to the suggested
form of the performance index expressed by Eq. (49). Application of this form is illustrated by
four, simple examples of parametric optimization of dynamic systems — electric network, servo-
mechanism, industrial controller, and systems with the so-called ““optimum” transfer functions.

1. Imtroduction

In the paper of Kalman and Bertram [1] it was shown that for the linear auto-
nomous system the stability considerations based cn the second method of Liapunov
are specially simplified if in the state equation of the system

x=Ax, )]

its matrix A takes the, so-called, Schwarz canonical form

o | Y

_as

[
1
|
e —lp-1 - ! | ) ?)

- —daz | —ap

1) In this and in all following expressions, the empty element of the matrix should be consi-
dered as equal to zero.
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This form as well as the well-known relationship between the Liapunov function
and the quadratic performance index was utilized later on by Parks [2] for evalu-
ating the simple quadratic measure of the transient motion

Jo= [ [2()—z(c0)]dr, 3

n which z (¢) is the step response of a lii ear, asymptotically stable system described
by the following transfer function:
1

i I L S S B N

F(s)= (4)

The purpose of the present paper is to show a slightly different approach to
Parks’ problem and at the same time to generalize his results by taking into consi-
derations systems described by transfer functions with polynomial numerators

LD Bos™+ b s Vbt oy 5+,
LR@0)] B I SO S-S oY, )

F(s)=

and by assuming for the performance index its more general and, from the engineering
point of view, more practical form

. (k)
Jk=f {[z(t)—z(c0)]*+ [rlz‘(t)]2+[r§Z(t)]2+...+[r’,§ z ())*}dt (6)
(0]

with z () having the same meaning as in Eq. (3) and with 7y, 7,, ..., 7, being constant
parameters (weighting factors) with dimensionality of time.

II. Linear autonomous system in the canonical form

The linear, single output, autonomous system is said to be in the canonical form
if it is governed by Egs. (1), (2) and by the following output equation:

y=c'x @)
with
¢'=[0, ..., 0, 1]. &)

Calculating for any trajectory of this system the time derivative of the quadra-

tic form
Vx(@)[=x'Px ©)

with its matrix P given by
4, a,_1 ... a5 a, |

Ay—1 .- A3 4
1 , &
P=—-idi )
o, diag % (10)
a,
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we get
"V [x(@)]=x'Px+x'Px=x'(4'P+PA)x=—x"diag (0, ..., 0, N x=—32.  (11)

Thus, on the basis of the well-known Kalman-Bertram modification of the
fundamental Liapunov’s theorem we have the following important result 2): The
state x=0 of the system described by Egs. (1) and (2) is asymptotically stable if and
only if

a;>0 for i=1, ..., n. (12)

The quadratic form V (x) plays, of course, the role of Liapunov function of the
system.

Assuming that condition (12) is satisfied, we can use relation (11) for evaluating
the improper time integral of the squared output signal of the system. The result is

[y ydi=— [ VIzOldi=V [x(0)]=x" () Px(0), (13)

i.e. the sought integral is equal to Liapunov function taken at the initial state of the
system.

Now, let us determine the Laplace transform of the function y(¢). According
to Egs. (1) and (7), we can write
¢’ adj(sI— A4) x(0)

ZLly®l=c' (sI-4)~"' x(0)= et (14)

For the system matrix 4 given by Eq. (2), we have

S —1
ay s —1 o
i e L= 3 B0 . 1 (15)
asz N -1
3 a, |s+a; |
and in consequence
adj (sI— A) =
= P
A,
4 T : a6 .
T 7 (16)
. . An—l
_(—)"_lan...azAlj(—)"_Za,,_l...a2A2i...!a3a2An_2‘—azA,,_1i An |

2) Modification related with the semi-definiteness of 1}; vide Ref. [1] p. 378, Coroliary 1.3 and
p: 382—383, Example 7.
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then the Laplace transform and the final value of the corresponding output are
given respectively by

1
LEOI=—F(s), (22)
lim z(f)=lim s & [z ()| =F (0)= ./, . (23)
t—0 s—=+0

In consequence, the Laplace transform of the purely transient part of the output
signal takes the form:

1
Zz(0]-z(c0) 1] = [F(s)—-F(0)]=
_ﬁn—x—F(O) °'~n—1-

[1s..s"2 1] Bus—F0)at,_,
= S"+0€1 Sn—1+...+0.n_1 S+O€n 3 (24)
fi—F(0) o, ‘
Po—F (0).

Similarly, we can formulate expressions for Laplace transforms of the deri-
vatives of the step response of the system. Confining ourselves, for example, to the
first two derivatives of z (), we get

LEO1=s2 [2O]-2(0)=5.2 [z (O] ~lim 5.2 [2()] = F (s) — fo =

ﬂn—'ﬂo Xn i
(180 72 g1 Bu—1 = Bottn—1
=s"+oc1 s o, sta E 25)
ol : B2—Po %2
Bi—Bo %4
and
&L z()]=5Z ()] -2(0)=sZ [ ()] —lim s Z [£()] =5 [F ()= Pol— (B — Bo o) =
3 _/31 O"n+f30 oy %y g
[1 S ... sn2 S"—l] ﬁn_'/jl mn—1+ﬁ0(°"1 ‘xn—l_“n)
: (26)

= S+ o Sn_1+...+0(,,_ s+, :
1 ' Bs— 1 oy + Po(oy oy —a3)

Ba—PB1 21+ Po (9&*12)

Since two functions having identical Laplace transforms must be identical, then
equating one by one expressions given by Egs. (24), (25) and (26) to the right-hand
side of Eq. (20), we shall obtain the output y (¢) of the autonomous system in the
form of z(¢f)—z (o) 1(¢), 2 (¢f) and Zz (¢) respectively. To achieve such situation,
it is, of course, necessary to satisfy the following identity:

det (sI—A)=s"+oq s" ooy S+, 27
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It gives us the correlation between the coefficients g; of the system matrix 4 and
the coefficients o; of the transfer function F(s). To write down this correlation in
explicit form, let us notice that according to Eq. (15), we have

det(sI—A)=(s+a,) A, +a; A, (28)

or substituting for 4, and 4,_; their values given by Eq. (19), identity (27) may be
rewritten in the form:

- il Fpves i i n e o P i
1 . 1 1"
s s Hp—1

n—4 n—2 n
ik a, a a a; Kt %,
1=3 k=1+2 i=k+2
n—4 n—2 n
—6 n—6
57 a E a N a § o
1 k 4 i 6
1=2 k=1+2 i=k+2
n—2 n
s a, 2 ag E a; i s
det(sI—A) = = = = 29)
n—2 n
n—4 § n—4 -
S ag Z a; S Xgq
k=2 i=k+2
n
Sh=3 a, E a; 578 o3
=3
n
Sn—l a‘_ Sn—-Z oy
i=2
sn—l a, Sn-—l oy
" 1 i 1

By comparing the coefficients related with the same power of s at both sides of
the identity symbol, the last expression gives us directly «; as a function of ;.
To obtain, vice versa, a; as a function of «;, we are making the same comparison
keeping, however, the following order: from the last two rows of Eq. (29), i.e. the
rows related with s" and s"~*, we have just a, =w,; going up and taking next two
rows we can determine a,; going again up for the next two rows we can find a3, and
in the following steps we can determine all the remaining coefficients up to a,. It
is easy to show 3) that the result of this process can be written with the utilization
of Hurwitz determinants in the following final form:

Ar Ar—3

e e P =4, ... 3
J 4. for r=4, ...,n, (30)

ay=A4, a,=4,/4y, a3=43/4;, 44, ...a, =

3) Cf. Ref. [2] p. 473, Theorem VI.



52 R. LADZINSKI

where 4, is, as usually, the symbol of Hurwitz determinant of order r:

| )
| oy 1 ] 0 oo | O
e x o ,______;47!4
|
%3 %2 %y 7
Ar_ s Hq | O3 Be—r |»
| =1 s

‘ | .

Kop—q| X2p—o|Xzp—3|...| &
2,=0 for {KO; %=1 for s=0. 31)
e /)

Assuming that condition (30) is satisfied, the problem of comparing the right-hand
side of Eq. (20) with one of the Laplace transforms given by Egs. (24), (25) or (26)
reduces now to the determination of the initial value state vector x (0) by premulti-
plying at first the column vectors of Egs. (24)—(26) by the inverse of the matrix
T' and then by equating one by one the result to the column vector of Eq. (20).
Let us notice that, due to the simple, triangular form of the matrix 7", there is no
special problem to find its inverse; most simply it can be determined by means of
a series of elementary transformations of matrices — the result is:

@)=

1| |—a,| _
_T:——
|1
[1! _Znal. 1 nak Z":a, e 'laliaki‘a‘
;—i— ;-jil«y\f, ket =kt ) [=7 k=1-1 iZ=k—1
1 ‘— 2 a 3 a i’ a,
N T - A =6 iZk-1
i N Z & Z ay 2 a;
£=9 k=5 i=k—1
1 3
=4
I | _ Z +
—— i i=3
1

(32)
Considering, as an example, the case of n=>5 and denoting the initial value state
vector x (0) which leads to the output signal y(¢) equal either to z (f)—z (c0) 1 (2)
or to z (¢) or to z (£) by x, (0), x; (0) and x, (0) respectively, we get the following,
practically important, final result:



%0 (0) =

x; (0) =

- 1

——’—{_04 a, F(0) +as(as+as) o —as f, + ﬁ4}
(s a3 Gy o B o
1 { asa, F(0) +(as+as) py -3}
ay as a, o - - ‘
L { —a FO) —(@s+as+a3)fo +55) N
as dj s ) -
Lo aro ~f.}
as ' .
a —F(0) +ho | 1 |
—L_"_ as(as+as) fy —as fs +,35}
ilia4 as dp
{—(as+as)*+as as] fo +(as+as) B> =B}
ay as as
L, —(as+as+as) 18} e
i aS a2 - =
*al—{ (as + as+ az+ a,) Bo — B2} ' ‘
—ay fo + B I '

Tea8ajur djeIpend Ay} U0 930U y

€S



x,(0) =

1

a, s a, —[(as+a.)*+a, as] fo +(as+ay) f, A
1 2
4 a3 4, —[(as+a4)* +as as] B, +(as+ay) s
a5 a3 (as+as) (as+as+as)+as (as+as+ay)] fo —(as+as+as)f, + Ba}
1 ,
—a:{ —a, a, fo +(as+as+as+as) py — B}
—(as+as+as+a,—al) fy —ay piB+

—Bs}

(35)



A note on the quadratic integral 55

It is essential to point out here that formulae (33)—(35) are valid not only for
n=>5 but as well for any positive integer n<5; in such a case, as it is apparent from
Egq. (20), the components of n-dimensional vectors x. (0) (¢=0, 1, 2) are the same
as the last n components of the five-dimensional vectors given by Egs. (33)-(35)
with the obvious modification that the coefficients a; and f; corresponding to i>n .
should be replaced by zeros.

Finally, let us see that the nonsingular matrix 7' defined by Eq. (19) has a clear
mathematical meaning: it is the transformation matrix which transforms simi-
larly the system matrix 4 given by Eq. (2) into its standardized form A4, given by

1
1
A, = e (36)
1
1
- _ani —Op—1 Ty |eee| TOy | —Og |
i.e. T occurs in the formula
A, =T ' AT. (37

Really, at first let us notice that the characteristic polynomial of the matrix 4,
is the same as the right-hand side of the identity (27); it means that the necessary
condition of similarity of matrices, viz. identity of their characteristic polynomials:

det (sT—A)=det (sI—A4,) (38)
and, in consequence, identity of -their characteristic values s, (/=1, ..., n) is here

satisfied.
Next, les us notice that the vectors

A, 1
A, s
a s o, o 9f : (39)
An—l Sn—2
A,, Sn—l

calculated for s=s, take the form of the characteristic vectors of matrices 4 and A4,

respectively, i.e.
TeR (sT— A) al,—,, =0, (40)
(sI-4,) al;—;,=0. 41)

For any s, however, a is related to a by Eq. (19), which in the present, more
compact, notation takes the form

a=Ta 42)

Thus, replacing a in Eq. (40) by Ta and premultiplying both sides of that equa-
tion by T—1, we get

(sI-T~*AT)al;-,,=0. 43)
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Comparison of the last equation with Eq. (41) verifies the statement of Eq. (37).

Closing the section, let us concentrate our attention on the form of the per-
formance index itself. )

On the basis of result (13) and the fact that x, (0), x; (0) and x, (0) given .by.
Eqs. (33)-(35) correspond to y (¢) identified with z (f)—z (c0) 1 (¢), 2 (¢) and Z (¢)
respectively, the performance index J, defined by integral (6) reduces to the follow—
ing, canonical quadratic form:

" x,(0) | P || x(0)
x, (0) 1P |} x(0)
Je=1 x,(0) | diag| 3P x,(0)f, (44)
| x.(0) 2P| x,(0)

where x,(0) is the initial value state vector corresponding to y (z) identified with

‘(;)(t) and which can be calculated by exactly the same procedure as the vectors
x; (0) and x, (0).

As regards an integer k, it can take any value from the sequence: 0, 1, 2, ..., n—1.
In applied problems of parametric optimization its most practical value is, however,
k=1, sometimes k=2; other values are used rather occasionally — the simplest
k=0 .usually yields systems with too small stability margin.

. As regards the Welghtmg factors 7y, ..., T there is, as well, no rigorous method
for their proper choice. To reduce too b1g arbitrariness related with their estimate,
it is quite useful to leave in Eq. (44) just one arbitrary parameter, for example 7,
and to express all remaining by that one. A possibility of such a choice is given by
the formula:

4_ k) 4
12—(2 " ) (45)

) .
2 (k—1) — k 2 (k—1)
Th—1 et Tk

+ Since in all problems of parametric optimization, the performance index should
be minimized, it is natural to look for the function z (¢) for which the performance
index as defined by Eq. (6) with its weighting factors chosen according to Eq. (45),
attains a minimum. A solution of this problem leads to the well-known Euler’s
equation *) which in the case considered takes the form:

[(A=7D)(1+7 D) z(1) =2z(c0) (46)

%) 8L_D(8L) (3L) . 8L) ..
o B o ar) T T O g TR

L, j‘_jf Lz20), 2 (). z) ()] being integrant of the .functional of Eq. (6) and D9t g/dr.
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and which, for. hypothetically stable system, possesses, in turn, the following gen-
eral solution:

-

Tk

)(c1+cz ..t 571, (47)

Thus, for the weighting factors chosen according to Eq. (45), an ideal form of
the purely transient part of the step response of the system, i.e. a form which yields
a minimum of the integral (6), is for k=0 exactly equal to zero and for k being
any positive integer is of the so-called critical type characterized in its exponential
part by just one time-constant equal to the weighting factor 7,. As regards 7, itself,
its value should be related in some form to the parameters of the system. One of
the simplest possible relation of this type is given by expression

=1/, . (48)

It should be noticed that according to the well-known meaning of the para-
meter o, Eq. (48) expresses the cquality between the inverse of 7, and the sum of
inverses of all time-constants of the system — a feature which, in some sense, guar-
antees the correctness of formula (48).

Finally, utilizing Egs. (44), (45) and (48) and putting o, =a,, we get for the
performance index J, the following expression of a quite big practical value:

50 0) ) r = I
£(0) LT I O
Q 1 B Pla* 0
J = x,(0) dlagl (2) Ja} x, (0) (49)

| : |
i k 2(k—1)

x4 (0) ‘ (/{—I)P/al xk—l(O)

BN 5 (0)

IV. Parametric optimization — Examples

1. For the simple RLC network shown in Fig. 1, let us determine for the fixed
values of L and C, the optimal value of the resistance R, identifying the input and
the output of the system with voltages e; (r) and e, () respectively, and taking as
the criterion of optimality a) min Jy, b) minJ;, with J, defined by Eq. (49).

R R

L
&(t) c 'Tea

Fig. 1. Electric network considered in Example 1 R
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The transfer function of the system written in standardized form is:

2
Wo

s2+26wo s+ o)’

R IE
wo=1/y LC, g=7 I

Thus, in the present notation, the role of R is being played by the damping
coefficient &.
For the given system, we have:

FO)=1, po=p,=0, /”72=wé, ay=2%w,, az=60(2)~
Applying Egs. (10), (33), (34) and (49), we get
Coe”
P-ding(w}, D), mO=f @ | x| (]
—1

F(s)= (50)

where

and
1 1 1 1 1
J0=Eo—(f+—4?), J1=;;o‘(f+742-+—@).
Thus,
) dJ,
a) m;n]oe—d—{EO——»f:O.S,
_ dJ, . 1 1+ /13
b) mlénquﬁEOﬂ 16&*—4£2—-3=0, é=7 —2———z0.76.

As is well known, the value £=0.5 corresponds to a system which is too oscil-
latory; on the contrary, £=0.76 can be considered as a very reasonable result.
Let us also notice that according to the ratio

the damping coefficient £, which is optimal in the sense of J; criterion, introduced
into J,, gives the result which is quite near its minimal value.

2. For the simple servomechanism of class two °) shown in block diagram

form in Fig. 2 with its open-loop transfer function given by
G S T7>0,K>0,C>1 51
(S) - s2 (1+TS) > > > > > > ? ( )

which corresponds to the double integral unit in series with the lead type equalizer,
let us determine, for the fixed values of K and C, the optimal value of the time-

%) Cf. Ref. [3] p. 316-318, Examples 7.15 and 7.16.
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constant 7, identifying the input and the output of the system with  (¢) and ¢ (¢)
respectively, and taking as the criterion of optimality a) minJ,, b) min J,, with
Ji defined by Eq. (49). ¥ &

Fig. 2. Block diagram of the servomechan- Llr(t Lle(t) [: o[[c(t)]

ism considered in Example 2 6
r (¢) —reference input, c¢ (¢)— controlled var-
iable, e (r) — error signal )

The transfer function of the closed-loop system is

CKs+ =
G(s) Ty

14+G(s) B gy, 3 ' K
P2 E Ao
LS TS + CKs T

F(s)= , (32)

for which we have either directly or according to Eq. (30) the following coefficients:
FO)=1, Ppo=p=0, B,=CK, PB3=KT,
a=T, a=(C-DK, a=K.
Applying Egs. (10), (33), (34) and (49), we get |

. ‘
P= - diag (C— K2 (C- DK, 1)

- 1 - ST
(C-HK (C—1) KT
wO=|_ 1 | xo={ __¢_
€-DXT c—1
i _—1 e} ' - 0 —
and
i 1
Jo=mlCKT+~f],

J

) 1 2773
1=—2—f(‘é_—1)‘E‘[(C+l)KT+?+(CK) (i ],

) Notice that identifying the input and the output cf the system with r(z) and e (¢) respecti-
vely (instead of r (¢) and ¢ (¢)), i.e. taking as the transfer function of the closed-loop system the ratio:

1
s34+ — 52
T

FO)=1Iem= i

1
§$34+— 52+ CKs+—
T T

we shall obtain for the vectors x,(0) and x, (0) expressions differing from those given in the text
_ G(s)

1+G()  1+G(s)

calculated from both formulae will be exactly the same.

just in signs (since: ), and in consequence the performance index Ji
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Thus
~a) minJ, - CKT?=1,
b if

I
b) minJ; — 3(CKT2)2+(1+ E) CKT?—-1=0
by 1T

i SRy ;/173‘c2+2c+_1—(c+1) g 1 “

Drawing, for the determined optimal values of 7, the asymptotic Bode diagrams
of the open-loop system we get the situation as shown in Fig. 3. Let us notice that

a 171 ﬁz bj’
4le(jw)] 416Gjw)] Yie(jw He(jw)
5 6
7(0) o ‘,7—3-_;’2.30
K T
70 7(0)</T
L.
i
%
L
‘[avzﬁ’ \\
R -
1<C<oo 1<ce T3 (=256 AT 0<3+2/7 (~5.83) 3+2/7 <C <o :

Fig.‘ 3. Asymptotic Bode diagrams corresponding to optimal values of 7'

applying J, criterion; it is possible to choose such value of C that the corresponding
Bode plot will be symmetric with respect to the point of unity gain. According to
Figs. 3b, and 3bg, this kind of symmetry will take place if C satisfies the identity

y(C)=y/C. (54)
The last condition together with the definition of y (C) given by Eq. (53) leads to
C?2—6C+1=0,
C=3+2y2 ~ 583, (55)
CKT? = __1___ ~ :
V3+2y2 2417
and, in consequence, to the following value of the time-constant
1 1 56)

T= e Y —24
" @BR2VVE T 3TBVE



A note on the quadratic integral 61

Let us now recall that a Bode plot which is symmetric with respect to the point
of unity gain and which is characterized by any C from the range 5 < C <20, exhibits
a very typical situation for a simple servomechanism of the type considered in
the Example. Thus J; criterion combined with the condition (54) gives the result
which do agree very well with the common practice. On the contrary, J-cri-
terion, as it is apparent from the graph shown in Fig. 3a, is in this sense quite
ineffectual.

Finally, notice that according to expression

3.41 )
JO €=5,83 1/241

CKT2=1/2.41
2

Jo

=1.10,

C=5.83
CKT?=1

the performance index J, calculated for C and 7 chosen according to Egs. (55)
and (56) is increased with respect to its minimal value in a rather small amount
equal to 10Y%.

3. For the simple control system 7) shown in block diagram form in Fig. 4
with the transfer function of the plant given by

G(s)= 2V B,B>0,C>0, (57)

s2+As+B’
i.e. corresponding to the two time-constants unit and the transfer function of the
feedback element

H(s)=K/s, K>0, (58)

corresponding to the integral type controller, let us determine the optimal value
of its parameter K, identifying the input and the output of the system with d (7)
and c (7) respectively, and taking as the criterion of optimality a) mm Jo, b) mm Ji,
) mm Jy, with J, defined by Eq. (49).

L[e(t)

<L d(t
[ (i] Fig. 4. Block diagram of the control system
considered in Example 3
d (1) — disturbance signal, ¢ (¢#) — controlled
variable, r(¢) — reference input

The transfer function of the closed-loop system is

G (5) _ Cs
1+G(s) H(s) s3+As®’+Bs+CK’

F(s)= (59)

7) Cf. Ref. [3] p. 316, Example 7.14.



62 R. LADZINSKI

for which we obtain either directly or with the aid of Eq. (30) the following coeffi-
cients:

F(O):O, /J)0:/31:,83:0, /))2=C,

AB—CK €K

a1=A5 ay, = A s az; = .

A
Thus, according to condition (12), which ensures the asymptotic stability of the
system, the coefficients of the plant and of the controller must satisfy the additional
requirement :
AB>CK. (60)

Applying now Egs. (10), (33)-(35) and (49), we get

pe 1 i ((AB~CK)CK AB—CK 1)
7 e A2 T4 )
T A T -0 T AC T
(AB—CK)CK AC AB—CK
x0(0) = 0 ) x,(0) = “4B—ck | x,(0) = 0
1 0 } 1 0o 1 c
and
4 AC? 1 o
¢ 2 (4AB—CE)CK ® (al)
A+ CK
YT AB—CK)CK °’
L C? A5+(242+B)CK
27 24* (AB—-CK)CK
Thus

A
a) minJy, —» CK=——,
) sl 2 (62)

b) minJ, — (CK)?+243 CK— A* B=0
K

CK=A2(VA2+B—A)=—{€(1~ S ) (63)
' 2 242 +B+24 VA*+B

¢) minJ, > (242 +B) (CK)?+245 CK— A% B=0
K

CK

A3 B AB B
( 5 ) (64)

T 24°4B 2 \' 24°%B
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The value of CK determined by any of Egs. (62) ¥)~(64) can really be consi-
dered as its optimal value since for each of them the condition (60) is satisfied and
the corresponding J, takes a minimum. Let us also notice that optimal CK is the
biggest for Jy-, smaller for J;- and still a little smaller for J,-criterion. This decrease
of CK results, of course, in some improvement in the stability of the system. It
should be, however, emphasized that the differences between the CK parameters
determined from various criterions are numerically quite small. Taking, for illustra-
tion, the most pronounced case of two equal time-constants of the plant, i.e. put-
ting 4=21/B, we get

Cr!<|min.ll—-(:]{Imin.l0 _ B _~—_1 0.06

CKluas, 2424 B+24VAHB | 5 9+4V5
Cv‘[(lmin.lz'—C"Klmin.l0 B 1 0.11
C’-Kv]min.lO B 2A2 +B A:Z]//E_ 9 o .

In consequence, as is seen from Eq. (61) or more clearly from formulae:

JO‘CK=A2(]/m—A) _ 1

JOICK:AB/Z 1— ( B )2 ’
24> +B+24V A*+B

= A3B|(2A2+B
J0|CK A3 B[(242+B) 1

JO!CK:AB/Z as ( B )2 ’
: 2A%+B

the performance index J, calculated for CK optimal in the sense of J;- or J,-criterion
remains nearly the same as its minimal value.

4. For the system described by the transfer function of the following general
form:
1

Stoy st 4 L, s+

F(s)= (65)
8) It may be interesting to remark that if the transfer function of the system is defined by
G(s)H (s CK
Fe SOHO _ ’
1+G(s)H(s) s>+ As*+Bs+CK

i.e. if its input is identified with the reference signal (instead of disturbance), then the CK parameter
optimal in the sense of J, criterion will take a value
AB[ A-VB
CK=—-|1— =
A+V B

2

smaller for any A>2l/§ than CK expressed by Eq. (62), and for A>2yf§ reaching a ‘“‘saturation™
level:
CK! =B32,
4> 2VB
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and for n=3, 4 and 5 respectively °), let us determine the optimal values of the
parameters o, ..., o,_, taking as the criterion of optimality a) min Jy, b) min J;
[, DI Cvass ey

with J, defined by Eq. (49) (the so-called “optimum” transfe; funciions’ y;roblem).

As is easy to verify, the calculations are essentially simplified by expressing the
performance index J, as a function of the parameters a,,...,a,_, only and, in
consequence, by evaluating the optimal values of the final parameters 4, ..., o,_;
by determining at first the optimal values of the auxiliary parameters ay, ..., a,_,
and then by using the formula (29).

For n=3, according to Egs. (10), (33), (34) and (49) with a3 replaced by
1
. (23=1, Eq. (29)), we have
1

1 {1 a, k
Ji= = it gy s - oS0 o1 1
a, aja

? a ; 2
Thus,
o 3 aJ, p aJ, 8
a) mm 0 g = =0
a, wy=a;=1,
=1
=dy, +— =2,
as, 0y =0, my
aJ, R
b) minJ, »—=0, —=0,
Gin i oa, aa,
a;—2
aj—5a3+3=0, a,= ,
ay
7 -
5+ V13
a, = ——— = 1.63, o,=1.63,
2 .
1+ ]/ B ~ 1.41, 2.03
% 5+ f =
and
JOE01:1.63
la;=1.41
' —=1.06.
JO ay =a@s="1
Similarly, for n=4, we have (a4 s Eq (29))

?) The case n=2 was treated above, in Example 1.
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a) min J0—>a1] ay=a,=1,
ay, a,,4a; |
02} 3| Ury=a;+ast =3,
03, U3=da (a3+”’_‘)=2,
2 3
. as+2 a;
]/5+]/§ 2
Q4 = g ) =
& 2 1+1/13 ~168, oy 168,
1+V13
a,= — e 152, o, =3.08,
as=]/ = ]/(IH/B) 0.90 261
3 5+]/g 2 ~ V. N 3y =4. N
JO al—i.§8
azzo-sg
= =1.05.
Jo ay=ay=az;=1
Finally, for n=35, we get (as = ath ! Eq (29)>
3
1 j¥ a a, a; as k
U e e + ‘taa,t—5——), k=0 or I1:
2 \a;, a, aa; a, a, aia,a,
a) min J, — a; oy =a, =1,
ady,0d,,03, a4
a, d,=a,+as+a,+ o =4,
as A3 =0, (a3+a4+ z a3)=3’
+a2+a3 ,
Ay ®g =03 04y a, as =3,

b) min J, - (@} a,)*—5(a} a)+3=0,

Ay, a2, a3 As

, (@a)? (aas)—2
a = a, =— a
Vo@a)+1’ : (@3ay)
(ai as)
A3=0a="35

1
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40+11 V13 \'/°
a=2————| =172, 0y =1.72,

7+V13

) 2 I/E 40+11 /13 \*"°
= ) 2 1.58

o 13 2, =3.96,
fs+VIB Y T4V13 2
as _5+'Vi3(1 7+V13 )313 0.85 B
. 2 2 40+11V13 0y =2.99,
Jola=1.72
ay=1.58
a;=as=0.85

=1.04.
Jol‘a1=a2=a3=a4=1

Summarizing the transfer function of the type discussed in the Example (Eq.
(65)) has, for n=2, ..., 5, the following optimal denominators:

a) in the sense of Jy-criterion:

524+ s+1
3+ s242s5+1
s 934352425+ 1 {66)
s34 s* 4453+ 3524+ 3541
b) in the sense of J,-criterion:
s2+1.525+1
s3+1.63524+2.035+1 ©7)
s*4+1.685%+3.0852+2.61s+1

s34+ 1.725* +3.965%4+4.09524+2.995+ 1

From the engineering point of view, the results given by (67) should be consi-
dered as more practical than those of (66)!°). Systems with denominators in the form
of (67) satisfy in fact quite well the conflicting demands of the stability on one side
and the speed of response on the other, whereas systems based on formula (66)
exhibit a rather unsatisfactory stability margin. )
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Uwagi o kwadratowo-calkewej ocenie procesu przejsciowego

Rozwazono ocene calki (6) traktowanej jako wskaznik jakosci uktadu liniowego, asympto-
tycznie stabilnego, opisanego rdéwnaniem (5), z wymuszeniem skokowym na wejsciu. Podejscie
jest ogodlne, mozliwe do stosowania do uktadow dowolnego rzedu i polegajace na wykorzystaniu
macierzy (2) i (10) oraz zaleznosci funkcji Lapunowa od kwadratowego wskaznika jakosci. Rozwia-
zanie problemu jest zwigzane w sposéob istotny z wyznaczeniem macierzy pomocniczej (32). Z jej
pomoca sa sformuicwane szczegdtowe wzory robocze (33)-(35) obowiazujace dla ukladoéw rzedu
1n<5 1 dla wskaznikow jakosci z k£ <2 (rownanie (6)). Ich uogolnienie na dowolne wartosci # oraz
k nie przedstawia w istocie wiekszych trudnosci ze wzgledu na ogoélny charakter macierzy (32).
Szczegbdlny nacisk potozono na wybor wspolczynnikow wagowych wystepujacych we wzorach
(6) i (44), ktory w wyniku doprowadzit do zaproponowanej postaci wskaznika jakosci wyrazonego
wzorem (49). Zastosowanie tego rezultatu zilustrowano czterema prostymi przykladami opty-
malizacji parametrycznej ukladéw dynamicznych: uktadu elektrycznego, serwomechanizmu, re-
gulatora przemystowego oraz uktadéw scharakteryzowanych transmitancjami typu ,,optymalnego”

3aMeuaHusi O BONPOCY KBAAPATHYHO-HHTEI PATBHOIH OLEHKH

NepexoaHoro Impomuecca

B pabote paccMaTpmBaeTcsl OLiEHKA WMHTerpana (6), Urparoiiero polib MOKa3aTessl KauyecTBa
JIMHEHHON, ACHMITOTUYECKM YCTONYMBOM CHUCTEMbBI, ONMCAHHON ITOCPeNCTBOM ypaBHeHHs (5),
CO CKaukoOOpa3HbIM BO3MYyLICHHEM Ha BXoje. Vicmomb3yeTcs oOHIMit TMOAXOM, TNO3BOJISFOLIMIL
NPUMEHSTh €0 K CHCTEMaM MPOW3BOJBHOTO mOpsiaka, Oaszupyrommit Ha maipumax (2) u (10),
a TakKe 3aBHCUMOCTSIX MEXIy (QyHKuuel JIsamyHOBa K KBaJPAaTHYHBIM IIOKAa3aTelleM KavyeCTBa.
Pemenue 3aga4u B OCHOBHOM CBOAMTCS K ONPEAETICHMIO JOMOJRUTENbHOM Matpuusl (32). C eé
NOMOLIBIO GOPMYIUPYIOTCH OTHeNbHbIE paboune Gopmynsl (33)-(35), npaBoMepHbIE IS CHCTEM
nopsaka 1 <5 W 11 mokasarteneil kauectra ¢ k <2 (ypasHeHue 6). O600LMIEeHHE X IS TIPOU3BOJIb-
HBIX 7 M k SBASETCS B NEHCTBUTEILHOCTH HEMMOCPEACTBEHHBIM, Onaroaaps obmemMy BUAY MaTpPHLIBL
(32). Ocoboe BHUMAHHE YAEJICHO BHIOOPY BECOBBIX KOA()(PHULIUEHTOB, HMEIOIIUX MECTO B (hopmy-
max (6) u (44), mpoBOAST B KOHEYHOM CYETe K INpEeAIaraéMoMy BHJly TOKa3aTessl KavyecTsa, BhIpa-
JKaeMOT0 ToCpeACTBOM ypaBHeHus (49). IlpumMeHeHHE 3TOrO BHJA WINIOCTPUPYETCS YETHIPBMSE
OPOCTBIMHU IPUMEPAMH TIAPAMETPHYECKON ONTHMH3ALUH AWHAMHUYECKAX CHCTEM: 3IIEKTPHYECKOIA,
CEpPBOMEXAHU3MA U IIPOMBILIIICHHOTO PEryjisitopa a Taxke CHCTEM, rapakTepH3yeMBIT Iiepe/ia-
TOYHBIMM (PHKLMSAMHI ,,ONTHMAIBHOIO® THIIA.




