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The system of the form .x (t)=f(x (t}, x (t-h 1 ), ••• , x (t-h,), 11 (t), u (t-h 1), ••• , 11 (t-h,), t), 
t E [0, T], is considered and a class of optimal control problems with integral performance index 
and function space constraints is examined. It is assumed that the final time T and the lags ht are 
commensurable; the condition which can always be fulfilled in practical applications. It is shown 
that by applying an equivalent non-delay~d system with some additional two-point boundary 
condition the problems can be restated in a form of control problems without delay and therefore 
can be treated with the help of existing general and strong results of the type of maximum prin
ciple. Necessary optimality conditions are derived effectively for the following special problems: 
the final state xr ( · ) is constrained to lie in a given ball in function space C of continuous functions 
or, in two other cases, the spaces L 2 and Sobolev's W(21 ) are used. Also the case of fixed final state 
xT ( ·) is considered and various possible generalizations are indicated. The obtained results 
are of the form of maximum principle with absolutely continuous adjoint variable and pointwise 
maximum condition, and therefore they are, in the class considered, stronger then the others 
known. 

1. Introduction 

The purpose of this paper is to establish necessary conditions for optimality 
for problems with non-linear retarded systems of a type 

X (t) =/(X (t), X (t- hr), ... ,X (t- h5 ), U (t- h.), ... , U (t- h,), t), X (t) ER", U (t) ER', (1.1) 

and a functional 
T 

J(x (·), u(·))= J fo (x(t), u(t), t) dt (1.2) 
0 

to be minimized. We assume that u (t) E U---:- a given nonempty subset, the 
initial function x (t) = ({J (t), t E [-h, 0] is given and terminal complete state Xr ( •) 

satisfies 
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where Xr(O)=x(T +6) for e E [ -h, 0], ~: [T -h, T]HR" is a given function, 
c is a given positive number and 11· 11 is a suitable norm in a function space. 

Optimal control problems for systems less or more general than (1.1) were 
considered by many authors and various boundary conditions were assumed. We 
refer reader to Banks and Manitius [1] for thorough survey of the results up to 
1973. Recall only some fundamental and strictly related to a given problem refe
rences. The extension of Pontriagin's maximum principle to systems of type (1.1) 
with fixed or constrained in R" trajectory end point x (T) is due to Kharatishvili 
[2], [3]. The only modification, comparing with usual maximum principle is that 
the adjoint equation is a linear differential-d ifference equation of advanced type 
(here s= 1) 

. aHI aHI 1/f(t)= -- - -
OX , oy t+lz , 

(1.4) 

where as usual 

H(x,y, u, ljf, t)='f/0 / 0 (x, u, t)+'!f~'f(x,y, u, t) 

and y (t) stand for x (t-h 1). The results of Kharatishvili were generalized to va
riable lags and restricted phase coordinates in Banks [4] and Huang [5]. The case 
of delays in control only was examined by Wierzbicki [18]. 

The problem considered in this paper is characterized by function space 
(not R") terminal constraints (1.3). The motivation for such problem statement is 
that the true final state is represented by Xr ( · ). Therefore if the desired behaviour 
of a sy~tem is required for t>T (e.g. small deviations from equilibrium state) the 
right final state Xr ( ·) should be reached. 

Banks and Kent [6], [7] proved existence of an optimal control for a general 
class of functional differential systems of neutral type and the constraints x, , ( ·) E !!/ 1, 

x,, ( ·) E !!/ 2 on initial and terminal states, where. !!/ 11 !!/ 2 are gixen subsets in func
tion space. The necessary conditions for optimality for the case when x,,, x,, are 
fixed were also obtained . These conditions have a form of maximum principle in 
function space of admissible controls (integral fo rm of maximum principle) and 
not specified to a finite-dimensional set U of control values as in Kharatishvili 
classical result [2]. The adjoint equation in [6] is in the form of integral Volterra 
equation and therefore the adjoint variables are left continuous only (not absolu
tely continuous as in [2]). 

Since Banks and Kent handled the equality constra_ints x (t) = ~ (t) E R11
, 

' t E [t 2 -h1, t 2 ], t 2 - final t ime, as a set of 2n conflicting inequality constraints 
(this was caused by the use of Neustadt [8] abstract variational principle) they 
could not prove the nontriviality of the maximum principle. 

The normal form ('f/o #0) of a local maximum principle, and hence nontri
viality, were obtained by Jacobs and Kao [9] who applied abstract Lagrange multi
plier rule to systems of type (1.1) but under sever assumptions that the control is 
unconstrained and . the system is completely function space controllable. For 
linear differential-difference systems with quadratic cost functional the nontrivia
lity was established by Banks and Jacobs [10]. These results were generalized re-
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cently by Kurcyusz (ll] who used Dubovitski-Milyutin formalism [12] for systems 
with variable lags, affine with respect to control u and with a set of admissible 
controls closed, convex of nonempty interior in function space. The result of [11] 
can be characterized as follows. 

The major role play the attainable subspace of complete final states for a line
arized system and the property of the closure of this subspace in a given topology 
of function space. If the attainable subspace is not a proper subspace dense in the 
entire space of final states then the nontrivial maximum principle holds. If the 
attainable subspace is closed then normal adjoint variables exist. The explicite 
conditions for closedness of the attainable subspace in Sobolev space W(11) were 
derived in [13]. 

In this paper we give nontrivial necessary conditions for optimality for the 
extremum problem defined by formulas (1.1), (1.2), (1.3). Due to different setting 
of terminal constraints than in earlier works we are able to reformulate the problem 
to a classical problem for ordinary differential system without delay, with mixed 
two-point boundary conditions of the type X (x (0), x (T)) =0 and additional 
inequality constraints for phase coordinates if the norm in (1.3) is the supremum 
norm in the space of continuous functions. If the norm is taken in L 2 or in W(~) the 
inequality constraints can be formulated as final state constraints in Euclidean space. 

It should be pointed out that in contradistinction to other results concerning 
problems with function space constraints our maximum principle has a form rather 
similar to Kharatishvili [2] result. Also adjoint variables satisfy differential (not 
integral) equation and are therefore absolutely continuous. 

2. Maximum principle for ordinary differential systems with 
mixed boundary conditions and phase variable constraints 

In this section we recall necessary conditions for optimality of a controlled 
dynamical system described by ordinary differential equation in R" with constraints 
both on the ends of trajectory and meanwhile values of the state. There exist several 
formulations of the problem [14, 15, 16, 17]. For our purpose in the sequal the most 
suitable is the formulation of L W. Neustadt [14, 17] and this can be described 
as follows. 

Let ·the system behaviour be described by the equation :X (t) = f (x (t), u (t), t), 

t E [t 1 , t 2] -a given interval (2.1) x (t) E G c R", u (t) E U c R', G, U are given 
nonvoid subsets, G is open. 

The function u: [t1 , !2 ]~----+U is assumed from L "''' (t 1 , t 2 ; U). The function 
j: GX UX [t1 , !2 ]~----+R" is continuous and of class CC!) with respect to the first 
argument. 
Define functions 

g: GX [tu lz]~---+R 1 , 

X 0 : GXG~---+R 1 , 

Xi: G XG~----+R 111 ' , i=l , 2. 
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Let the functions X 0 , X1 , X 2 be of class c<n and g of class c<zl. The problem 
of optimal control is stated as follows. 

f minimize X 0 ( x (t 1), x (t2)) under constraints: 
·j (i) there exist uEL00 (t1 , t2 ; U) such that (2.1) is satisfied, 

j (ii) X1 (x (t1), x (tz))=O, 
(iii) x2i (x (t1), X Ctz))~O, i = 1, ... , lnz, 

P(2.1) 

l (iv) g; (x (t), t)~O Vt E [t1, t2 ] Vi= 1, ... , !. 

Necessary optimality conditions can be described by the following maximum 
principle provided all the assumptions above are satisfied. 

THFOREM 2.1. Let u0
, X 0 be optimal control and optimal trajectory respectively. 

Then there exist a number <Y. 0 ~0, vectors <Y.iER"'', i = 1,2; <Y.zi~O, i=I, ... ,m2 

and functions A.: [t1 , t2 ]~--+R 1 , !jl: [t1 , t2 ]~--+Rn such that the following conditions 
hold. 

(a) ),i> i = 1, ... , l, is of bounded variation, continuous from the right, non
increasing on; ! 1 , t2 ] and constant on subintervals on which g; (xo (t), t)<O, 

A. (tz)=O; 

(b) lo:o i+ I<Y.l i+ I<Y.z l+ l?,(t1)1>0, <Xz;Xz;(x0 (tl),X 0 (tz))=O'Vi=l, .. . ,mz; 

(c) the function lJI IS absolutely continuous and almost everywhere in [t 1 , t 2 ] 

satisfies 1) 

where 

H(lJI(t), x(t), u(t), t) .cl!:_ [lf/* (t)-A.* (t)gx(x(t), t)Jf(x (t), u(t), t)-A.* (t)g, (x(t), t); 

(d) the ends of lJI are subject to transversality conditions 

lfl*(t1)= -<Xo x~x-0'.: x~x-()'.~ x;x+),* (t1) gx(x0 (tj), ti), 

where ' and" are explained as follows 

(e) maximum condition holds for hamiltonian H a.e. on [t 1 , 12 ] 

H (lfl (t), X
0 (t), U

0 (t), t) = max H (lfl (t), X
0 (t), u, t). 

u EU 

In the condition (e) one may use the modified hamiltonian H = [lf/*- A,* gxJ f as 
well since the remained term - ). * (t) g, (x (t), t) does not depend explicitly on u. 

1
) By a vector in R" we mean a column vector and* denotes transposition, fx denotes a 

derivat ive of a vector valued function f with respect to a vector x. This is a matrix with o[; j3x1 
as (i, i)-th element. 
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REMARK 2.1. The Theorem 2.1 can be generalized to include more complicated 
forms of constraints as for instance the set of admissible control values U dependent 
on time t and state x (t), equality constraints satisfied for all t E [kl, t 2], equality 
and inequality constraints imposed on intermediate state . values x (rJ, ri E [t1 , t2 ] . 

We shall not use all these generalizations in our considerations, so that we refer 
reader to the references [16, 17]. 

3. Reformulation of the control problem with delay 

Let us rewrite the problem to be considered. 

(minimize /Jo (x(t), u(t), t) dt 

P(3.1) 

I ~nd~ con~traints: . 
{ x(t)-f(x(t), x(t-h1), ••• , x(t-hs), u(t), u(t-h1), ... , u(t-h5), t) 

I 
[0, T], 
x(t)=rp(Q and u(t)=w(t) fortE [-lz"O], 

l
l lxr(·}-~(·) I J ~e · 
u E Olf ~ L 00 (0, T; U) and R' :::> U-- a g1ven nonempty subset. 

a.e. on 

Complete the remaining assumptions. 

H 3.1. The numbers e>O, T>hs> ... >h 1 >0 are given as well as the functions 
rp: [ -h, O]HR", w: [ -h" O]HR', ~: [T-Iz" T]HR". It is assumed that rp and w 
are continuous. ~ is always assumed to be continuous but if the supremum (We~>) 
norm is applied to final state constraints then we require additionaly the function 
~ to be of class c (z) (W(;)). 

H 3.2. The functions }0, f are continuous on the following domains 

fo: GXUX[O, T]HR, 

f: cs+ 1 xus+ 1 X[O, T]HRn 

where G is a nonempty open subset in R". Additionally assume fo (x, u, t) is of 
class C(l) with respect to x and f(x, y1 , ..• , y, u, Wu ... , w" t) is of class cco with 
respect to x, Y1, ... , Ys· 

H 3.3. One of the three following norms will be taken to measure the distance 
between the final complete state Xr (8) ctr x (T + 8), 8 E [- h" 0] and a given 
function ~- Here z: [0, hsJHRn is, in each case, of suitable class. 

h, 

JJzll3 = (z* (h.)z(hs)+ J i*(8)i(8)d8) 112
• 

0 
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Consider first the case s= 1 and T, h1 commensurable that is T=kh, h1 =k1 h 
for some h>O and some integers k>k 1 >0. The case of many commensurable 
delays can be treated similarly. 

We shall show that the problem P(3.1) can be reformulated and then the The
orem 2.1 does apply. 

Introduce the following notation: 

z1 (t)=x(t+(i-l) h); v1 (t)=u(t+(i-1) h). (3.1) 

Define kn-vector z (t) and "la-vector v (t). 

z*(t)=(z:(t), ... ,z;(t)),v*(t)=(v:(t), ... ,v;(t)). (3.2) 

After dividing the interval [0, kh] into k subintervals of the length h the systelJl 
equation can be written in the form 

i 1 (t)= f(z 1 (t), z1_"
1 
(t), V 1 (t), V 1_"

1 
(t), t+(i-J) h), i= 1, ... , k; t E (0, h] (3.3) 

where suitable values of initial functions rp and w are ~aken for z1, v1 respectively 
if j < 1. 

Also the following continuity conditions are satisfied z1 (h)=z1+ 1 (0) for 
i=1 , ... ,k-l , 

z 1 (O)=rp(O). (3.4) 

Conversely, if z ( · ), v ( ·) satisfy (3.3), (3.4) then, after reverse transformations 
(3.2), (3.1 ), we get that the functions x ( · ), u ( ·) satisfy the retarded system equation. 
Denote further for compactness 

f(z 1 (t), Z; - k
1 
(t), v1 (t), V;-k, (f), t) =F1 (z(t), v(t), t) i= 1, 2, ... , k, 

[ 

F 1 (z(t), v(t), t) l 
F(z,(t),v(t),t)=: , 

Fk ( z (t), V (t), t) 

Now the equations (3.3), (3.4) can be rewritten as 

i(t)=F(z(t), v(t), t), 

z(0)-4>0 -Jk z(h)=O. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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Similarly after :setting 
k 

Fa (z (t) , v (t) , t)= 2; fa (z; (t), V ; (t), t+(i-1) h) (3.11) 
i :::::; 1 

the performance index J takes the form 

J = J Fa (z (t), v (t) , t) dt. (3 .12) 
a 

With the help of the formulas above the problem P(3.1) may b,e restated in an 
equivalent form. 

l 
minimize the functional (3 .12) 

P(3.2) under co~straints (3.9), (3.10) and 
ll xT ( ·)- ~ (·)I I,.,; e. 

This form will be used in the next sections for deriving necessary optimality 
conditions in cases when the system is to be steered to a final state into a ball in 
some function space. 

4. Control to a ball in the space of continuous functions 

Assume the supremum norm in the problem P(3.2). The inequality 

sup l x(t)-~(t) l ,.,; s 
we rewrite as t E [T-11 1 , T] 

lzk _; (t)- c;k - ; (t) l2
,.,; e2 V t E [0, h] Vi =0, l, ... , k 1 -1, 

where c;k_;(t)=~(T- (i+J)h+t) . 
Thus we achieve the compatibility with the statement of the problem P(2.1) 

by setting 

gk-i (z(t), t)= !zk - i (t)-c;k_;(t) l1 -s2 ,.,;0 for all t E [0, h} Vi=O, 1, ... , k1 -1. (4.1)' 

Applying Theorem 2.1 to problem 

P(4.1) {
minimize the functional (3.12) 
under (3.9) , (3.10), 4.1) 

yields the following result. 

LEMMA 4.1. Assume the functions ~;, i=k-k l +1 , ... ,k are of class c< 2 J. Let 
Z 0 (t), V 0 (t) be the optimal solution to problem P( 4.1 ). Then there exist a constant 
lf/0 ,.,; 0 and functions J. : [0, h]--->Rk• , If/: [0, h]--->Rk", not all equal zero identically, 
such that: 

(i) For i = k, k- J, ... , k- k 1 + I, }i> corresponding to c;;, is non increasing, 
continuous from the right, of bounded var iat ion on [0, h] and constant on 
sub intervals on which lz; (t) l <s, A (h) =0 ; 
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(ii) 1f1 is absolutely continuous and satisfies a.e. on [0, h] the equation 
k 

tjf* (t) = -lflo Foz (0
) -If!* (t) Fz CO)+ y2 }; 2},; (t) {[0, ... , 0, - ~i (t) + 

+F;*(0
), o, ... , O]+(z~(t)-(Jt)Y [0, ... , 0, F;z,_k CO), 

1 

0, ... , 0, Fiz; (0
), 0, ... , 0]} ( 4.2)' 

where for instance F(i-k,)z,(0
) denotes that optimal values Z

0 (t), V
0 (t) were substi

tuted as arguments of the derivative of F;-k, with respect to z;. 
(iii) ' 

k 

lfl*(h)=lfi*(O)Jk- }; 2).,(0)[0, ... ,0,(zf(0)-(;(0))*, O, ... ,O]Jk. (4.3) 
i=k-k , +l 

(iv) 
k 

lflo Fo CO)+ lfl'\ (t) F (0
)- }; 2),; (t) (z~ (t)- (; (t) )* F; CO)= 

i=k -kl + 1 
k 

=max [lf/ 0 F0 (z 0 (t) , v, t)+lfl*(t) F(z0 (t), v, t)- }; 
V EUk i=k-k 1+1 

almost everywhere on [0, h]. 
2)., (t) (z~ (t)- (; (t) )* F; (z0 (t), v, t)] (4.4) 

Here Uk= UX UX ... X U (k-times). 
Proof. We clarify formulas (4.2), (4.3), (4.4) and prove nontriviality. 
Compute from (4.1) 

g;z (z(t), t)=2 [0, ... , 0, (z; (t)-(; (t))*, 0, ... , 0], i=k-k1 + 1, ... , k. (4.5) 

After standard substitution 
t 

Z 0 (t) = J F0 ( z (t), v (t)) dt, 
0 

we get a system 
E(t)=F(i(t),v(t), t) 

and a functional to be minimized 

X 0 (i(O), i(h)) =i0 (h) -z0 (0)) 

under equality and inequality constraints (3.10), (4.1). 
From Theorem 2.1 there exist nontrivial cr. 0 <0, cr. E Rkn and a function A. as 

- oH 
required in (i) such that for functions If/ (t), 1f1 0 (t) satisfying tjJ 0 (t) =0 = --

01
- and 

oH uzo 

tjf* (t) = - oz , where 

H (z, v, t) = lflo F0 (z, v, t) +[If/* (t)- k " (t) gz (z, t)] F(z, v, t)- k~ (t) g, (z, t). 

the maximum condition ( 4.4) holds. 
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Compute the following derivatives 

a a 
-;- ),; (t) g;z F=2A; (t)-;- (z;- ~;Y' F; = 2i.;(t) [0, ... , 0, (z; - ~;)* x 
.uz uZ , 

x F;z,-k , 0, ... , 0, (z; - ~;)* Fiz; + Ft, 0, ... , 0] 
1 • 

a . 
az A,Jt) git =A; (t) gizr = 2A; (t) [0, ... , 0, - ~i (t), 0, ... , 0]: 

Direct substitution to adjoint equation shows that (4.2) is satisfied. The trans
versality conditions give !f1o=a0 and 

k 

:~ lf/':'(0) =-a*+ L. 2)., (0) [0, ... , 0, (zf (0)-~; (o)y, 0, ... , 0] 
i=k-k,+l 

lfl':' (h)= - a* Jk , 

from which condition (4.3) follows. 

(4.6) 

Finally we see from condition (b) of Theorem 2.1 that if a0 =0, ), (t)=O then 

a#O and this implies that !f1 (t) cannot vanish identically. In fact, if !f1 (t)=O then 
from (4.6)- compare the form (3.8) of J"- we get a=O, a contradiction. 

The optimality conditions of Lemma 4.1 may serve as a base for construction 
of computational algorithms solving problem P(3.1) numerically. However, the 
major disadvantage of this approach is the large dimension of the vector z (t) 
which increases proportionally as the ratio T/h increases. 

This disadvantage might be reduced completely if the adjoint equation (4.2) can 
be written in R". The aim of this paper is to show that it is possible to do that at 
least in the case of constraints which are sufficiently regular. For the problem 
P(3.1) the following theorems obtains. 

THEOREM 4.1. Assume T=kh, h; =k; h fo r some h >0 and some integers 
.k > ks > ... > k 1 > 0. Suppose the hypothesis H3.1. and H3.2 are satisfied. If U 0 

( · ) 

and X 0 
( ·) are the optimal control and the corresponding optimal trajectory the 

solutions to the problem· P(3.1) with 11 · 111 in H3.3 then there exist nonzero triple 
(p0 ,p (·) , f.l (·)) where the real p0 ~0, and the functions 

p; [0, T+hsl--+R", 

f1: [0, T+hs]--+R 

·satisfy the following conditions. 

(i) f.t(t)=J.lk - ks+1 (t)+ ... +J.lk(t). For each i=k-ks+l, ... ,k the function 
. f.li (t) is nonincreasing on [ih-h, ih] and is equal to zero on [0, ih -h) u [ih, T]. 
f.l is right continuous. On subintervals of [ih -h, ih] on which lx (t)-( (t) l <s the 
function J.l; (t) is constant. 

(ii) The function p ( ·) is absolutely continuous on each of the following inter
vals [0, T -h.], [T-ih, T-ih+h], i= 1, ... , k 5 • At the points T -ih, i= 1, ... , ks the 
following "jump conditions" are fulfilled · 

p(T-ih-0)=p(T-ih+0)+2J1(T-ih) (x(T-ih) -((T-ih)). (4.7) 
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Almost everywhere on [0, T] the function p ( ·) satisfy the difference-differential 
equation of advanced type 

a -
p*(t)= - - H(t) 

ox(t) 

with boundary condition 

where 

and 

p(t)=O on [T, T+hJ, 

H (t) =H (t) + H(t+h r) + ... + H (t+hs), 

H(t)=H(p(t), X 0 (t), X 0 (t-h 1), . . . , X 0 (t-h,), U0 (t), ... , u0 (t-hs), t) 

H(p 1 , X, y 1 , ... , y., u, Wr, ... , w, t)=p0 j 0 (x, u, t)+ 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

+(p-2p(t)(x-~(t)))*(~(t)+f(x,y 1 , • •• ,y"u,w 1 , • • • ,w,t). (4.12) 

(iii) For almost all t E [0, T] 

R(u0 (t), t)=max fi(u(t), t) (4.13) 
u ( t)EU 

where we denote 

fi(u(t), t)=H(u(t), t)+H(u (t+h 1), t+h 1)+ .. . +H(u(t+hs), t+hs), (4.14) 

H(u(t), t)=H(p (t), X
0 (t), ... , X

0 (t-h5), u(t), u (t-h 1), . . . , u(t-hs), t). (4.15) 

Proof. ~n this proof we restrict ourselves to the case s = 1, T = kh, h1 =k1 h. 
This will simplify many formulas and the case of many commensurable lags can 
be treated in the same way. 

Since the problem under consideration is tquivalent to the problem P(4.1) we 
may use Lemma 4.1 to develop conditions for X 0 

( ·) and u0 
( • ). Firstly, it is easily 

seen that the existence and properties of the functions fl; ( • ), i = k - k 1 + 1, ... , k, 
follows immediately from Lemma 4.1 by setting fl; ((i-1) h+t) = ),; (t). Further 
exploitation of the equivalence between the optimal pairs Z 0 

( • ), V 0 
( ·) in Lemma 

4.1 and X 0 
(·), U0 (·)in this theorem yields the existence of the functionp : [0, T + h1]-+ 

---+ R" defined on the base of If! ( ·) from Lemma 4.1. 

p (t+(i-1) h)=lfl; (t) for t E [0, h], (4.16) 

If!; (t) ER" being the i-th subvector of If! (t) E Rk". 

In order to rewrite the equation (4.2) in n-dimensional form compute the 
derivatives F0 z, Fz, F;z with the use of (3:1), (3.2), (3 .5), (3.6). Letting t E [0, h] 
we get 

Fo~ = [FOz1 ' ... , Fozk], 

Foz,(t)=fox(x(t+(i - 1) h), u(t+(i-1) h), t+(i - 1) h), 
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-f.., (t) 0 

0 fx (t+h) 

0 

0 ·fx(t+ih) .. 

0 
0 

0 

0 

0 ;;, (t+(k-l) h) . · · fx(t+(k-l) h)_ 

where 

f(t) df f(x 0 (t), Y0 (t), U 0 (t), U0 (t-k 1 h), t) 

y(t) df x(t-h 1), 

F;z
1
(t)=J . .(t+(i-l)h), 

F;zi-k (t) = J;, (t + (i -1) h). 
1 

15 

(4.17) 

( 4.18) 

(4. 19) 

This and (4.2), (4.!6) enables one to conclude that p (·)is absolutely continuous 
on each subinterval ((i -l) h, ih), i= 1, : .. , k and the following equations hold. 

~~ (t) = -ljlo fox (t + (i -J) h) -ljl ~' (t) fx (t+ (i -1) h) -ljl~+k 1 (t) J;, (t + 

+ (i -1 +k 1 ) h) +2X; (t) {U(t+(i-1) h)-~ (t+ (i-1) h )P + 

+(x0 ( t+ (i -1) h)-~ (t+(i -1 ) h)}') fx(t+(i-1) h)}+2A;+k, (t) (x0 (t+ 

+(i-l +kl) h)- ~ (t +(i-1 +k J) h))*;;, (t+ (i-1 +kl) h) (4.20) 

and hence substitutingp(· ) and f-L(·) one gets for tE((i-1)h,ih), i=1, ... ,k. 

jJ* (t ) = -ljlo fox (t)-p* (t) fx (t)-p':' (t + h1) f y (t+h1) + 2p (t) [(f(t)

-t(t))+(x0 (t) -~(t))* f..,(t)]+2p(t+h 1) (x0 (t+h 1)-

-~(t+h1))* J;,(t+h1) (4.21) 

Introducing hamiltonian H by (4.12), (4.1) and shifted hamiltonian fi by (4.10) 
and setting p 0 = IJio we get (4.8). Two-point boundary conditions (4.3) imply imme
diately (see the form (3.8) of Jk) that p(T)=O, IJI; (h) = IJii+ 1 (0) that is p (ih+O)= 
=p(ih-0), i=l, ... ,k-k1 -1 and also the jump condition (4.7). Thus p (·) is 
absolutely continuous on [0, T-h 1 ]. Equation (4.21) will remain valid for tE 

E [T-h~> T] only if we set p (t)=O for t E (T, T+h 1 ]. Rewrite (4.4) in the form 

k 

Jf (v~ (t), V~ (t), ... , vZ (t)) ~f. }; (Po fo (0
, v~ (t) , t +(J-1) h)+ 

j=l 

+ p* (t + (j-1) h) f( 0
, V~ (t), V~-k, (t), t + (f-1) h)+ 

+2p(t+(J-1) h) (x0 (t +(j-1) h)-~ (t+(.i-1) h))* /(0
, v~(t), v~-k 1 (t), 

t+(.i-1) h), (4.22) 
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where o denotes that remaining arguments are optimal. 

Yt'(v~(t),v~(t), ... ,v~(t))= max Yt'('l.•11 ... ,vk). 
VJ, ... ,VkEU 

Hence 
Yt'(v~ (t), ... , v~(t))=max Yr(v~ (t), ... , vi, ... , v~(t)) 

ViE U 

and this implies that 

Pofo(0
, u(t), t),t)+[p*(t)-2,u(t) (x0 (t)-~(t))*Jj(0, u(t), U

0 (t - h1), t)+ 

+ [p':' (t+h 1) -2,u (t+h1) (x0 (t+h1)- ~ (t+h 1) )*] f( 0
, U

0 (t+h 1) , u(t), t+h 1 ) 

(4.23) 

takes its maximal value over u (t) E U when substituting u (t) = u0 (t). This holds 
for almost all t E [(i -1) h, ih] and, since i- is arbitrary, for almost all t E [0, T ]. 

Replacing in the above term the function f with the term f +~-this will not 
<:hange the ptoperty of maximality over u (t) -and applying subsequently to 
intervals [(i- 1) h, ih], i=k, k-1, ... , 1 one obtains the condition (4.13). Nontri
viality of ( lfl 0 , ) , ( • ), If! ( ·)) implies clearly nontriviality of (p0 , ,u ( · ), p ( ·) ). Thus 
the proof is complete. 

From the point of view of computational applications the case of T, h11 ... , h, 
<:ommensurable is general enough to cover all real problems of the type considered. 
It seems however that by modifying slightly the results of [17] we can treat the 
problems with arbitrary positive lags. This modification requires the existence of 
the functions ),i (·)corresponding to the constraints (4.1) such that A.i (h)=Ai+l (0). 
By this property one may construct a function f1 ( ·) in Theorem 4.2 which is non
increasing on the whole interval [T:_ h, T]. Having fl ( ·) with such properties 
approximating sequence of problems with commensurable lags may be (probably) 
derived. 

5. Control to a ball in w,;) and L 2 spaces 

We consider now the problem P(3.1) and its equivalent P(3 .2) where the norm 
for final state is either w(;) or L 2 norm as specified in Hypothesis H3.3. 

The result for these two cases are so similar that we can state them in one the
orem without considerable complication of statement. We formulate the results 
for the problem with many delays in both state and control variable but the proof 
will be carried out, for the sake of simplicity, with one delay only. 

THEOREM 5.1. Let the pair ( u0 
( • ), X 0 

(-)) be optimal solution to the following 
problem 

[ m;n;mize f /0 ( x (t), u (t), t) dt 

J under the constraints: 
I (1.1) 
lllxr(·) -~(·) ll:;s;s 
I u(·) EL00 (0, T; U). 
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Here Xy(8)=x(T+8), ~(T+8) are defined for 8E[-h,O]. Assume, as in 
Theorem 4.1, the lags hi and T commensurable. ~ is a given function of class L 2 

(or w<:;) and the norm in final inequality constraints is the L 2 (or W<~l) norm. 
Let the remaining assumptions concerning the functions f 0 , f and admissible 
controls be as in Theorem 4.2. 

Then there exist a nonzero triple (p0 , p ( · ), p.), where the real numbers p 0 ~ 0, 
Pa~O and the functions 

p: [0, T+hsJ->Rn 

{

Pa fortE [T-h., T] 
Pa (t) = 

0 for t E [0, T-hs) U (T, T+hs1 

satisfy the following conditions. 
(i) 

(5.1) 

(5.2) 

(ii) The function p ( ·) is absolutely continuous on [0, T] with final condition 

p(T)= . { 
2p.(x(T)-~(T)) for W<~l-norm, 

0 for L 2 -norm. 
(5.3) 

Almost everywhere on [0, T] the following equation holds 

a -
p (t) =- ox(t) H(t), (5.4) 

where f1 is defined by (4.10), (4.11) but the hamiltonian His now 

H(p, x, y 1 , ... , y., u, w1 , ... , w., t)=p0 f 0 (x, u, t)+ 

+p* f(x, Yl> ... , y., u, wl, ... , Ws, t) + Pa (t) fa (x, Yt, ... , Ys, u, wl, ... , Ws, t) (5.5) 

r [ x -~(t) [ 2 for L 2 -norm 
J.(·)=t _. 2 (5.6) 

[f(x,y 1 , ... ,ys,u,w1 , ... ,w.,t)-~(t) [ for Wfl-norm. 

The boundary condition for p ( ·) is 

p(t)=O on (T, T+hsl· (5.7) 

(iii) The maximum condition holds 

fi(u 0 (t), t)=max fi(u(t), t) (5.8) 
u(t)EU 

wherefi(u(t), t) is defined by (4.14), (4.1 5), (5.5). 

Pro of. For the sake of simplicity the proof will be given in cases= 1 (one delay) . 
Since we assume T=kh, h1 =k1 hit is possible to go on with a new system (3.9), 

(3.10) with a performance index (3.12). T~e functions Fi> i= 1, ... , k are defined 
now as 

(5.9) 

2 

--- --- ----------------------------- -- -- -----------
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Therefore one can formulate an equivalent problem P(3.2) where the final 
constraints are given by 

k,-1 

}; ffz~-; (· ) -(k-i (· ) 11 2
:(£

2 (5 .10) 
i=O 

or 
k, - 1 

lzk(h)-(k(h) l2 +}; llik_;(·) - e,._;(·) ll2 :(e2
• (5 .1 1) 

1=0 

in case of Wc~l where 11·11 denotes L2 norm. 
Here c;k-i (t) =~ (T-ih+t). 
Introduce new state variables z0 and Za satisfying the fo llowing equations 

where 

i 0 (t) = F0 ( z (t), v (t), t), 

i,(t)=Fa(z(t), v(t), t), 

These definitions enables one to rewrite the final constraints as 

a=O for L 2 and a= 1 for Wc~J case, 

and to restate equivalently the problem under consideration as 

I 
minimize Zo (h)-zo (O)=Xo (z (0), z(h)) 
under differential constraints (5.12), (5 .13), (3.9) 
and equality-nonequality constraints 

1 x(z(O), z(h)) =O, 
l Xa(z(O) , z (h)):(O. 

Here we denote 

and X, Xa are the left-hand sides of (3.10) and (5.15) respectively. 
Applying now Theorem 2.1 one gets the existence of nontrivial 

such that, as in Lemma 4.1, for If.: [0, h]HRkn +z satisfying 

tfro=tfra=O 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

if/'(t) =-1f!o FozC0)-1f!aFa=(0 )-1f!*(t)Fz(0
) a.e. on [0, h] (5.16) 
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and the boundary conditions 

the maximum condition holds. 

lflo Fo (0
) + lfl* (t) F(0

) +\If a Fa (0
) = max [\llo Fo ( Z 0 (t), v, t) + 

VE Uk 

Of course nontriviality of ii implies nontriviality of l{;(-\lf0 , \If, \lla)· 
Furthermore\lf0 =cz0 ~0, \lfa=cza~O and 

\ll(h)=J: \11(0)+2\lfa (J r : 1 
zk (h)- ~k (h)_) 

19 

(5.17) 

(5.18) 

(5.19) 

The latter and (5.16) by substitution of (4.16) yields the existence of nontrivial 
triple p 0 df \lfo Pa d i_ \If a and p ( ·): [0, T +hd---+R" where we put by definitionp (t) =0 
for t E (T, T + h1 ]. In the same manner as in Theorem 4.1 we show that p ( ·) is 
absolutely continuous on [0, T] and has to satisfy (5.4) with Pa (t) defined in (5.1) . 

Condition (5.17) implies immediately (5.2) and from (5.19) one obtains (5.3). 
The proof of maximum condition (5.8) is based on (5.18) and does not differ 

from analogous part of the proof of Theorem 4.1. 

6. Generalizations 

In order to achieve the clarity of the proofs and simplicity of the results we 
restricted our considerations in the previous sections to the basic problem P(3.1). 
However, it is easily seen that the Theorem 2.1 or the more general Theorems 12.1 
and 13.1 of [17] enables one to generalize the results of this paper in several manners. 
We mean the possibility of the integrant in performance index to be depended 
on delayed state and control variables, the case of additional terminal constraints 
for the end of trajectory x (T) or intermediate constraints for x (tJ, where !;, 

i = 1, ... , l are given instants in [0, T], the case of equality and (or) inequality constra-
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ints for initial function, the more general target sets for the final complete state 
xT ( • ), equality constraints for phase variable on the whole interval [0, T] (or on 
a subset of it). 

We shall not present the generalized results in closed forms of theorems since 
these can be easily deduced from Theorem 4.1 or 5.1 if we discuss earlier changes 
in optimality conditions caused by any of additional contraints mentioned above. 

6.1. Equality and inequality pointwise (R") constraints 

Assume 0 = t0 < t 1 < ... < t1 = T arbitrarily. Consider the following additional 
constraints for x(t1) in P(3.1). 

Xi(x(t0 ), ... , x(t1)) =0, j = 1, ... , dt. 

Xi (x(t0 ), ... , x(t1)),;;0, j=d1 + 1, ... , d. 

This type of constraints applied to systems without delays (as in Theorem 2.1) 
gives, in case of optimality, the existence of' a vector P=(/3°, f3l, ... , pd) such that 
[17] (p, .A.) is a nontrivial pair and transversality conditions consist of boundary 
conditions 

(6.1) 

(6.2) 

and jumps 

(6.3) 

Here po, pdt+l, ... , pd,;;O. 
The situation is similar for retarded systems. The jumps for adjoint variable 

p (t) at t = t 1 are obtained from identical formula as well as the boundary conditions 
for p (0) and p (T). This is easily seen from a direct generalization of e.g. Lemma 
4.1. Note that in the current formulation of the problem we assume that the initial 

function q; ( ·) is given with possible exception of q; (0) = x (0) subject to constraints 
X 1 (x (0), ·) = 0 ( ,;;0). Such formulation may have minor physical justification 
since we are usually able to choose initial conditions of a system before it starts 
to work for instance in the course of designing procedure and then we have some 
freedom, if we have any, in choosing all the initial complete state. Mathematically, 
however, the problem is correctly stated. It is visible from (6.1), (6.2) that if the 
functions Xi does not depend essentially on both x(O) and x(T) that is any Xi 

depends either on x (0) or on x (T) then we get (if the phase variable constraints 
g(x(t), t),;;O are absent) the well known orthogonality conditions for p(O) and 
p(T). 
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6.2. Constraints for initial function 

If we have to find also an optimal initial function rp (t) with values in a given 
nonempty subset §'eR" and rp(O)=x(O)Eff0 eR" or more generally rp(t)E 
E §' (t) eR" then the following approach is feasible. If the function ·rp can be consi
dered as a member of L oo (- hs, 0; R") treat rp ( t ), t E [-h., 0) and rp (0) = x (0) 
separately. Set an additional control v0 (t)=rp (t-h) in Lemma 4.1 (or ks addi
tional controls if hs=ks h). The conditions for optimal x (0) are as described in 
subsection 6.1 above (conditions (6.1), (6.2)). The possibility of choosing the initial 
function results therefore only in maximum condition. On the interval [0, h1] the 
maximum condition holds also for optimal rp0 (t- h;) and admissible rp (t- h1) E 

E §' (t-h 1). The case of time dependent sets of admissible control values is exam
ined, for non-delayed systems, in [16], [17]. Notice that the case of constraints for 
rp given analytically in the form of equality and (or) inequality constraints Qi( rp (t), t) = 

=0 ( ~0) for a.a. t E [ -hs, 0] can be treated in the same manner. The functional 
constraints of the type q1 : rp (·)->R may be also taken as functional constraints 
for control variable. 

6.3. General final function space constraints 

On the basis of Theorem 2.1 and of more general Theorems 12.1, 13.1 in [17] 
if needed we have no difficulties, except those of pure technical nature, in establishing 
the necessary optimality conditions for the following generalizations of the final 
constraints in P(3.1). 

(a) General inequality constraints for Xy ( ·) 

Q1 (x(t), t)~O for all t E [T-h, T] and all i= 1, .. . , y1• (6.4) 

In terms of the equivalent system (3.9), (3.10), (3.12) the problem can be char
acterized as one with phase variable constraints for subvectors zk (t), zk-! (t), ... 

•.. , zk-k,+I (t) of the form 

Qu(zi(t),t)dfQ;(x(t+(j-l)h), (j-l)h+t)), Vt E[O,h] 

i= J, ... , J'1; j=k, ... , k-ks+ 1. 

To each of the functions Qu there corresponds a multiplier vu ( ·) which is 
a scalar-valued function of bounded variation on [0, h], nonincreasing, right con
tinuous, constant on subintervals of [0, h] on which Qii (z~ (t), t)<O and with 
vu (h) =0. Thus the full analogy is observed between vu and A.1 in Lemma 4.1. There
fore, on the basis of Theorem 4.1, one can easily formulate an adequate result
the necessary condit\ons for optimality of the system (1.1) with constraints (6.4) 
included. It is also clear that the assumption that Qii ( ·) (not necessarily the functions 
Q; ( · )) are of class c<2 l quarantees the result in the form of pointwise maximum 
principle with the ad joint variable absolutely continuous on intervals [0, T- hsJ, 

[T-ih, T-ih+h], i=l, ... , ks. 
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(b) Functional type constraints 

q;(xy(·))=O for i=l, ... , y2 (and · ~0 for i= y2 +1, ... , y3 ). (6.5) 

We assume here the following representation conditions for q;. Namely 
q; (xy(·)) is supposed to be a value of q;(xy(·), t) for t=Tthat is q;(xy(•), T) = 

=qi (xy(·)) where q;(xy(•), t) may depend on x(T) = xy(O) but does not depend 
d 

on x(s),sE(t,T). Moreover, it is assumed that the derivative dt qi(xy(·),t) 

exists for each absolutely continuous Xy ( ·) and is of the form 

d 
dt q;(xy(·), t)=fa;(x(t), x(t), t), tE[T-h.,T], (6.6) 

fai (x, x, t) being continuous in all arguments and of class C(ll with respect to x. These 
assumptions are motivated by our aim to reformulate the constraints {6.5) so that 
to get final constraints in Euclidean space for additional state variables. In fact, 
setting 

qii(xy(·), t) df qi(xy(·), t+(j-l) h), 

laii (z(t), t) =/a;(x(t+(j-l) h), x (t+(j-l) h), t+(j - 1) h), 

j=k, k-l, ... , k-k,+ 1, 

with x substituted from (1.1) and with z (t) defined by (3.1) and (3.2), 

k 

Fai(z(t), t) -d!:_ }; /ai1 (z(t), t), 

Z ai (t) df Fai ( Z (t), t ), t E [0, h ], 

it is clear that (6.5) may be written as 

q; (xT( • )) =Zai (h) - Zai (0) +qi (xT ( · ), T -hs) =0 ( ~0) 

(6.7) 

(6.8) 

where, by assumption above qi ( Xy ( • ), T- hs) may depend only on the values 
. x (T) and x (T- hs) , of trajectory x ( • ). Thus we get the situation analogical to that 
in the proof of Theorem 5. 1. For each i = 1, ... , y3 there exists a multiplier Pai> 

Pai:(,O for i = y2 + 1, ... , Y3- The hamiltonian is modified, similarly as in (5.5), by 
YJ 

additional term 2 ?ai lai· The final value of adjoint variable is given by 
i=l 

a r, 

p(T)= ax(T) _.2 Pai q;(xy(·), T-hs) 
r.= 1 

and the additional jump of p (t) at t=T-hs is 
• a Y3 

p(T- hs-0)-p(T- hs+O) = ox(T-hs) i~ Pai qi(xy(·), T-hs)· 

The remaining conditions for optimality will preserve theirs form. 
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(c) Fixed final state Xr ( ·). This case seems to be more difficult than the reported 
before in the following sense. It appears from one hand that under reasonable 
hypotheses the maximum principle can be obtained but its nontriviality cannot 
be proved. This was the case of Banks and Kent [6] where the equality constraints 

X;(t)=(;(t) VtE [T-h, T], i=l, ... , n (6.9) 

were considered as a set of 2n conflicting inequality constraints. From the other 
hand utilizing existing results in ptimal control theory for nondelayed systems we 
are able to derive nontrivial maximum principle but the hypotheses we have to 
assume are much stronger than for instance (HI), (H2) in Section 3 and restrict 
considerably the class of systems which can be treated. The assumptions concerning 
th~ case of equality constraints for state variable are, among others, the following 
[17]. The form of the constraints is 

P(x(t), u(t), t)=O E R 1 for a.a. t E 11 c [t1, t2 ], (6.10) 

11 - a measurable subset. 

The function p ( ·) and the partial derivatives Px, Pu are continuous in (x, y) 
uniformly with respect to t, t--+P (x, u, t) is measurable and bounded. All these 
are not very restrictive but the following is, especially in case that the number I of 
equality constraints is large comparing with the number of controls r ( u (t) ERr). 

Condition (Cl) in [17]. 

[Pu(x0 (t), tt(t), t) P: (x0 (t), u0 (t), t)]- 1 exists for a.a . t E 11 and is of class L 00 on 11 . 

The equations (6.9) can be stated in the form (6.10) after simple manipulations. 
(6.9) is equivalent to 

X; (T) = i;;(T), i = 1, ... , n, 

~;(t)=x;(t)=/; (x(t), x(t-h), u(t), t), t E [T-h, T] 

if taking for simplicity the case of one delay in state variable only. 
The condition (Cl) now obtains Uu J.7J - 1 exists and is of class L 00 in t. 

(6.11) 

This implies the number of controls r~n (x (t) ER"). Therefore the results obtained 
via such approach will be of practical value only if the number of scalar equations 
(6.9) on [T -h, T] is small. Actually we may consider a case which is not only a 
_generalization of (c) but it also admits small number of constraints. 

(d) Equality operator constraints 

P(xT(·))=O E C (T-h, T; R 1
). 

Here P(xr(-)) (t) df P(x (t), t). 

Of course, under suitable assumptions we get equivalent equations, similar 
to (6.11), which depend explicitly on u (t) so that aproppriate theorems of [17] 
may be used, 

P(x(T), T)=O, (6.12) 

Px(x(t), t)f(x(t), x (t - h), u(t), t)+Pt (x(t), t)=O for a.a. t E [T-h, T]. (6.13) 
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The finite-dimensional equation (6.12) implies additional transversality condi
tions for p (T). The constraints (6.13) imply the following modification of necessary 
conditions provided that the left hand side of (6.13) satisfies the conditions re
quired in [17], Theorem 12.1. The multiplier vEL oo (T- h, T; R1

) corresponding 
a 

to (6.13) occurs in the term added to ad joint equation - v (t)-;- (P x f + P,) for 
uX 

t E [T- h, T]. Also on this interval additional identity equation for v (t) P xj,, related to 
condition (v) in Theorem 12.1 of [17] is satisfied. In view of that theorem it can be 
shown in a straighforward way how to modify the maximum condition on [T- h, T]. 

6.4. The generalization of the performance index and the system equa
tion . . Neutral systems 

For the sake of simplicity the performance functional of integral form (1.2) 
with integrand depending only on nondelayed values state and control variable 
has been considered. It is however immediately seen from (3 .1 1) that assuming 

T 

J= J fo (x(t), x(t-h1), ••• , x(t-hJ, u(t), u(t - h1), ••• , u (t-h,), t) dt (6.14) 
0 

the reformulated functional (3.12) will not change its form and the arguments of 
proof of Lemma 4.1 will apply . 

. In. order to maintain the closed form of adjoint equation (4.8) the constant p 0 

has to. be replaced with the function p 0 (t) = p 0 for t E [0, T] and zero for t E [T, T + hs]. 
As for nondelayed systems a term depending on final trajectory value x (T) may be 
added to (6.14) and treated by standard methods. This term may depend as well 
on the complete final state Xy ( ·) and the procedure for obtaining necessary opti
mality conditions is the same as in case of functional type constraints for Xy ( ·) 

(see 6.3 (b)) that is showing that under some hypotheses the performance functio
nal may take the form X0 ( x 0 (0), x 0 (T), x (0), x (T)) where x 0 ( ·) is the suitable 
chosen new state variable. 

It occurs also that the equivalent system of type (3.9), (3.1 0) can be constructed 
for neutral differential-difference equations with one delay. 

x(t)=f(x(t), x(t -h), x(t-h), u(t), u(t-h), t), t E [0, T ], (6.15) 

or with many delays. It is seen that if considering (6.15) on [(i - 1) h, ih] one sub
stitute the right hand side of ( 6.15) taken on [ ( i - 2) h, (i - 1) h] and so on, unless 
reaching [ -h, 0]. Thus a system of type (3.9), (3.10) can be derived. Therefore the 
necessary optimality conditions for neutral systems with any type of constraints 
discussed above can be obtained by the general method of this paper. The general 
limitation of this method is that it does apply to systems with finite number of 
delays. It does not work for systems with distributed delays, even sufficiently smooth 
as for instance 0 

x(t)=Ax(t)+ J K(e) x(t+e) de+Bu(t). 
-h 
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Some results concerning the neutral systems depending linearly on delayed 
derivative are given in [6], [7] (see Section 1 of this paper for short report). 

7. Examples 

Let us illustrate the methods used extensively in this paper by the example fol
lowing below. 

Example 7.1. Consider one-dimensional retarded system 

x(t)=x(t-l)+u(t), tE (0, 2], (7.1) 

with initial condition 

x(t)=cp(t) =l "(tE [-1,0], (7.2) 

and the following quadratic functional 

1 2 

J=2 J u1 (t) dt (7.3) 
0 

to be minimized under final state constraints 

2 

llxT(·W = (x(2)) 2 + J (x(t))2 dt~e2 • (7.4) 

We shall assume for computations e=0.25. The control values are unlimited 
(U=R 1

). Let us apply Theorem 5.1. The hamiltonian (5.5) is 

1 ' 
H=2 Po U

2 +p(t) (x(t-l)+u(t))+Pa (t) (x(t-1)+u(t)) 1
. 

Since H does not depend on delayed control we get from (5.8) that the optimal 
control u ( ·) satisfy an oH 

-=- =0 
ou (t) ou (t) ' 

which implies (we put p 0 = -1 since p 0 = 0 does not fulfill (5.8)) 

1 
u(t) = 1_ 2Pa (t) [p (t) +2p. (t) x (t-1)]. 

Construct the adjoint equation (5.4) 

a _ a a 
p (t) = - ox(t) H(t) = - ox(t) H (t)- ox (t) H (t+ 1) = 

(7.5) 

= - p (t+ 1)-2p.(t+ 1) (x(t)+u(t+ 1)), (7.6) 

with boundary conditions (5.3), (5 .7) for p (·)that is p (t)=O for t E (2, 3], p (2)= 
=2p0 X (2). 
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This and the definition (5.1) of Pa (t) imply that p (t) =0, t E [1, 2] and hence 

p(t)=2p0 x(2) for tE[1,2]. 

Substituting (5.1) into (7.5) we get 

2pa 
u(t)= 

1
_

2
Pa (x(2)+x(t-1)), t E [1, 2] 

u(t)=p(t), tE [0, 1]. 

Further substitution of u (t) into (7.1) and (7.6) yields ~or t E {0, 1] 

x (t) = 1 + p (t) 

-2p 
p (t) = 

1
_ 

2
;a (x (2) +x(t)). 

(7.7) 

(7.8) 

Her.ce the following second order differential equation for x ( ·) is obtained 

x(t)=p(t)=a2 (x(2)+x(t)), t E (0, 1]. 

where 

(7.9) 

Solving this with initial conditions x (0) = 1, x (0) = c, c is unknown, one obtains 
for t E [0, 1]. 

c 
x(t) = (1 +x (2)) eh (at)+ - sh (at)- x(2), 

a 

.and hence 

p(t)=x (t) -1 =c eh (at) +a (1 +x(2)) sh (at)-1. (7.10) 

Since, by Theorem 5.1, p ( ·) is absolutely continuous on [0, 2] we get by conti
nuity condition p(1-0)=p(1+0) and by (7.7), (7.10) that 

c eh a+a (I +x(2)) sh a-1 =2pa x(2). (7.11) 

This is the first equation for unknown coefficients a, c, x (2) (by (7.9) Pa is a 
function of a). The second equation is obtained in similar way by computing x (t), 

t E [1, 2], in backward direction, starting from x (2) 

1 
x(t) = 3x (2)- tx (2) + 

2
Pa [(1 +x (2)) a (sh a-sh a (t-1)) + 

+cch(a-cha(t-1))], (7.12) 

and comparing x (1-0) = x (1 +0) which gives 

c 1 
(1 +x(2)) eh a+- sh a - x (2) = 2x (2) +-

2 
[(1 +x(2)) ash a+c (eh a-1)]. (7.13) 

a Pa 
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The last equation for coefficients follows from evaluating the norm (7.4) (we 
have from (5.2) llxr (·)I I =s since otherwise Pa=O and this implies u (t)=O on [0, 2]; 
a control which does not give llx r (·) I I ~ 0.25) 

X~[ ~ ' 
s2 =2 (x(2))2 +- (1 +x(2)) ash a+c(ch a-1) +"1(52 a(l + 

Pa ~a 

+x(2)) 2 (2a+sh 2a)+c2 
( -2a+sh 2a)+2c eh (2a-1)]. (7.14) 

Substituting Pa from (7.9) we may solve analytically (7.11), (7.13) as a system 
Df two linear equations with respect to x (2) and c. This result, when substituting 
to (7.14), gives one nonlinear equation with one unknown parameter a. Solving 
this numerically yields the following quantities. 

a= 1.0191032 ~ 1.019, 2pa =26.926012 ~26.926 

X (2)= -0.1651851 ~ -0.165, C= -2.8674713~ -2.867. 

Thus the optimal control, if exists, is defined as 

-2.867 eh (1.019 t)+0.851 sh (1.019 t)-1, t E [0, 1] 

-0.867 eh (1.019 (t-1)) + 2.922 sh (1.019 (t -1) ), t E [1, 2]. (7.15) 

The existence of the optimal control is assured by the general results in existence 
theory for linear problems with closed convex set of controls. In fact, if we come 
back to representation (3.9), (3.10) then the following problem is equivalent to 
(7.1)-(7.4) 

under constraints 

minimize llv (·) I I Llo. l J• v (t) = ( V1 (t), V 2 (t)) 

lit (t) = rp 0 (t) +v1 (t), 
Z2. (t)=z1 (t)+v 2 (t), t E [0, 1], 
z2 (0)=z1 (1), 

llzz( · ) II W(;)(O, l ) ~s, 

where rp0 (t) = 1 for t E [0, 1]. 

(7.16) 

This can be expressed in more abstract fashion as minimizing a continuous 
<:onvex functional 

F 0 : £2 (0, 1; R3)XW(~) (0, 1; R2
) 3 (rp, v, z)-> llvll E R 1

, 

under the linear constraints z =A ( rp, v) on a closed convex set V c.L2 (0, 1; R 3
) X 

XW<;l (0, 1; R 2
), where A is a linear bounded operator defined by solutions to 

equations (7.16) and 

V={(rp, v, (z1 , Zz)): rp=rpo, llzz ll ~s} . 

For such type of problems the Theorem V.3.5 of S. Rolewicz [19] applies imme
diately. Hence (7.15) is the unique optimal control. 

I 
I 
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The next example will show explicitly some of the possibilities in generalizing 
the basic problem P(3.1) which were described in Section 6. 

Example 7.2. Let the evolution of a system be ruled by a differential-difference 
equation of neutral type. 

x(t)=f(x(t) , x(t-h), u(t)), t E [0, 2h]. 

The initial function x (t) = rp (t), t E [- h, 0] is allowed to be an arbitrary abso
lutely continuous function with derivative in L 00 

( - h, 0, :?), ff- a nonempty 
subset of R", and with initial point x (0) satisfying X0 (x (0)) =0. The control u ( ·) 
is assumed to be in L w (0, 2h; V), V - nonempty subset in R 111

• The target set is 
defined by inequality 

2h 

J k (x(t), u(t)) dt~b, 
h 

where b is a given real number. 
The problem is to find optimal initial function rp ( ·) and optimal control u ( ·) 

such that all the constraints given above are satisfied and the functional 

J(rp, u) = X(x(2h)) 

achieves minimum. 
After applying transformation (3.1) and setting w (t) = cp (t- h) we get the follow

ing equivalent statement of the problem. 

(Minimize X(z 2 (h)) 
under the constraints 
z0 (t) = w (t), 

z1 (t)=/1 (zl (t), w(t), vl (t)), 

~ i 2 (t) = / 2 (z1 (t), z2 (t), w (t), v 1 (t), v 2 (t) ), 
i 3 (t)=k (z2 (t), v2 (t)), 
X 0 (zo (h))=O, 
z 1 (0)=z0 (h), z2 (0)=z1 (h), 

1 Z3 (h) - z3 (O)~b, 

where / 1 =f and / 2 (z 1 , z2 , w, v~> v 2 ) = f(z 2 ,j(z1> w, v 1), v 2 ). 

Clearly, Theorem 2.1 is directly applicable to this problem, provided that appro
priate regularity assumptions are made. Hence if W0 

( • ), X 0 (0), U 0 
( ·) are optimal 

then there exist nontrivial (IX, a, If!), ci~O, a=(a0 , a1 , a2 , a3) E R 3"+1, a3 ~0. 
lfl = (lf/0 , lf/1, lf/2, lf/3): [0, h]-->R3"+ 1 such that for corresponding optimal values 
X 0 

(. ), z~ (0), v 0 
(. ), z 0 

(.) the following conditions hold: 

(i) I ill+ lal >0, 

(ii) 1/t 0 (t) =0, if,3 (t) = 0, 

1/t: (t) =If/: (t) /1z
1 

(
0
) -ljl; (t) J2r

1 
(

0
), 

.jf; (t)=lfl; (t)flz
2 
(")-lf/3 kz,(0

), 



Control of retarded systems with function space constraints 

for a.a. t E [0, h], and transversality conditions 

lfi(0)=[-~ 1 1' - Cl.z 

C/.3 

(iii) maximum condition 

H(t, w0 (t),v 0 (t))= maxH(t, w,v) a.e . on [O,h], 

where 

w E§ 

L" E U X U 

H(t, w, v) =If/; w +If/: (t) f 1 (z~ (t), w, v1 ) +If/~ (t) f 2 (z~ (t), z~ (t), w, v1 , v2 ) + 

+lf/3 k (z~ (t), v2 ) . 

29 

Note that here lf/o does not correspond to performance index; this role plays fi.. 

Furthermore, from these conditions, it follows that 

lf/o (t)=lflo=O, 

lf/3 (t) = e~. 3 = const. , 

lf/ 2 (h)= cL¥z
2 

(lr)· 

Using the equations above, the notation 1f1 3 =JJa and (4.16) we finally obtain the 

following form of maximum rpinciple. 

Maximum principle for the problem of Example 7.2. 

If w0 (t)=cp 0 (t-h), X 0 (0), U0 (t) is the solution to optimal control problem of 

Example 7.2 then there exist a nontrivial quadruple (p(·),Pm e~.0 , a), where Pa::;;O, 
a::;;O, e~. 0 ER" and p: [O,T]=[0,2h]-+R", such that 

(iv) the function p ( ·) is absolutely continuous on [0, T] = [0, 2h] and satisfies 

a.e. on this interval the following differential-difference equation 

p*(t)= -p':' (t)fx(X0 (t), X0 (t-h), u0 (t))-p(t+h)f~ (x0 (t+h), X0 (t), 

U0 (t+h))-Pa(t) kx(X0 (t), U
0 (t)) 

with boundary conditions 

p(t)=O on (T, T+h), 

p(T)= aX: (x 0 (T)), 

p(O)= -x;.,(x0 (0)) Cl. 0 • 

The function Pa (t) is defined by (5.1). 
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(v) The maxHnum condition holds 

p (t) f( X0 (t), W
0 (t), L{

0 (t)) + p (f+ h) f( X0 (t-}- h),f(X0 (f), W 0 (t), L/
0 (f)), 

U
0 (t +h))+ Pa k (x 0 (t+h), U

0 (t+ h)) 

=maxp(t)f(x0 (t), w, u1 )+p(t+h)f(x0 (t+h),f(x0 (t), w, u1 ), u2)+ 

for almost all t E [0, h]. 

8. Concluding remarks 

A general class of optimal control problems for nonlinear systems with possible 
delays in the state and control variables has been considered. Standard hypotheses 
on regularity of the functions defining the problem has been assumed. The controls 
has been taken from the space L w (0, T; V), V- given nonempty subset of R"'. 
The final time T and the lags of the system has been assumed commensurable. It 
does not seem to be, however, a restrictive assumption from the point of view of 
applications. The aim of the paper was to develope a general procedure for obtaining 
necessary optimality conditions for time-Jag systems when having appropriate 
conditions foi· non-delayed systems. It has been shown that under commensurabi
l ity assumption it is possible to construct in all practical cases an equivalent optimal 
control problem for some system without delays. 

This reformulation has been described in Section 3 for the case of delays in 
state and control variables but it does apply as well to neutral systems, when the 
delayed derivative of state variable is present in system equation. One basic problem has 
been chosen to show how the method works; the problem of controlling to a complete 
final state XT (.) in a given ball in function space. The spaces c, L 2 and w(;) has 
been considered in details in Sections 4 and 5. The necessary optimality conditions 
has been derived in the form of pointwise maximum principle with absolutely 
continuous adjoint variable. It occurs that the cases of L 2 and W<~l are si~plest than 
the case of C-space in the sense that adjoint variables corresponding to final state 
constraints are consta1,1ts only. In Section 6 various possible generalizations has been 
described, including the cases of neutral systems, constra ints on initial conditions, 
phase variable equality and inequality constraints, fixed final complete state and 
others. Two examples has been given in Section 7, one concerning linear system, 
quadratic functional and the final state xT ( ·) in a ball in W(~l' second with system 
equation of neutral type. The major limitation of the method presented is that it 
does not apply for systems with distributed lags e.g. integro-differential equations 
of the type ' 

0 

x(t) = J k(t, x(t+fJ), e) dfJ+f(x(t), u(t), t) 

" 
or for systems with time-varying lags. 
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Sterowanie ukladami z opoinieniem przy ograniczeniach 
w przestrzeni funkcyjnej. Cz~sc 1. Warunki konieczne opty-

malnosci 
W pracy rozpatrzono klas~ problem6w optymalizacji dynamicznej dla uklad6w z opoznie

niami zmiennej stanu i stero~ania o postaci x (t)= j (x (t), x (t-h1), .. . , x (t-h,), u (t), u (t-hl), .. . 
... , u (t-h,), t), t E [0, T] przy calkowym wskazniku jakosci i ograniczeniach uwzgl~dniaj~cych 
ograniczenia w przestrzeni funkcyjnej zupelnych stan6w koncowych. Zalozono wsp6lmiernos6 
czasu koncowego T i op6:.fnien h;, i= 1, ... , s. Warunek ten jest w praktyce niemal zawsze spelnio
ny, gdy:i: zwykle przyjmuje si~ wartosci liczbowe dla T, h, w postaci liczb o skonczonej reprezen
tacji w ukladzie dziesi~tnym. Wykazanc, ze po wprowadzeniu r6wnowaznego ukladu bez op6znien 
z dodatkowym.i dwupunktowymi warunkami brzegowymi mozna sformulowac nowy r6wnowazny 



32 
A. W. OLBR-OT 

problem nie zawierajqcy jawnie op6znien. Po zastosowaniu istniejqcych w literaturze wynik6w 

dotyczqcych ukJad6w bez op6in ien otrzymano warunki konieczne optymalnosci w postaci zasady 

maksimum Pontriagina, kt6re mozna przedstawic w postaci wlasciwej dla uk!ad6w z op6znie

nami przypominajqcej warunki otrzymane przez Kharatishvili. Dokladne i scisle rozwazania 

przeprowadzono dla specjalnege problemu, jak si« wydaje, dose waznego praktycznie: sterowanie 

d.J koncowego stanu zupelnego xT ( ·) przy warunku, :i:e stan ten nalezy do zadanej kuli w przestrze

ni funkcyjnej. Rozwazono trzy przypadki przestrzeni funkcyjnej stan6w kmkowych: przestrzen 

C [T -h, T; R"] funkcji ciqglych o wartosciac:h w R", przestrzen U [T -h, T; R"] oraz przestrzen 

Sobolewa w(:J [T -h." T; R"] funkcji abscl utnie ciqg!ych o pochodnej w L 2 [T -h, T; R"]. We 

wszystkich przypadkach ctrzymano warunki konieczne optymalnosci w postaci warunku mabi

mum hamiltonianu przy czym zmienne sprz«ione Sq absolutnie ciqgle w przypadku normy w L 2 

lub w(:J oraz przedzialami absolutnie ciqgle dla przypadku normy typu supremurri w przestrzeni C. 
Otrzymane rezultaty Sq silniejsze niz dotychczas znane w literaturze. W rozdziale 6 pokazano, :i:e 

w analogiczny spos6b mozna uzyskac warunki optymalnosci dla wi«kszosd spotykanych w teorii 
optymalizacji dynamicznej problem6w z op6znieniami, wliczajqc w to takie problemy jak: 

1. R6wnosciowe i nier6wnosciowe ograniczen~a skonczenie wymiarowe typu Xj(x(t
0

), •• • 

. .. , x (r,))=O dla j= 1, ... , d1 oraz ~0 dla j=d
1 
+ 1, ... ,d. 

2. Ograniczenia , dla warunk6w poczqtkowych typu x (t) E F (t), Yt E [ -h, 0] . 
3. Og6lne ograniczenia dla stan u kol'tcowego w przypadkach 

(a) Q, (x (t), t)~O Vt E [T-h, T], 
(b) ograniczenia funkcjonalne 

q 1 (xr(·))=O dla i=1, . .. ,c1 oraz ~0 dla i=c
1
+l, ... ,c, 

(c) stan koricowy ustalony x (r)=C: (t) dla t E [T-h, T], 
(d) ograniczenia operatorowe r6wnosciowe 

P (x (t), t)=O dla t E [T-h, T] . 

4. Wskaznik jakosci calkowy z op6inionymi zmiennymi stanu i ~terowania pod calkq. 

5. Uklady z op6inieniami opisywane r6wnaniami typu neutralnego. Sterowanie do kuli w 
przestrzeni w(r) zii L•strowano przykladem numerycznym (Przyk!ad 7.1), natomiast Przyklad 7.2 
pokazuje dokladniej niekt6re z mozliwych uog61nien 1-5. 

YnpasJieHne cncTeMaMn c 3ana3)J.hiBaHHeM n c orpaHH'IemmMn 

B !)>yHKI~IIOHaJihHbiM npoCTpaHcTse. qacT I. Heo6xo)J,HMLie 
YCJIOBHH OlTIIMaJibHOCTII 

PaccMaTpHBaercH mcTeMa BH)J,a x (t)=f(x (r), x (t-hr), .. . , x (t-h.,), u (t), u (t-h
1

) , .. • 

• .. , U (t - hs), t), f E (0, T] , )J,JI5! KOTOpOH QJOpMynMpyeTC5! npo6neMa OITTHMaJibHOrO ynpaBJieHHlf 

C HHTerpaJibHb!M QJYHKJ.1MOHaJIOM Ka'!eCTBa ll KOHe'"!HbiM COCTOl!HMeM XT ( •) IlpH!J,aHJieJKaiUHM 

HexoropoMy mapy B <PYHKJ.1HOHaJI&HOM rrpocrpaHCTBe. TlpHMeHl!!OTCll TPH nma npocrpaHCTB: 

npoCTpaHCTBO HenpepbiBHblX QJYHKUHH C (T -h., T; R") onpe,l(eneHHblX Ha [T -h, T] eo 3Ha'le

HHl!MH B R", rrpocTpaHCTBO QJYHKUHH cyMMMpyeM&rx c KBa,llpaToM L 2 (T -h, T; R") H rrpocTpaH

CTBO Co6~_cre8a w(~) (T -h, T; R") a6COJI!OTHO HenpepbiBHb!X <!JyHKl..{Hi1: c npOH3BO)J,HOH B L 2 • 

ITpe,llnaraeTC5! '"!TO qrrcna T, h,, i = 1, ... , s 5!81IlHOTCl! COM3MeprrM&TMH. 3To npe!J,JIOJKemre Hcrrorr

fll!eTcH Ha !Ip3KTHKe TIO'lTH BCer,!(a. fiOCJie ITpHMeHeHHl! ::JKBHBaJieHTHOtl CMCTeMbl 6e3 3aii33,!(bl

BaHHl! C ,!(06a80'!Hh!MH ,l\8yrpaHH'IHblMll YCJIOBHl!MH OKa3biBaeTCl! 'lTO ITOCT3BJleHHhie np06JieMbi 

o/lliafOTCl! C l10MOLUH!O Cyli(eCTBYJOW}IX B mnepaType ,!(OCTaTO'fHO 06IUHX 11 MOW,Hb!X pe3yJl&Ta
T08. fionyYeHHbie 8 pa6oTe He06XO,!(liMb!e yCJlOBJ!i! OIITHMaJibHOCTH B QJOpMe 06bPfHOrO IlpHH

UHITa MaKCMMyMa C a6COJlfOTHO HenpepbiBHblMll COI1p5!JKeHHbTM~ nepeMeHHb!MH 5!BJil!JOTCll, B 

paccMaTpH8aHHOM Knacce rrpo6neM, 6onee MOIUHhTMH 'feM 1138eCTHhle 8 muepaType. B pa3,llene 

6 pa60Tb! ITOKa3aHO HeCKOJihKO o6o6meHMi1:. 06o6w:aJOTC5! THITb! orpaHM'Iemrlt, <f>YHKLIHOHaJI 

Ka'feCTBa, paCCMaTpl18alOTC5! CHCTeMb! HeMTpaJibHOrO THJTa. LJ:sa IIpHMepa, 0,1\HH 'flfCJICHH!.!H, 
BTOpoli TeopeTH'leCKHM, HJIJIJOCTpHpyJOT ITOJiy'feHHhJe pe3yllbTaTbl. 


