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The paper is concerned with the optimization technique and the sensitivity analysis of multilevel 
.control systems described by linear differential equations with quadratic performance index. Two 
computational two-level dynamic optimization methods are presented. The second-order sensiti
vity analysis of such systems due to various inaccuracies is presented: inaccuracies in the state 
-equation matrix, inaccurate coordination and small time delays, which appear in the interconnections 
between the subprocesses. The sensitivity analysis is applied to several one and two-level optimal 
control structures. A suboptimal control structure, based on a prediction of the interconnection 
variables is proposed and its sensitivity analysis is performed. An example illustrates the applica
tion of the presented methods. 

1. Introduction 

Sensitivity analysis is understood here as an analysis of deviation from optimal 
-performance caused by various inaccuracies. The inaccuracies can be related to: 

(i) inaccurate determination of a mathematical model; 
(ii) intentional simplifications of complex models, where practical application 

is related to many computational ai1d technical problems; 
(iii) inaccuracies related to optimization algorithm. 
The sensitivity analysis has been developed for many years because of its practical -

importance. A. P. Wierzbicki [9] introduced a new concept of sensitivity, by means 
of which "sensitivity paradox" [10] can be explained and real control systems can 
be examined. This concept was further developed in [2], [10]. In this paper, the 
sensitivity analysis is applied to two-level optimal control structures based on de
-composition of a system and coordination of subprocesses. Some typical inaccu
racies characteristic of multilevel systems are distinguished. The method presented 
in the paper does not require large computational effort and can become an im
-portant element of the systems control technique. 
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In Section II, theoretical foundations of two multilevel optimization methods, 
presented in [5], [6] are described. In further sections, general sensitivity analysis 
is discussed. In Section IV, sensitivity analysis of some one- and t\vo-level optimal 
control structures is presented. Computational examples are given in Section V. 

2. Multilevel dynamic optimization methods 

Consider a system (process) given by a linear differential equation 1): 

x = Ax+Bu; x(O) = x 0 (I) 

where x (t) ER" denotes state vector, u (t) ERr denotes control vector. Assume 
that the performance index (2) is to be minimized 

T 

J(x, u)=0.5 x' (T) Fx(T)+0.5 J (u' (t) Ru(t)+x' (t) Q.x(t)) dt (2) 
0 

where final time T is given, F, R are matrices block diagonal in form. If the dimen
sion of the above problem is large. computational effort can be diminished by de
composition methods. The problem can be decomposed according to the structure 
of naturally related subprocesses (the matrix A is then close to block diagonal form), 
or in any other arbitrary way. 

Decomposition of optimization problems consists in separation of the global 
problem into N subproblems and a coordination problem, such that coordinated 
solutions of subproblems result in the optimal solution of the global problem
see [3]. In order to decompose the problem, interaction variables v (t) E R 111 are 
introduced2). These variables define connections between artificially or naturally 
separated subproblems, given by: 

(3) 

where xi (t) ER"', ui (t) ER"'' etc. 
Choice of the interaction variables is natural if matrix A is close to block dia

gonal form. Otherwise decomposition must be performed carefully so that the new 
problem is sufficiently regular (existence of Lagrange multipliers). 

The connections between subsystems are defined by: 

v = Mx (4) 

where M is m x n matrix composed of O's and 1 's. 

1
) The content of this paper is limited to linear problems although most of the results can be 

generalized. 
2 ) Further on it is assumed that there are no interactions of the state and the control in per

formance index-- see [1]. Assume that local indices include positively defined matrices Q2 , to 
make the problem convex. 

3
) Matrix B is assumed to be block diagonal in form, if it is not slight modification of given 

equations is needed. 
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Performance index is also decomposed into local performance indices: 

T 

JJx;, u;, vJ = 0.5 x;(r) F; x; (T)+0.5 J (x; (t) Q1 X; (t)+ 
0 

where Q=Q 1 +MQ2 M, Q1 =diag {QJ;};~ 1 
Assume, that control u E V ([0, T], Rr), interaction variable v E L 2 ([0, T], R"') 

and state x E W f ([0, T], R")- Sobolev space of absolutely continuous functions 
with integrable squared derivative with scalar product: 

T 

<xl, Xz)=x; (T)x2(T)+ J .x; x2 dt. 
0 

Adjoint variables If! and A., respectively to x and v, belong to the adjoint spaces 
If! E £2 ([0, T], R") x R", ), E L 2 ([0, T], R"'). Lagrange functional of the problem 
(1)-(2) has the form: 

T 

L(x, u:v, If!, A.)=l(x, u, v)+ J (If!' (x-A 1 x - Bu-Cv)+).'(v-Mx)) dt (6) 
0 

N 

where A1 =A - CM, J(x, u, v)=}; J;(x;, u;, v;). 
i= 1 

Under the assumption of strict convexity of performance functional with respect 
to independent variables the following relation holds: 

min J (x, u, v) = max m in L (x, u, v, If!, A.) (7) 
{x, u, v) E Q t/1, }.. x, 11 , tJ 

where set Q is defined by eq. (I) and (4). Hence the minimization of performance 
functional is equivalent to finding a saddle point of the Lagrange functional. 

Necessary optimality conditions are obtained by comparing the derivatives of 
Lagrange functional to zero. 

L 11 =u' R-lf!' B = O, 

Lv =v' Q2 -If!' C+A. = O, 
' 

L;.=Mx-v = O, 

L"' = x - A 1 x - Bu-Cv=:O. 

Green formula is used for computing the adjoint equation. 

T 

Lx ox=x'(T) Fox(T)+ J (x' Q1 ox+lf!' (ox-A 1 ox)+A.' M ox) dt= 
0 

T T 

=ox'(lf!(T)+Fx(T))+ J (ox(lf!(t)- J (A;If!(<) - Q1 x(r)+M' A.(r))dr+ 

0 ' -lf!(T)) dt. 

(8a) 

(8b) 

(8c) 

(8d) 
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A final form of adjoint equation is obtained4
) 

tf= -A~ IJI+Q1 x-M' },; IJI(T)= -Fx(T). (8e) 

Sufficient conditions of optimality can be analogously obtained by analysis 
of second derivatives of Lagrange functional. 

THEOREM 1. If: (i) matrices R 1, Q21 , i= 1, ... , N are positively defined, (ii) matrices 
F;, Qu, i = 1, ... , N are semi positively defined, then eq. (Sa)-(Se) define uniquely 
the optimal solution of the problem (1)-(2). 

The proof of the above theorem can be found in [6]. Problem (1)-(2) can be 
solved by iteraction techniques. It can be also solved by solving the following matrix 
Riccati equation obtained by the Riccati substitution If/ (t) = K (t) x (t) + L (t): 

K= -K' A-A' K-K' BR- 1 B' K+Q; K(T)= - F. (9) 

In this case L (t) equals zero. This method, however simple in computation, 
leads to large cost of computation when dimension of the problem increases -
see Section V. That is the main reason for decomposition and two-level optimiza
tion of large scale systems. 

The multilevel technique depends on independent optimization in local units 
and coordination of subsystems based on observation of local units in the master 
unit. The construction of the multilevel optimization methods relies on proper 
decomposition of the optimality conditions and their enforcing on particular levels. 
It seems that the natural way of decomposition depends on enforcing of (Sa, b, d, e) 
in local units (optimization of subsystems) and (Se) in the master unit (coordination). 

Conclusion. If the assumptions of the theorem 1 are satisfied, then for each }, 
there exists a unique solution of each subproblem (Sa, b, d, e) x (A.), it (A.), v (A.), rp (A.). 

Moreover, the optimal value of A. can be computed by maximizing the Lagrange 
functional, 

maxL(A.)=maxL(x(A.), u(A.), v (A), IJI(A), A) (10) 
.\ ;. 

whereas the Frechet derivative of Lagrange functional has the form:. 

L-.=v (A)-Mx (A). (11) 

The proof results directly from the previous theorem. 

The above conclusion is the basis of the price method [3] (also known as goal 
coordination [6] or interaction balance [5]). The price method consists in iterative 
solving of the subproblems with a given A. obtained from the master unit. When using 
the multilevel technique, the effectiveness of the coordination algorithm has the 
greatest influence upon the cost of computation. While evaluating the coordina
tion algorithms it is necessary to take into consideration the following elements: 

4
) In fact, adjoint equations are obtained initially in integral form, and transformed to the 

differential form (8e). 



a) number of iterations of the coordination algorithm necessary to achieve 
required accuracy (in the sense of used norm); 

b) time of computation; 

c) complication of the algorithm (needed memory, size of the program etc.). 

In the price method the computation of the gradient (11) is very simple. There-
fore various gradient methods can be easily used. The conjugate gradient methods 
need fairly accurate computation of the optimal step-size because of the require
ment of direction conjugation. This is related to large cost of computation. The 
simplicity of the conjugate gradient algorithms is their obvious advantage. It is 
expected however, that the use of variable metric algorithms as coordination algo
rithms should bring better results [11]. The Fletcher - Powel- Davidon variable 
metric method requires also an accurate computation of the optimal step-size which 
raises the computation cost. Otherwise computational errors are cumulated and 
reinitialization is required. The Wolf- Broyden-Davidon variable metric method 
does not require accurate computation of the optimal step-size [11]. 

Discussion of an computational example is presented in the Section V. 

THEOREM 2. Assume, that v, A belong to the space of continuous functions 
C ([0, T], R 111

) and mapping f!J (t); C ([0, T), R 111)-+ C ([0, T], R 111
) is defined by an 

iterative procedure: 

(12a) 

(12b) 

where xi, lfli, vi are computed from (8a, d, e) for gtven )J, vi then there exists 
t*>O such that llf!J(t) ll<l Vt<t':'. 

The proof of the above theorem is presented in [7]. The contracting mapping 
method [7] (also known as interaction prediction [6]) results from the above. Sub
problems (8a, d, e) are solved with given JJ, vi. Computed xi, lfli are sent to the 
master unit where )J+l, vi+ 1 are computed by means of (12a, b). 

The Theorem 2 indicates that the algorithm is convergent to optimal solution 
when the horizon of optimization T is not too long. The simplicity of the coordi
nator is the advantage of the contracting mapping method. The dependence of the 
convergence on the proper choice of optimization horizon is an obvious disadvan
tage. 

As it is shown in [7], the method can be used for somewhat longer optimization 
horizons when the following scheme is applied: 

where k 1 +k2 = 1. 

(12c) 

(12d) 

Note that this method differs from the previous one by a different way of de
composition of the optimality conditions (8a-e). 
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3. The sensitivity analysis, basic variations 

The r~al processes are described by more or less accurate mathematical models. 
Synthesis of the control system is nearly always done with the help of an inaccurate 
or simplified model; thus the control strictly optimal for the model is not optimal 
for the real process. Applying this control to the process causes deviation of the 
state from its optimal value resulting in the value of the performance index which 
is neither optimal for the model nor for the real process. The deviation of the perfor
mance index from its optimal value, that is, the difference between obtained non
optimal value of the performance index and its optimal value, is called the sensi
tivity measure. The sensitivity analysis used in this paper relies on the approxima
tion of the sensitivity measure by its first and second derivatives. The sensitivity 
measure S (a), where a represents a changeable parameter, is approximated by 
Taylor serjes: 

where S0 =Sa= 0 see [10], Saa is called the sensitivity coefficient. Thus Saa only can 
be used in order to approximate the losses of the performance caused by various 
types of inaccuracies. 

Computational method of sensitivity analysis consists in: 
1) computing the basic var.iations of all variables; 
2) computing the structural variations with the help of previously computed 

basic variations; 
3) computing the sensitivity coefficient; in the presented problem it has a form: 

T 

Ja' Saa 6a=6x' (T) FJx(T)+ J (Jx' QJx+ou' RJu) dt 
0 

where Jx, Ju are corresponding structural variations; 
4) computing the performance loss s: 

Ja ' Saa oa 
s=-

1
- -- 100%, 

where J is the optimal value of the performance index, Ja- vector of inaccuraces. 
Linear parts of deviations of the values of state and control resulting from 

changed value of parameters of the model are called basic variations. The optimal 
control defined with the help of the inaccurate model is applied to the real process 
which differs from the model in the value of parameters. The linear parts of devia
tions from optimal values are called then structural variations. In order to compute 
structural variations, basic variations should be perviously computed. 

While investigating the sensitivity of multilevel systems, the sensitivity of a com
putational method due to errors in model and the sensitivity of the method itself 
should be distinguished from the sensitivity of real control systems. In the first 
case the ideal sensitivity analysis [10] or numerical accuracy analysis of the method 
itself is used. In the se<;ond one the real sensitivity analysis is used. 
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In the sequel, equations defining basic variations due to three different kinds 
of inaccuracies, typical for the multilevel systems, shall be defined. Assume that 
the price method is used. 

3.1. The sensitivity due to inaccuracy of parameters contained in the 
matrix A 

Assume that the matrix A in the model is given with some inaccuracy oA . The 
basic variations can be found from the equations: 

ox=Aox+BR- 1 B' O!fi+OAx; ox (0)=0, 

o!jJ= -A' O!f!+Qox-oA' $; O!f!(T)= - FOx(T), 

(l3a) 

(13b) 

where .X,$ are the optimal values for the model. The above equations can be solved 
by the Riccati substitution. 

3.2. The sensitivity due to the inaccuracy of subprocesses coordination 

During two-level optimization, a coordinator, i.e. an algorithll). for determining 

the direction of improvement for coordination variables .le, can communicate with 

the optimizing units and observe values from the real process. This observation 

is understood as memorizing entire trajectories of subprocess variables (outputs) 

on the whole horizon of optimization. The algorithm, if convergent, leads to a so

lution, which is nonoptimal because of some inaccvcacy of coordination. An 

inaccurate coordination can be caused by an inaccurate gradient computing, errors 

in the information transmitting, previously assumed inaccuracy of the algorithm, etc. 

It can be assumed that the obtained non-optimal solution is strictly optimal for 

a problem in which the interconnection equation has the form: 

v=Mx+e ( 14) 

where e represents the value of the inaccurate coordination. The difference between 

the strictly optimal solution (s=O) and the nonoptimal solution is approximated 

by basic variations, found from linearization of optimality conditions: 

&c =A 1 ox+Bou+ Cov; ox (0) =0, 

Ov=MJx+e, 

J),=C' J!jf-Q 2 ov, 

Ju=R- 1 B' J!fl, 

o!jJ= -A ~ J!j!-M' JJ.+Q 1 Jx; J!fi(T)= -F<5x(T), 

(15a-e) can be also solved by the Riccati substitution. 

(15a) 

(15b) 

(15c) 

(15d) 

(15e) 
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3.3. Sensitivity due to small time delay in the interconnection 

In some applications, the influence of time delays in the interconnections can 
be of interest. Consider the following interconnection equation 

v(t)=Mx(t-h) (16) 

with a known initial function x (t) = rp (t), t E [ -h, 0]. Such a problem IS fully 
investigated in. [2]. Basic variations are defined by: 

c5x=A 1 c5x+Bc5u-CM'jh; c5x(0)=0, 

c5~= -A~ c51f1+Qc5x-M' C' ~h; lfi(T)= -Fc5x (T) - M' C' lfi (T) h, 

c5u=R- 1 B' c51f1. 

The approximation accuracy depends on the init.ial function, see [2]. 

4. Control structures and structural variations 

(17a) 

(17b) 

(17c) 

The choice and synthesis of an optimal control structures are one of the most 
important and difficult problems. The application of a given structure (with the 
exception of the simplest- the open-loop structure) is usually possible first under 
some additional conditions (the closed-loop structure requires the observability 
of the process, the trajectory tracking structure requires one-to-one correspondence 
between state and control etc.). It is known that the set of possible structures is 
uncountable and limited only by the designer's imagination. 

In the sequel three structures are presented. These structures are related to the 
application ... _of multilevel technique. The structural variations are computed for each 
structure. 

4.1. The open-closed-loop structure of control (Fig. 1.) 

The structure is a combination of an open-loop structure (at the coordination 
level) and the classical closed-loop structure (at the control level). The control 
law is given by 

Optimization 

Control 

(19) 

Fig. 1. The open-closed loop struc
ture of control (opened on the co
ordination level, closed on the 

control level) 



4I 

where K1 (t) matrices are found as a solution of Riccati equation of i-th subprocess: 

-K1 (t) =K1 (t) Ali+A~ 1 K1 (t)+K1 (t) B1 R~
1 K1 (t)-Q 1; (20) 

K1(T)= -F1 

and L (t) vector is found from: 

Li(t)= -A~ 1 Li(t)-K;(t)B; R~ 1 B;L;(t)-(M' lc+K' Cv1); L1 (T)=O. (21) 

Local analytical controllers are coordinated by the master unit by means of 
.?:, v which are computed with help of the model. If the model is inaccurate, then 
A., v are not optimal for the real process and thus applied control causes deviation 
from the optimality. This deviation is approximated by structural variations. The 
structural variations of control are computed by linearization of the control law 
with respect to changing parameters. Some other ways of computing of structural 
variations are also known-see [8], [10]. 
The linear approximation od control deviation is 

(22) 

where K=diag {K;}~= 1 and / 1 is found with help of equations for basic variations, 
namely: 

(i) for the sensitivity due to inaccuracies in the matrix A: 

11 = -A~/1- K' BR- 1 /1-M' JJ:-JAt/i-K'(Cov-JAx); (23) 

/1 (T)=O; 

(ii) for the sensitivity due to coordination inaccuracy: 

J1 = -A~/1 -K' BR- 1 B' /1 -M' JX-KCov;/1 (T)=O; 

(iii) for the sensitivity due to time delay: 

11 =- A~ !1 -K' BR- 1 B' /1 -M' sJc-Kco:V-M' Ah; 

/ 1 (T)=M' C' lji(T) h. 

(24) 

(25) 

The structural variations of the state x are computed from the linearized process 
equations: 

ox = A 1 ox+BJu+Cbv; ox (0)=0, 

bv=Mbx. 

4.2. The on-line coordination structure of control (Fig. 2) 

Assume there exist matrices K, Z and a vector f such that 

ljl(t) =K(t) x(t)+Z(t) v(t)+ f(t). 

(26a) 

(26b) 

(27) 

Substituting (27) into (Sa-e) after some transformations the following equations 
are obtained 

-- -- ---~~~~~~~~~~~~~~~~~~-
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-K=KA 1 +A~ K+KBR- 1 B' K-Q 1 ; K(T)= -F, 

-Z=A~ Z+KBR- 1 B' Z+KC; Z (T) =O, 

-i=A~f+KBR- 1 B' f+ M' X-z{;;J(T) = O, 

(28a) 

(28b) 

(28c) 

where K is block diagonal, K=diag {KJ~=l ' 
Substitution (27) can be interpreted as a two-level analytic controller. Some 

of the adjoint variables, IJI corresponding to interaction variables, are determined 
in the coordinating unit, some other corresponding to each subprocess, are deter

mined in the local-units- see Fig. 2. 

Global model 
and optimization 

"' 2-r;d /eve/ X, V 

., On-line 
coordinator 

j p(t}-Z(t)v(t)+f(t} 

----~-------- ~---
Pi(t) V< 

Local closed- looo Con tra: 

controller t---
Uj - P1-

1B; (Kt x; • Pi) 

1-st level t 
i- th pr ocess ~.__ 

Fig. 2. The on--line coordination 
structure 

v· 

The two-level analytic controller substitutes a closed-loop controller for the 
ent ire process. In order to construct the two-level analytic controller, N Riccati 
equations with dimension of each subprocess, a d ifferential matrix equation for 
Z with dimension of n x m, and n-dimensional equation for f based on previously 

computed ~' J. should be solved. Since the dimension of interaction variables is 
usually much smaller than the dimension of state variables , the construction of 
the two-level analyt ic controller is more simple than the construction of a closed
loop controller for the entire process . 

Structural variations are computed similarly as in the previous case. The struc
tural variation of control IS 

6u=R- 1 B' (K6x+Zbv+ / 2). 

The equations for / 2 are found wi th help of basic variations equations : 
(i) for the sensitivity due to the inaccuracies in the matrix A: 

- fz=A~ / 2 +KBR- 1 B' / 2 +Z6~+bA' ~+KbA.X; 

fz (T)=O; 

(ii) fo r the sensitivity due to the coordination inaccuracy : 

- fz =A~ / 2 +KBR- 1 B' / 2 +Zb~ -M' oX; 
fz (T) = 0; 

(29) 

(30) 

(31) 



(iii) for the sensitivity due to time delay: 

-j~=A~/2 +KBR- 1 B' /2 +ZI5~+M' 15J+M' C' ~h ; 
j~(T)=M' K ' if;(T)h. 

4.3. Closed-loop one-level structure of control with the previous esti
mation of interaction variables - (Fig. 3) 
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(32) 

Suppose that estimators for the optimal values of interaction variables are 

known (e.g. because of long system utilization). These estimators have the form 

of iJ=~+p, where p represents the estimation inaccuracy. The optimization of sub-

Fig. 3. The closed-loop one-level structure 
with the previous estimation of interac
tion variables 

p .. 
11easurement 

+ 6 
i 

v· 
' I 

I 

Estimation 

l 
tv 

Local model 

Local closed-loop 
controller r-

t 
I X; 

i-th process 
I 

processes and the design of control one-level structure are based on these estimators. 
It is obvious that the appl ied control resulting from such a structure is not optimal 

for the entire system . Performance losses caused by that deviation from optimality 
can .be evaluated by sensitivity analysis. The perfo rmance loss due to a given inac
curacy of estimation can be compared with the costs of the coordinator itself and 

· its utilization. This comparison gives an answer to the question whether or not 
it is worthwhile to coordinate. Each of subprocesses is described by ar, equation: 

x 1=Ali x1+B1 u1 +(C;)1 ; x 1 (0)=X0 1 

and tJ:ie local performance indices are as follows: 

T 

J1 =0.5 x;(r) F1 x;(T)+0.5 J (x; Q1 x1 +u; B1 u;) dt. 
0 

The optimality conditions are given by (8a, e) and (33). 

Hence, the basic variations are determined by: 

15x1=Ali 15x1+B1 15u;+(Cp)1; 15x1 (0)=0, 

15f;= -A~, l51f/;+Q; 15x;; l51f/;(T)= -F1 <5x1 (T), 

15u1=R;- 1 B; l51f/; · 

Structural variations are computed as follows : 

<5u; = R; 1 B; (K1 15x1 + / 3 ;), 

15x1=Ali 15x1+B1 15u1+(CI5v)1, 

(33) 

(34) 

(35a) 

(35b) 

(35c) 

(36) 

(37) 
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where ov=Mox and / 31 is found from the linearization of the optimal controller: 

- j3i = (A~ 1 +K; B; R-; 1 B;)/31 +K1 (C)1 ; 

(38) 

5. Example 

The above analysis is illustrated by the sensitivity analysis of a simple example 
which is linear-quadratic in form (the state equation is linear (1), the performance 
index is quadratic (2), the final time T is fixed). Dimension of the state is 6. 

The following matrices have been assumed: 

- 1 1 0 0 0 0 
-

1 0 0 
- -0 0 0-

1 0 0 0 0 1 0 0 0 0 0 

A= 
0 0 -1 2 0 0 

B= 
0 1 0 

C= 
0 0 0 Ql =F=f6 x6 

0 1 1 0 0 0 0 0 0 0 1 0 Qz=R=l3x3 
. 

0 0 0 0 -1 3 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 1 

- -

In order to decompose the system, the following interaction variables have 
been assumed 

Moreover, the contracting mapping method has been applied to dynamic opti
mization while decomposing the global problem into 6 subproblems. Matrices 
corresponding to such decomposition have been accordingly changed. 

5.1. Dynamic Optimization 

Computation was programmed in Algol on ODRA-1204 computer. Integra
tion was performed by trapezium method. Differential equations were solved by 
Runge Kutta algorithm of 7-th order. The global problem has been solved by Ric
cati substitution to compare the time of computation. Results are given in the 
Table 1. The norm of the gradient g in space L 2 [0, 1] has been used as a measure 
of coordination convergence 

l 

Jlg [[2 = <g, g)= J g' (t) g (t) dt. 
0 

ffg1fl 
The scalar y =In ffg1 fl has been used as a measure of improvement in i-th 

iteration. The time interval has been discretized in 11 points. 

5.1.1. The Contracting Mapping Method 

The global problem has been solved while decomposing it into: 
a) 6 one-dimensional subproblems, v=x, 
b) 3 one-dimensional subproblems, v=Cx. 
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The curves y versus number of iterations, are shown in the Fig. 4, where: 
a) k 1 equal 1 has been substituted in (12c-d) in the case a (curve A), 
b) k1 equal 0.5, 0.75, 1.0 has been substituted in (12c-d) in the case b (curves 

B, C, D, E). 
r ln(norm/norm') 

-5 

-10 

-15 

- 20 

-25 

-30 

-35 

-40 

-50 

-55 

-60 

Fig. 4. The scalar y versus number if iterations in the con
tracting mapping method : 

I

A - kl=l.O decomposing into 6 subproblems, xa=l, 
B-k1 =0.5 
C- k 1 =0.75 decomposing into 3 subproblems, xo= 1, 
D-k1 =1.0 
E-k1 = 1.0 decomposing into 3 subproblems, Xo=O 

The solutions with the initial state x0 = 1 (curves B, C, D) and with the initial 
state x 0 =0 (curve E), where the solution is trivial i.e. the optimal values of the state, 
the control and the performance index are equal zero) has been compared in case b. 
It can be noted that the computational process depends on the method of de
composition (8olution without decomposition, with decomposition into 6 sub
problems or into 3 subproblems). In the case a, there are 6 interaction variablc.s 
and subproblems are strongly coupled so that the coordination is rather difficult. 
There are 3 interaction variables in the case b and that is why coordination is not 
so difficult. The curves y versus time of computation are shown in the Fig. 5. In the 
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case a, one iteration takes 65 sec. (solution of six subproblems). The time of one 
iteration in the case b equals 48 sec. Vertical line marks time of solving the problem 
without decomposition by Riccati substitution (it takes 350 sec.). Table 1 illustrates 
the cost of computation due to the method of decomposition. 
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Fig. 5. The scala r y versus time of computation in the contract
ing mapping method, x 0 = l: 

[

A - k 1 = 1.0 decomposi ng into 6 subproblems, 
B - k 1 =0.5 
C - k 1 =0.75 y decomposing into 3 subproblems . 
D -k 1 = 1.0 

Some differences in the values of the performance index are caused by integra
tion with the use of the trapezium method. As it is known, the accuracy of such 
integration depends on the character of function and number of discretization points. 

Table 1 

Number of I Numb~r of d~scre- ~Time o.f'l iteration j Obtained performance 
subproblems [ tJzatJOn pomts m sec. index 

-
I 

11 r - 51.41355 
6 11 65 52.1540 
3 

I 

11 48 51.8057 
3 6 24 52.9784 
3 21 95 51.5117 
3 I 51 236 51.4292 
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It can be noted that the cost of computation increases as number of discretization 
points increases. Diagrams in the Fig. 6 represent dependence of y on number of 
iterations. Curves are plotted with the Jeng1h of optimization horizon treated as 

y~ tn(norm/norm 1) 
number of iter 
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Fig. 6. The scalar y versus number of iterations in the contract
ing mapping method, x0 = 1, kt = 1.0. 
A-T=5.0, B - T=l.O, C - T=0.5, D-T=0.3 

a parmeter. The contracting mapping method is not convergent when the optimi
zation horizon is too long (Tmax> 10) which is consistent with the Theorem 2. 

5.1.2. The Price Method 

The price method is fully described in section Il. In order to maximize functio-
nal (10) following gradient methods were applied 

(i) the steepest descent, 
(ii) Fletcher-Reeves conjugate gradient, 

(iii) Fletcher-Powell-Davidon variable metric, 
(iv) Wolfe-Broyden- Davidon variable metric. 
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The directional maximization is based on the Goldstein test with coefficient 

J3 =0,4. 
Comparison of the gradient methods is difficult. It is mainly caused by numer

ical errors. These numerical errors result from inconsistent discretization. All the 

formulas have been derived with the assumption of continuity of all variables 

.and the global problem has been discretized a posteriori (during computation). 

During the computational process representations of all variables in discretization 

points or their linear approximations between these points are only available. These 

errors can be avoided by discretization a priori (before computation) and use of 
discrete methods. It would speed up the computational process (difference equa
tions would be solved instead of differential equations, integration would be replaced 

~~In (norm/norm 1
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Fig. 7. The scalar y versus number of iterations in the price 
method, directionar maximization algorithm used, x 0 =I. 
A -the steepest descent, B - Fletcher-Reeves conjugate 
gradient, C - Fletcher-Powell-Davidon variable metric, 
.D- Wolfe-Broyden- Davidon variable metric 
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by summation) and would allow to avoid errors caused by inconsistent discretiza
tion. That problem was not investigated in this paper. 

Diagram of y versus number of iterations is presented in the Fig. 7. Computa
tion was relatively quickly stopped because it was impossible to find maximum in 
properly computed direction (it has been checked by computing projection of the 
gradient on computed direction which has been always positive). That problem 
was caused by inconsistent discretization, as it was mentioned above. Further 
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Fig. 8. The scalar y versus number of iterations in the price 
method, directional maximization not used, step-size coefficient 
equal 1.0, x0 =l. 
A -the steepest descent, B - Fletcher-Reeves conjugate 
gradient, C- Fletcher-Powell-Davidon variable metric, 
D- Wolfe-Broyden-Davidon variable metric 

' 

computations have been made with a constant step-size coefficient equal 1 since the 
directional maximization algorithm did not work. Further improvement was 
achieved in this way. Curves y versus number of iterations are shown in the Fig. 8. 
The Figure 9 represents diagram of y versus time of computation. 

These numerical experiences show that it may be supposed that the price method 
has the property of contracting operator in the neighbourhood of optimal solution. 
Directional maximization leads to that neighbourhood and further improvement 
is obtained with a constant step-size. 

4 
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Generally speaking the price method is faster than the contracting mapping 
method but the price method algorithm is more complicated than that of the con
tracting mapping method. 

r In (norm)norm 1
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Fig. 9. The scalar y versus time of computation in the price 
method, directional maximization not used, step-size coefficient 
equal 1.0, x 0 = 1. 
A- the steepest descent, B- Fletcher-Reeves conjugate 
gradient, C - Fletcher- Poweli-Davidon variable metric, 
D - Wolfe-Broyden-Davidon variable metric 

5.2. The Sensithity Analysis 

The sensitivity analysis of two structures due to 10 % inaccuracy in 3 para
meters ofthe matrix~: a 11 , a33 ,a55 and inaccurate coordination e=O.l was done. 
These structures are as follows : 

a) the open-closed-loop structure of control (Fig. 1), 

b) the on-line coordination structure of control (Fig. 2). 

Computation was programmed in Fortran on CDC 3170 computer. Differential 
• equations were solved by standard Runge Kutta subroutine from the IBM Scien

tific Subroutine Package. Results are presented below. 
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5.2.1. The Open-Closed-Loop Structure of Control 

The sensitivity due to in accuracy in the matrix A 

[

2.601 2.579 2.382] 
Saa= 2.597 2.791 2.517 , 

2.382 2.517 2.701 

The sensitivity due to inaccurate coordination· 

[

5.567 4.536 5.242] 
Saa= 4.536 3.859 4.293 , 

5.242 4.293 5.964 

s=0.714 %. 

s =l.319 %. 

5.2.2. The on-line coordination st ructure of control 

The sensitivity due to inaccuracy in the matrix A 

[

2.155 2.581 3.089] 
Saa= 2.581 3.218 3.732 , 

3.089 3.732 4.509 

The sensitivity due to inaccurate coordination 

[

3.569 3.562 3.465] 
Saa = 3.562 3.586 3.495 , 

3.465 3.495 3.736 

s =0.887 %. 

s=0.988 %. 

51 

It seems, that in that case the second structure of control is better. No general 
conclusion according the sensitivity of different structures of control can be achiev
ed. It is only possible to compare control structures in particular case. The com
putation time of sensitivity analysis is nearly equal that of dynamic optimization 
of the problem. 

6. Conclusions 

The price method of the multilevel dynamic optimizat ion has been investigated. 
The sensitivity due to different kinds of inaccuracies was researched : i.e. inaccu
racy in the matrix A, inaccuracy of subprocesses coordination, small time delay 
in the interconnections. For the sensitivity analysis three structures of on-line multi
level systems were investigated. It was shown that the computational effort related 
to the sensitivity analysis is 9omparable with that of the dynamic optimization. 
The sensitivity analysis makes it possible to choose one of the structures consi
dered such that the influence of the inaccuracy of the model of the system is 
decreased. 
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Optymalizacja dynamiczna i analiza wrazliwosci wielopo
ziomowych ukladow sterowania 

Praca poswi~cona jest problemom optymalizacji i analizy wrazliwosci wielopoziomowych 
uklad6w sterowania opisanych liniowymi r6wnaniami r6zniczkowymi z kwadratowym wskai
nikiem jakosci. 

Przedstawiono dwie dwupoziomowe metody optymalizacji dynamicznej. W pracy zaprezento
wano analiz~ wrazliwosci takich uklad6w na niedokladnosc macierzy stanu, niedokladn<! koordy
D!lcj~ oraz male op6znienie w zmiennych interakcyjnych. Analiz~ wrazliwosci zastosowano do k;ilku 
jedno i dwupoziomowych struktur sterowania optymalnego. Zaproponowano suboptymaln<! 
struktur~ sterowania opart'l na predykcji zmiennych interakcyjnych. Przeprowadzono analiz~ 

wrazliwo§ci tej struktury. Wyniki zilustrowano przykladem obliczeniowym. 

,lJ;HH3MHlfeCKaH ODTJIMII38~HH U auaJJH3 lfYBCTBUTCJlbHOCTU 

MHOroypOBHeBbiX CUCKeM ynpaBJJCHUH 

B pa60Te 06Cy)!(,[leRO OilTJol:MI!3a!.{IUO H aHaJII!3 '!YBCTBHTeJibHOCTH MHOroypOBHeBbiX CHCTeM 
ynpasneHHJI KOTOpb!e OIIHCaHhl JIHHeHHbiMH ,[IR<jJ4JepeHQI!aJihHbiMI! ypaBHeHIU!MH C KBa,l:\paTH'!
HhiM Kpli!TepneM Ka'!eCTBa. IJpe,[ICTaBJJeHbl ,1:\Ba pa3JII!'-!Hble Bbi'!HCJII!TeJihHbie MeTO,[\bl ,1:\BYYPOBHe
BOll ,1:\HHaMH'!eCKOM OTITHMJBal.(HH. IJoKa3aHO aHaJIH3 '!YBCTBI!TeJibHOCUf BTOporo TIOPJI.l1Ka 3THX 
MeTO,I:\OB Ha HeTO'!HOCTb MaTpH!.{H COCTOJIHHH, HeTO'!HYJ{) KOOP.L\HHa!.{I!IO H HeBe]lHJ(Oe ona3,[\aHHe 
HHTepa.KJ..IHH Me)!(,[ly cy6npO!.{eCCaMH. IJpHMeHeHO aHaJUI3 '!YBCTBJUeJihHOCTH K HeKOTOpOblM 
O,i\HO- H ,1:\ByypOBHeBblM CHCTeMaM ynpaBneHHH. IJpe.nno)!(eHO cy6onnrMaJibHYIO CTpyKTypy ynpaB
rreHHJI. KOTOpaJI 3aKJIIO'!aeTCJI B npe,I:\HKl.IHH nepeMeHHblX HHTepaKl.IHOHHbiX. B pa6oTe TO)!(e 
npe,ll;cTaBrreHo aHamn '!YBCTBHTenhHOCTH 3Toi1 CTPYKTYPhJ. Pa6oTa 3aKmoqaeTCJI Bbi'!HCHHTerrhHOM 
npnMepoM. 
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