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In the paper the step method is applied to solve an optimal control problem with a li near neutral 
equation of the system and a quadratic cost. The delays are constant and commensurable. A formula 
for the optimal feedback operator is derived. For the open loop system a nuo1erical algorithm 
is presented. A computational algorithm is also constructed for the optimal feedback operator 
in case of infinite control time. 

1. Introduction 

The problem of optimal control for systems described by linear or affine func
tional differential equations with quadratic or linear-quadratic performance indices 
was considered in a number of papers. It was established that the value of optimal 
control at any moment oftime is a linear (or affine, in case of affine systems) function 
of the state of the system at the same moment. This function will be called the opti
mal feedback operator. Probably the most complete results concerning affine he
reditary systems with linear-quadratic performance indices may be found in [6] 
and [7]. Systems with a lag occurring in the trajectory and in the control function 
were considered in [9]. Datko [4] studied a neutral system and obtained existence 
and uniqueness results for the optimal feedback operator; however, no detailed 
characterization was presented. For hereditary systems a set of Riccati-type dif
ferential equations was derived (e.g. [6], [7]), and numerical methods of solution 
were studied [1], [6], [8], [16]. Another approach was used in [13], [9]. It consisted 
in the construction of Fredholm integral equations of the second kind for the feed
back operator. These techniques were used to overcome the difficulties connected 
with the fact that both advanced and delayed terms appear in the canonical system 
of equations for such a control problem. 

In [10] the step method was applied to a problem with one constant delay in 
the trajectory and relatively simple formulas were obtained for the optimal feedback 
operator; as well as numerical algorithms. The purpose of this paper is to generalize 
those results to neutral systems with constant commensurable delays in the trajec-
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tory and its derivative mid in the control. First, the original problem is transformed 
into a problem without delays with split boundary conditions. Next the system of 
canonical equations is derived and solved in an explicit form. Basing on these re
sults the optimal feedback operator is constructed and an algorithm for computa
tion of the optimal control presented in case of finite control time. The questions 
of existence and uniqueness are discussed. For the infinite control time problem 
a numerical iterative algorithm is presented. The considerations are illustrated with 
two examples. 

The standard vector-matrix notation is used. A' denotes the transpose of A. 
A function f: [a, b]---+Rs is called piece-wise continuous (p.w.c.) if the number of 
discontinuities is finite and for every t E [a, b], f(t) = f(t+O) and/or f(t) = f(t-0 ). 

We define (a,a] = 0. 

2. Formulation of the problem 

Consider an optimal control problem for a linear system with commensurable 
delays in the trajectory, its derivative, and in the control 

r 

I; [A 1(t) x(t-ir)+B1(t) x(t - ir)+C 1(t) u (t -ir) ]=O, 
i=O 

x(t) = q;(t), tE[-1-r,O], 

I dx(t) 
x(t)= Tt, t> O, 

f.l(t), tE[-rr,O), 

u(t)=1J(l), tE [-rr, 0), 

x(t)ER", u(t)ER'", r>O, rEN. 

t E [0, T], (1) 

The functions q;, rJ, J<, A 1
, B1

, C 1 are p.w.c., A 0 (t) has a bounded inver~e every
where in [0, T]. The admissible controls u are square summable in [0, T]. 

A quadratic cost functional is minimized subject to Eq. (1) · · 
T 

S(u)= J [x' (t) W(t)x(t)+u' (t) U(t) u(t)] dt+x' (T) Qx(T). (2) •. 
0 

The matrix-valued functions Wand U are p.w.c., W (t), U (t), Q are symmetric, 
W(t), Q;:;,O, U(t)>O and has a bounded inverse everywhere in [0, T1. Let · -

xt = {x(t+s), sE [t-l'T, t]}, 

xt = {x (t+s), sE (t-rr, t)} 

ut = {u(t+s), sE [t-rr, t)}. 

The state of the system (1) at timet, denoted by X(t), is a triple X(t) = (xt; xt; ut)· 

. The optimal control problem (1), (2) will be also considered under an addi- . 
tional 
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Assumption 1: 
drp 

(i) rp is absolutely continuous and f1 = dt is p.w .c. in [- rr, 0]; 

(ii) A 1, i = 0, ... , r, are absolutely continuous in [0, T] with p.w.c. first derivatives. 
If Assumption 1 (i) is valid, the state of the system (1) is defined as a pair 

X (t) = (x,; u,). 

LEMMA 1. For every admissible initial state X (0) and every admissible control 
u there exists a unique continuous solution x of (1) . 

Proof. In every interval (kr,(k+1) r], k=O, 1, ... Eq. (1) may be solved as an 
affine ordinary differential equation wi th a square summable right-hand side. 

The first problem considered below is that of optimal control synthesis. Our 
purpose is to find the mapping L, that connects the value of optimal control ·u (t) 
with the state X (t) 

u (t) =L, X (t). (3) 

The same approach yields an effective method of determining the optimal control 
in an open loop system, i.e . as an explicit function of time. The last problem discus
sed in the paper is the optimal control synthesis for stationary systems in case of 
infinite control time, T -+oo. Then the opt imal feedback operator (3) does not de
pend on time and is denoted by L oo . 

3. Step method 

In order to express the optimal control u (t0 ) in terms of the state X (t0 ) we 
consider the optimization problem (1), (2) in the interval (t0 , T] for an arbitrary 
t0 E [0, T ). The cost functional to be minimized is 

T 

S,
0 
(u) = J [x ~ (t) W(t) x(t) +u' (t) U(t) u(t)] dt+x' (T) Qx(T). (4) 

to 

New variables are introduced which satisfy a system of differential equations 
equivalent to (I) in (t0 , T], but with no deviations of argument. Let k be an integer 
and 9 a real such that 

1J. =t0 +kr-T, O~.S<r. 

Denote 

t0 E [T-kr, T-(k -l) r) (5) 

x;(s)=x(T-ir+s), i=l, ... ,k, 

uJs) =u (T-ir+s), (6) 

y;(s)=x(t0 -iT-9+s), i=l, ... , r, 

v1 (s)=u(t0 - iT- 9+s). 
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Let q be an integer, 1~q~k. Denote 

A{(s)=Ai(T-ir+s), j=O, ... , r, i=1, ... , q, A{=O, j>r. 

B{, Cf, Ui, Wi are defined in the same manner. 

(
A~ A~ ... A'J.-

1
) 

- 0 Ag ... A~- 2 

Aq= 
0 •••• 0 •• 

0 0 ... A~ 

Replacing A by B and C we obtain the matrices Bq and C4 respectively. 
Let 

Wq=diag (Wu ... , Wq), 

Uq=diag (U1 , ... , Uq), 

dq=(O I) ((q-1) n x qn- matrix), 

eq=(IO) ((q-1) n x qn- matrix). 

LEMMA 2. The matrix Aq (s) is nonsingular for every q and every sE [0, r]. 

Let 

Proof. This follows from the nonsingularity of A? (s), i=1, ... , k . 
Denote 

(8) 

Matrices h! and c! are defined similarly, A replaced by B and C respectively. 

s: ( 0 r-1 bo br-1 0 r-1) u 4 = aq .... all q .... q cq ... cq • (9) 

Using_ the step method the original problem is transformed in a problem with 
split boundary conditions but without delays. Unless otherwise stated, ·all further 
results are valid for k~ 2. In case k = 1 the optimization problem is trivial .since the 
system equation (1) may be treated as an affine equation without deviations of 
argument. 

THEOREM 1. Minimization of the functional (4) subject to Eq. (1) in [t0 , T] with 
the initial condition X (t0 ) is equivalent to minimization of the functional 

,9. 

J (iik-1> ilk)= J [x~-1 (s) wk-1 (s) .xk-1 (s) + ii~-1 (s) ak-1 (s) iik-1 (s)]ds+ 
0 

t 

+ f [x~(s) wk(s) xk(s)+u~(s) Ok(s) uk(s)] ds+x~ (r) Qx1 (r), (10) 
,9. 
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subject to 

ik-1 (s)=Bk-1 (s) xk-1 (s)+Ck-1 (s) iik-1 (s)+ok-1 (s) w(s+r), sE [0, .9] (11) 

ik(s)=Bk(s) xk(s)+Ck(s) uk(s)+ok(s) w(s), sE [3, r], 

ik-1 (8) = ek ik (8), ik-1 (0) =dk ik ( r), xk (8) = x (to)· 

Proof. Substituting (6), (7), (8) and (9) to (1) and (4) we obtain (10) and (11). 
Hence every solution of (1) is also, in virtue of (6) and (7), a solution of (11) in 
[t0 , T]. The corresponding values of (l 0) and ( 4) are equal. Conversely, if w is re
gular enough, every solution of (11) yields a solution of (1) in [t0 , T] with the same 
values of the cost functionals (10) and (4) . 

4. Adjoint equations 

A usual variational technique will be used to obtain adjoint equations for the 
system (10), (11). Let xk-l, xk be a solution of (11) corresponding to an admissible 
control iik_ 1 , iik. Let oiik _ 1 , ouk be an admissible variation of the control and 
Oxk_ 1, ().Xk- the corresponding variation of the trajectory. 

LEMMA 3. The variation of the trajectory satisfies the system of equations 

oik-1 (s)=Bk-1 (s) (j.Xk- 1 (s) + ck-1 (s) (jfik-1 (s), sE [0, 8], (12) 

oik (s) =A (s) ().Xk (s) + ck (s) (jfik (s), sE [3, r ], 

oxk-1 (8)=ek oxk(.9), oxk-l (O) =dk oxk(r), oxk(.9)=0. 

Proof. By subtraction of Eqs. (11), written for the control iik_ 1, iik, from the 
same equations written for iik_ 1 +Oiik_ 1 , uk+Oiik. 
It is easy to verify that the variation of J (4) has the form 

01(£ik-1• Uk> {jfik- 1, {jfik) =2 [ 011 + j U~- 1 (s) Uk-1 (s) {jfik-1 (s) ds+ 

+I u~(s) Uk(s) oiik (s) ds] (13) 

where 

9 ' 

011= f x~_ 1 (s) wk_ 1(s)oxk_ 1(s)ds+ f x~(s) Wk(s)()xk(s)ds+ 
0 9 

+x~ (r) Qox1 (r), (14) 

ox 1 denotes the variation of x 1 . 

LEMMA 4. 0]1 can be expressed in the form 

9 < 

011 = J A-1 (s) ck- 1 (s)Ouk-1 (s) ds+ J ..P~ (s) ck (s) ouk (s) ds (ls) 
0 9 
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· where pq, q=k-l, k, are adjoint variables 

P.~(!J p;(')~R", H . ,q 

satisfying the system of adjoint equations 

A-1 (s)= -B~_ 1 (s)A- 1 (s)- Tf\_ 1 (s) ~k- 1 (s), sE [0, .9], (16) 

A (s) =- B~.(s) A (s)- wk (s) xk (s), sE [.9, r], 

Pk-1 (.9)=ekA(.9), 

Pk-1 (O)=dkf5k(r) 

P1 (r)=Qx1 (r). 

Proof. Let Ilq and If! q• q=k-l, k, be the fundamental solutions of (12) and 
{16) respectively. Of course Ilq(s,t)=IJI~(t,s). Denote yq = Wq:Xq,f3q = Cqt5liq. 

Then 
s 

Jxk-1 (s)=Ilk-1 (s, 0) Jxk-1 (0)+ J Ilk-1 (s, a) Pk - 1 (a)da, 
0 

s 

t5xk(s)=Ilk(s, .9) c5xk(.9)+ J Ilk(s, a) f3k(a) da, 
a. • 

• 
A-1 (s) = IJ!k-1 (s, .9) A~ 1 (.9)- J lf!k-1 (s,' a) Yk-1 (a) dG, 

.!J. 

s 

A(s)=IJ!k(s, r)A(r)~ J lf!k(s, a) Yk(a) da. 

After substitution of these expressions to the right-hand sides of (14) and (15) 
and after some transformations one obtains the identity (15), what completes 
the proof. 

5. Optimal control. Existence, uniqueness and canonical 
~nations 

Denote 

(17) 

THEOREM 2. There exists a unique optimal control t/k_ 1, iik in (10, (11) for every 
.9 E [0, r) 

iik-1 (s) =- 0;_\ (s) c~-1 (s) Pk-1 (s), sE [0, .9], 

ilk (s) =- D;; 1 (s) c~ (s) Pk (s), sE [.9, r]. 

(18) 
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The ad joint variables P.k-1• Pk and the optimal trajectory xk-1• xk satisfy the 
system of canonical equations 

ik- 1 (s)=a:k-1 (s) zk- 1 (s)+Jk- 1 (s) w(s+<), sE [0, .9], 

ik(s)=a:k(s) zk(s)+8k(s) w(s), sE [.9, <], 

zk- 1 (.9)=diag(ek> ek) zk(8), 

zk - 1 (O)=diag(dk, dk) zk(r), 

xk(8)=x(t0), 

P1 (<)=Qx1 (r). 

(19) 

Proof. The solution x (t), t?t0, of (1) is a linear function of the pair (X(t0); 

u(s), sE [t0 , t)). Hence the solution xk_ 1 , xk of (11) depends linearly on (w; ilk_ 1 (s), 
sE [0, .9); ilk (s), sE [.9, <]). Then the functional (10) is strictly convex. By usual 

' arguments [12] we obtain that there exists a unique optimal control. The functional 
J (10) is Frechet differentiable, therefore a necessary and ·sufficient condition of 
optimality for a control is that the variation JJ (13) must be equal to zero for every 
pair (()ilk_ 1; ()ilk)· Hence we get (18). The canonical equations (19) result from (11), 
{16) and (18). · 

COROLLARY 1. For every t0 E [0, T) there exists a unique control u that minimizes 
(4) subject to (1) in [t0 , T]. The relations (6), (7) determine a one-to-one corres
pondence between u and the control ilk-1• ilk that minimizes (10). 

Proof. This is a consequence of the fact that the problems (1), (4) and (10), 

(11) are equivalent. 

CoROLLARY 2. The canonical equations (17) have a unique solution zk- 1 (s), 
sE [0, .9), zk (s), sE [.9, <]. 

Proof. As the optimal control ilk_ 1, ilk is unique, we obtain from (19) a unique 
-optimal trajectory ik_ 1, xk. Then the solution Pk- 1, Pk of (16) is also unique, hence 
there exists a unique zk_ 1 , zk satisfying (19). 

6. Basic algebraic equation 

cfJ q• q = k- 1, k, will denote the fundamental solutions of Eqs. (19) 
I . 

. a . 
os cfJ q (s, t) = 1Xq (s) cfJ q (s, t), cfJ q (t, t) =I. 

Then we obtain from (19) 
a. 

zk_ 1 (8)=cfJk_ 1 (.9,0)zk-t(O)+ J cfJk_ 1 (.9,s)bk_ 1 (s)w(s+<)ds, (20) 
0 

• 
zk(<)=cfJk(<,.9)zd.9)+ J cfJk('r,s)bk(s)w(s)ds. 

IJ. 
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These, together with the boundary conditions in (19), yield a linear algebraic 
system of equations. Let 

- ([J~ ([J2 
k ([J~ - n 

([J4 ([Js wZ (k-1) n 
fPk= 

k k 

([J7 ([J8 cf>..~ k k n 
(21) 

([JIO 
k 

c]Jll 
k 

tjj 12 
k (k-1) n 

(k -1) n n kn 

(([J4 c]J6 ) ( tjj~ ) (([J4 ([J5 ) ([JB- k ([J~2 ' 
rJ>f = tjj~ 1 , 

rpD- k 

:1 ' k- <P~o k- ri>!o 
rf>k 

-if>~ rJ>; -

f/>4 rp5 
if>~= 

k k 

f/>7 rJ>~ k 

rJ> 10 
k 

cp 11 
k 

After simple elimination of variables, matrix inversion excluded, we obtain 
the basic algebraic system of equations which will play a fundamental role in further 
investigations 

< 

r1 = rri>ZCr, 9)-QrJ>; (r, 9)J xCto)+ J ri>t(r, a) ok (a) w (a) da, 
.~ 

[). 

Pz=C/Jk-1 (9, 0) C/Jf(r, 9) x(to) + J tPE-1 (9, a) ok-1 (a) w(a+r) da+ 
0 

t 

+cPk -1 (9, 0) J C/Jf(r, a)c5k(a) w(a) da, 
[). 

Ak=(QrJ>t (r, 9)-rJ>Z (r, 9) Qf/>~(~ 8)-C/J~(r, 9)). 
e2k-1- rf>k- 1 (9, 0) cpk (r, 9) 

(22) 

(23) 

In the case k = 1 we get A 1 = QrJ>i (r, 9)- ri>i (r, 9) and the basic equation takes 
the form 

(24) 

LEMMA 5. The coefficient matrices Ak in (22) and L1 1 in (24) are nonsingular for 
every 9. 

Proof. Let us fix our attention on (22). If for a certain 9 the matrix Ak were 
singular, the solution to (22) either would not exist or would not be unique
contrary to Theorem 2. 
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'7. Optimal feedback operatory 

Denote 

(25) 

n 2(k-l) n 

Let H (t) be a (kn x n)-matrix consisting of the last n columns of Ck (&). Let 
for t<T-r: 

G(t) =r: [tP~ (r, 9) -QtP~ (r, 9)] + Tk4 tPk- 1 (9, 0) tPf (r, 9). 

G~(t, s)=[r; tP~(r, s+8+r)+r: tPk-J (9, 0) tP~(r, s +9+r)] a~(s+9+r), 

SE (-r, -8], 

G~(t, s)=r: tPf_ 1 (8, s+8) a!_ 1 (s+9) , s E ( -8, 0]. 

If c;::T-r 

G(t)=Ti [tP~ (r, 9)-QtP~ (r, 8)]. 

G~(t, s)=Ti tPf(r, s+9+r) a~ (s+9+r), sE [ -r, -9), 

G~(t,s)=O, sE(-9,0]. 

(26) 

(27) 

Replacing the letter a in (26) and (27) by band c we obtain Gf and G~ respectively. 

THEOREM 3. For every t E [0, T] the optimal control u (t) can be synthesized in 
the form 

u (t) = - u -l (t) H' (t) { G (t) X (t) + 

r - 1 0 } 

+ iJ: _/ [G;' (t, s) x (t- ir+s) + G~ (t, s) x (t- ir+s) + Gf (t, s) u (t- ir+s)] ds . (28) 

The trajectory x and control u in the right-hand side are optimal. 

Proof. (28) results immediately from (18) and from substitution of (6), (8), 
(26) and (27) into the relations Pk (9)=r: P 1 +1k4 P2 and j51 (9)=Ti P1 obtained 
froJ11 (22) and (24). 

REMARK. If the system (1) has no delays in derivatives, a reduction of dimensio
nality is possible. Let 1c = min (r, k). Then H (t) is a (Kn x n)-matrix consisting of 
the last 11 columns and last lW rOWS of Ck; l: and Tk4 are replaced by f: and f k

4
, . 

consisting of the last 1w rows of the former ones respectively. 

Interesting results are obtained under more severe assumptions which make 
possible to remove the derivatives from (28). 
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THEOREM 4. Let Assumption 1 be -valid. Then the optimal control u (t), t E [0, T], 
can be expressed in the form 

u(t)=- u-r (t) H' (t) t~ g{ (t) x(t-ir)+ 
1

J: [g;(t) x(t-ir-3)+ 

+ _/ (gf(t, s) x(t -ir +s)+gf(t, s) u(t-ir+s)) ds]}, (29) 

g~ (t) = G (t) + G~ (t, 0), (30) 

gf(t) =Gf(t, O)-G~_ 1 (t; -r), i=l, ... , r-1, 

g;(t) = -G~_ 1 (t, -r), 

gz (t) =- r; Q ak (r) if 3#0, i=O, ... , r-1, 

g;(t)=O if 3=0, 

a~ consists of the u upper rows of a!, 

gi(t,s)=Gf(t,s) - ~ c;'(t,s), s#-3, i=O, ... ,r-1, 

gf(t, s)=Gf(t, s) . . 

Proof. The formula (29) is obtained by integration by parts of the appropriate 
right-hand side term in (28). 

8. Optimal control in the open-loop system 

Assuming t0 =0 we shall determine the optimal control u in the interval [0, T} 
as an explicit function of time. Formulas analogous to (28) or (29) can be derived, 
however, as they do not seem very useful, a numerical algorithm will be presented 
instead. This algorithm , yields the optimal . control and trajectory provided k > 1. 

1. Determine an integer k, (k-1) r<T;::;;kT, and 3=kr-T. 
2. Calculate <Pk ( r, 3) and <Pk_ 1 (3, 0): 

a - -
-;--- <Pk-1 (s, 0) = o:k-1 (s) <Pk-1 (s, 0), <Pk- 1 (0, 0) =1, 
u S . 

a 
os <Pk (s, 3) = ozk (s) <Pds, 3), <P,; ( 3, 9) = I. 

3. Calculate the matrix L1k (23). 
4. Compute 8 

h- ~ (9)= J ;pk-1 (3, s) bk-l (s) w (s+ r) ds, 
o. 

r 

_h (r)= J <Pk(r, s)b. (s)w(s)ds, 
8 
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from 

J~- 1 (s) = IXk- 1 (s) .h--d (s) + bk- 1 (s) w (s + r)Jk-1 (0) =0, 

j~ (s) = 17.k (s) .h (s) + 6k (s) w (s),fk (,9) =0. 

5. ComputeP1 and P2 (23). 

6. Solve the basic system (22) to obtain .Xk_ 1 ( 3) and A ( 3). 

7. Calculate zk(3)=(x~_ 1 (3), x' (O),p;, (S)y' and zk (s), sE [,9, r], from (19). 

8. Calculate zk-t (,9) = ( .X~_ 1 (.9), P~- 1 (.9) )' and · zk- 1 (s), sE [0, ,9], by backward 

integration of the first of Eqs. (19). 

9. Determine the optimal trajectory and adjoint variable from (17), (6) and 

(7) and then- the optimal control (18), (6), (7). 

9. Optimal control synthesis in case of infinite control time 

We shall confine ourselves to constant systeri1s, with constant coefficient matri

ces in the system equation and in the cost functional 

r 

}; [A 1 x (t-ir)+Bix(t-ir)+Ciu(t-ir)]=0, tE [t0 ,oo), (31) 
i = O 

S(u)=lim SR (u), R--+oo, 
to+R 

SR (u)= J [x'(t) Wx(t)+u'(t) Uu(t)]dt+x'(t0 +R)Qx(t0 +R). (32) 
To 

Assumptions on the coefficient matrices and initial conditions are the same as 

in (1), (2). Admissible controls are square summable in [t 0 , oo). 

Denote by LR the initial value (at time t0 ) of the optimal feedback operator 

that minimizes SR subject to (31). As the system is constant, LR does not depend 

on t 0 • By arguments similar to [7] it will be shown in a future paper that if the system 

(31) is asymptotically stable and/or controllable, LR--+L00 when R--+oo. L 00 is a con

stant feedback operator that minimizes S subject to (31). For convenience in com

putations R should be an integer multiple of the delay, R=kr. It is advisable to cal

culate the operator Lk' for several k's. As k increases Lk' approaches a constant 

value. The calculations should be finished if Lk' may be considered constant within 

a given accuracy. For every finite k the operator Lkt is determined according to the 
following algorithm. 

1. Determine 1/Jk (r, s), s E [0, r], 
= -17.k (r!>k (r, s), _tPk (r, r)=J. 

2. Calculate the matrix Ak (23). 

3. Calculate r; amd Fk4 (25). 

a 
by backward integration of os 

4. Determine Lk' according to (29). 
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10. Examples 
\ 

Example 1. Determine the optimal control for the system 

x(t)=x(t-2)+u(t), tE [0, 3], 

3 

S(u)=x2 (3)+ J u2 (t)dt, 
0 

as a function of the initial conditions x (s), sE [- 2, 0]. 

The algorithm of Section 8 will be followed . We get k = 2, 8 = l. The canonical 
·equations have the form 

(0 -1) . (1 0 0) Z1 (s)= O O Z1 (s)+ O O O w(s+2), S E (0, 1), 

(
0 0 -2 -1) ( - 1 0 0 0) 
0 0 - 1 -1 1 0 0 0 

i2(s)= 
0 0 0 0 

z2 (s)+ 
0 0 0 0 

w(s), S E[1,2]. 

00 0 0 0000 

The basic algebraic equation is 

(

2 ) 
1 -3 -1 .X 1 (J) J.Y(s)ds 
112 = 1 1 2 

(O l _ J ~' (lJ ~(0) + [ Y(H2) ds+! Y(') d' . 

Finally we obtain the optimal control u (t)=2V, t E [0, 1), u (t)= V, t E [1, 3], 
1 0 

V=-7[x(0)+ Jx(s)ds]. 
-1 

Example 2. Consider a system ,. 

x(t)=x(t-1)+u(t), 

x(t) = 1, t::SO, 

k 

Sk (u)=x 2 (k)+ J u2 (t) dt, k> 1, kEN. 
0 

According to (29) the operator Lk is determined by g~ (0) and g~ (0, s), sE [ -1 , 0}. 
The results in Table 1 show how Lk approaches the constant value L 00

• In each 

Ta ble 1 

""" . 
I 

I 

I I k"'~ l -.1 --.8 
I 

- .5 - .2 .0 
I 

2 
I 

-.923 - .830 -.692 -.554 ; -.461 
4 - 1.106 - .987 -.833 - .703 - .628 

8,
6
10 l - 1.132 -1.010 -.852 -.719 - .642 

' - 1.134 -1.013 -.854 - .721 -.643 

- - ---- -------



case g~ (0) =g~ (0, -1), so Table 1 contains only g~ (0, s) for various sand k. Table 
2 contains optimal (S~vr) and suboptimal (s;ub) values of the functional s~c. The sub
optimal ones are obtained by the application of the feedback operator L1c. 

Table 2 

k s" s'' 
opt Sllb 

2 2.&26 3.020 

6 3.518 3.525 

10 3.527 3.528 

11. Conclusions 

The quadratic optimal control problem for a system described by linear neutral 
equations with constant commensurable delays in the trajectory, its derivative and 
control has been solved. An explicit formula for the optimal feedback control 
and a computational algorithm for the optimal control in the open-loop system 
have been presented. Due to use of the step method, the results have been obtained 
in a relatively simple form from the computational point of view. In case of in
finite control time a numerical algorithm for determining the optimal feedback 
operator has been constructed. The numerical results obtained hitherto suggest 
that the algorithms based on the step method are quicker and more accurate than 
those based on Riccati or Fredholm equations, at least for large values of T/T. 
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Sterowanie optymalne zadania kwadratowego dla ukladu 
opisywanego rownaniami neutralnymi 

Zastosowano metodf\! krokow'l dla rozwi<~zania zadania sterowania optymalnego ukladu li
niowego opisywanego liniowymi r6wnaniami neutralnymi z kwadratowym wskaznikiem jakosci. 

Op6znienia S'l stale i wsp6lmierne. Wyprowadzono wyrazenie na optymalny operator sprzf\!zenia 
zwrotnego. Dla ukladu otwartego zaproponowano algorytm numeryczny. W przypadku nieskon
czonego czasu sterowania podano r6wniez algorytm obliczeniowy dla optymalnego operatora 
sprzC<zenia zwrotnego. 

OnntMaJihnoe ynpaBJienne ~JIH KBa~paTn'lecKoii 3a~aqn 

B CJiyqae CJICTCMhl OniiCbiBaCMOii neiiTpaJibHbiMJI ypaBHCHlUiMII 

B CTaThe HCIIOJih3yeTC5! IIJafOBhlll MeTO,[( ,[(J!Jl pemeHHl! 3a,[(a'l!I OIITHMaJihHOrO ynpaBJieHlll! JIH

HeMHOM CHCTeMbT, OTillCbiBaeMOll JIHHeMHb!M HeMTpaJibHhiMll ypaBHeHHl!MH C KBa)lpaTH'!eCKHM IIO
Ka3aTeJieM Ka'!eCTBa. 3arra3,[(hiBaiDHI JlBJil!IOTCH IIOCTOl!HHhiMII: ll COH3Mep!1Mh!Mll. BhiBO,[(llTCH 
«jJOpM)'Jia ,[(JIH OllThiMaJihHOTO OnepaTOpa o6paTHOM CBl!3ll . .ll:= pa30MKH)'TOM CHCTeMbi npe,[(
Jia;raeTCl! 'lliCJieHHhlll aJirOpllTM . .ll:JIH CJiy'laH 6eCKOHe'!HOTO BpeMeHH yrrpaBJieH3H ):(aeTCH TaJOKe 
aJiropHTM BhNllCJieHHl! OIITHMaJihHOrO OIIepaTopa o6paTHOll CaH3ll. 
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