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In the paper a new algorithm of real process coordination is presented. The algorithm is based on 
mathematical models of subsystems and takes advantage of the feedback from the real system. 
Convergence of the algorithm has been proved under Kantorovich-type conditions and certain 
assumptions limiting the difference between the mathematical model and the real system. All consi­
derations are made in Hilbert spaces. Encouraging computational results have been, obtained. 

1. Introduction 

A problem of finding the optimal control for a complex system consisting of 
several subsystems interconne<;ted in a certain way can be solved by well known 
multilevel methods of optimization. In practice however mathematical models 
at our disposal are only an approximate image of reality. Consequently the model­
optimal control will not be optimal for the real system (in general). 

The Interaction Balance Method with Feedback (IBMF), shortly presented in 
sec. 3 of the paper, is one of the attempts to adapt multilevel methods to real process 
coordination. The method (firstly suggested in [1] and investigated in [4]) is a base 
for our further considerations. It will be shown that the coordination condition for 
this method is an operator equation which is extremely difficult to solve. The main 
difficulties are: incomplete knowledge of the real system equations and nondiffe­
rentiability of certain mappings involved. Classical methods of solving operator 
equations, as for instance Newton-like methods, cannot be applied in this case. 
Nevertheless, it is possible to construct an algorithm which can solve our equation 
(sec. 4). It is based on the ideas suggested in [6]. Moreover, convergence of the 
algorithm may be proved while imposing certain conditions on the difference between 
the mathematical model and the real system. The convergence analysis is carried 
on in sec. 6 after the examination of properties of mappings used for purpose of 
this analysis. Conditions formulated in theorem 2 resemble the Kantorovich condi-



30 A . RUSZCZYI'ISKI 

t ions for the Newton method. The convergence theory - initially finite-dimensional 
space oriented - turned out to be valid in Hilbert spaces. In sec. 7 results of some 
numerical experiments are presented. 

2. Formal description of the system 

We shall consider a system consisting ·of several subsystems (objects} . being 
mutually interrelated in some way. We can, distinguish 3.types ofvariables i,n each 
subsystem, namely: ui -local inputs (originating from other subsystems), ci ­
local controls, yi -local outputs (upper index i indicates the subsystem number). 
Let equations of the subsystems have the following form: 

i=f~(ci,ut i=l,2, ... , N, (1) 

where i E Yi, ci E Ci, ui E Ui,fi: ci X Ui-iYi and Yi , Ci, ui are Hilbert spaces . 
* Let us assume that the equations (1) are not exactly known to us and we have 

at our disposal only approximate models of the subsystems in the form as follows : 

(2) 

whereas ji:Cix Ui--'>Yi and Ji-=FJ,: in general. 
Furthermore we assume that the structure of both real .system and model is 

described by the following equations: 

N 

ui=};M5yi, i=l,2, ... ,N, (3) 
i= 1 

where M5: Y i---" U; is a bounded linear operator. 
Let us take for brevity: c=(cl, c2 , • • • ,eN), u=(u1

, u2
, .•• , uN), y=(y\ y 2 , ••. , yN) 

N N N 
whereas c E C = X Ci, u E U = X u1

, yE Y = X Yi. Thus we can write the equa-
i=l i = l i=l 

tions (1) through (3) in the compact form: 
rea1 objects: 

Yc:=f:, (c, u) (la) 

mathematical models of objects: 

y=f(c, u) (2a) 

system structure·: 

U=My. (3a) 

The set of equations (la), (3a) give ~? .descriptipn of the real system and the. set 
of equations (2a), (3a) gives description of the , mathematical model fl.t our disposal. 
We assume that the system has a defined performance index in the form of 

N 

Q (c, u) =}; Qi (ci, ui) (4) 
i;:: 1· 

--------------------------------------------------------------------
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The problem <;>f providing the optimal control consists in finding such c which 
satisfies the following conditions: 

1° there is u=u* (c) which satisfies (la), (3a) 

2° (c, u* (c)) E CUcCx U 

where CU is the feasible set for the real system 

3° for each c satisfying 1 a and 2° there is 

Concerning the constraints which appear under 2° let us assume that they can 
be written in the form of local constraints: 

(5) 

The problem formulated above is extremely difficult to solve due to incomplete 
knowledge of the equations (la). Therefore we will search for suboptimal solutions 
from which, however, we will require to satisfy the constraints (condition 2°). At 
the beginning let us assume uniqueness of the solutions of model and system 

I 

equations: 

A1) V(c EPc(CU)) :J! (u111 (c) E U) :J! (u,,, (c) E V) 

um(c)=Mf(c, U 111 (c)) 

u* (c)=Mf:, (c, u* (c)) 

where Pc: Cx V-+C is the projection onto C. Quantifier :J ! means: "there is exactly 
one". 

3. Interaction Balance Method with Feedback {IBMF) 

The IBMF proposed in [1] employs forms of objects (4) and constraints (5) 
which are convenient for decomposing the problem and then carrying on the coordi­
nation. They afford possibility to formulate independent local problems of the lower 
level as follows: 

I) for a given p = (pl, p 2, ... , pN) E V find 
N 

. min . [L1(c1, u1,p)=Q1(c1, u1)+(p1, u1
)-}; (pi, M/ f 1 (c1

, u1
))] (6) 

c',uteCUt · · j=l 

where p (prices) are coordinating variables. Meaning of these variables will be soon 
fully discussed. Let the &olution of the set of problems I) (for i = 1, 2, .. . , N) be 
a pair (c (p), u (p)). The controls c(p) obtained in such a way are applied to the real 
system which results in establishing of 'interactions ·(flows) u * ( c (p)). The task of 
upper level (coordinator) is 

II) find ft E U being such that 

ii (p) = U,:, ( C (p)). (7) 

-- -- --- ----------------------------------- ----------------------------------
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The principle of IBMF is illustrated with rig. 1. It is obvious that after complet­
ing the coordination (satisfying the condition (7)) the controls c(p) will not be the 
optimal ones since the local problems I) are based on approximate models (2). All 
the same the condition under 2° will be satisfied - it means that the IBMF control 
will be feasible for the real system. Furthermore the IBMF control has substantially 
better properties as far as the optimality is concerned than the open loop control. 

u~ (c(p)) ,---------
1 u1{p) 
I , ----

t I I 1 I 

I min L1(c:u:p) min L''(c~u';p) 
I (c:u 1}r::CU 1 (c~uN) r:;CUN 
I 
I ~c r(P) iu;(c (p)} ! C N(p) I 

I~ 
! 

I * t}(c',u;) I I - f---
I i 

I 

• 11 • I UN 

~L_1 ' * fN ( CN "N) 
~ ' ' "''* 

Fig.' 1. The principle of IBMF 

We will not stay longer at this subject-matter; a mathematical analysis of it and 
some numerical results are contained in [4]. 

The question which will be answered in the present work is how to find the 

coordinating value" p. 
In order to simplify the notation let us denote x=(c, u), xEX=Cx U and in 

the similar fashion x(p)=(c(p), ii(p)). We shall write Q(x) meaning Q(c, u). We 
introduce the operators 

G:X-'>V, G(c, u)=u-Mf(c, u), 

D:X-'>U, D(c, u)=u-um(c), 

D*:X-'>U, D,:,(c, u)=u-u*(c). 

While using such denotations the local problems of IBMF may be written in 
the form 

la) ruin [Q(x)+<p, G(x))] 
XECU 

and the coordinator problem in the form 

Ha) find j3 so that 

where x(p) is the solution of (8). 

(8) 

(9) 
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4. An Algorithm of Coordination 

The equation (9) is an operator equation provided that the lower level solutions 
x(p) are unique for p from a certain neighbourhood of p0

• This equation however 
is very difficult to solve since : 

a) we know a little of the operator D,:, -only its approximation is known 
b) the function x ( ·) is unsufficiently regular. Even under assumption that 

functions f and Q are repeatedly differentiable the x ( ·) may not be differentiable 
at all if there are any inequality constraints in the definition of the set CU. 

Therefore we take the following assumptions: 

A2) Functions f and Q are continuously twice Frechet differentiable with respect 
to both variables together. 

A3) For each CEPc(CU) the operator F: u~ u, F=l-Mfu(c, Um(c)) has a bounded 
inverse. The symbol J,, indicates the Frechet derivative with respect to u. 

A4) Feas ible sets are expressible in the form 

CU1={(c1
, u1):hi(c1

, u1)=::;;0, jEJl}, i=1, ... ,N, 

where hi: c1 x U1~R1 are continuously twice Frechet differentiable convex 
functionals and Ji is a finite set of indexes. 

In order to define the algorithm of coordination we shall generalize some ideas 
presented in [4], [6]. They lead to the following procedure: 

1) Basing on the mathematical model solve the equation 

D(x(p)) = O 

or, which is equivalent, the equation 

G (x(p)) = 0 

It can be done by the classical price method (see [1]). 
2) Use the prices p 0 obtained in this way for finding x• =x (p0

) and set D 0 = 
Dx (x0

), Go=Gx (x0
). 

3) Select successive prices according to the following principle 

(10) 

where 

(11) 

and A is a self-ad joint operator, strongly positively defined on .?A! (G~). (% (.),.?A! (.) 
denote the null space and the range of a linear operator respectively and G~ de­
notes the ad joint operator of G0 , G~: U ~X). The number s is sufficiently small 
and is constant during the coordination. 

It may be proved that A3 implies .?A! (G0 ) = U and, consequently, .?A! (G*) = 
. 0 

=.?A! (G~) (the closed range theorem, [5]). Next, it is possible to demonstrate that 
the operator £ 0 defined by (11) is well defined . and bounded (Banach's inve:rse 
operator theorem, [5]). We shall omit particulars of the proofs. 

3 
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The central problem which arises now is the question of convergence of the above 
algorithm. It will be discussed in sec. 6 and now we will recall very shortly properties 
of the function x ( ·) which will be used later on. We will make also assumptions 
being necessary for further considerations. 

5. Relevant assumptions 

Our further considerations will be limited to prices from a certain neighbourhood 
Q (p0

) of the initial prices. The lower level variables are assumed to attain values 
from a certain neighbourhood w (x0

) of the initial solution. We assume that 

AS) 

and 

A6) 

:1 (}.>0) V (x E CV'-.w (x0
)) 

Q (x) + (p0
, G (x));;::, Q (X0

) + <p0
, G (x0

)) + A 

3(.9>0) V(xEw(x0
)) V(p EQ(p0

)) 

Qxx (x) + (p, G (x))xx;:, 9/ 

i.e. lower level problems are uniformly convex in this sets. 
The assumptions AS and A6 imply that for p being sufficiently close to p 0 there 

is a continuous function x ( ·) the values of which are minima of the function (8) 
as well as x(p) E w (x0

) for these p. Therefore we may assume that the sets Q(p 0
), 

w (x 0
) are chosen so as to satisfy the relation x ( Q (p0

)) c w (x0
). 

Letp1 ,p2 EQ(p0
) andp,=tp2 +(1-t)Pt at O~t~l. We shall consider the be~ 

haviour of x(p,) as the funct ion of a real variable t. Let us define for p E Q(p 0
) 

the set 
l 0 (p) = {i: h1 (x(p)) =0}. 

Let /"(p)={i1,i2 , •.. ,i1}. We define now the operator H:Q(p 0)XX---+R1 as 
follows 

H(p, x)=(h1, (x), h;,(x), ... , h;,(x)). 

The next assumption is typical for such kind of problems: 
A 7) .For p E Q (p 0

) the derivative Hx of the operator H (p, x) with respect to x taken 
at the point (p, x(p)) is an epimorphism. 

In other words we assume that at x(p) the gradients of active constraints are 
linearly independent. This as umption together with the previous ones give us the 
warranty for existence and uniqueness of Lagrange multipliers for lower level 
problems (see [3]). Let f.l E R 1 be these multipliers. Let us introduce, for fixed p , 
the operator 

W(p): X:-7;¥", W(p)=Q.u(x(p))+(p, G(x))xx i (P.~Cvl)+(,u, H(p, x))xx l (v.~Cvl)· 

Due· to · convexity of constraints and inequality ,u;::,O, the operator (p, H(p, x))xx 
is positively semi-defined. Therefore, according to A6, the . operator W(p) with 
p E Q ( p 0

) is positively defined. 
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Let us assume that the set l 0 (p,) remains constant within an open interval 
(t0 - r, t 0 +r). Then by means of direct transformations and the implicit function 
theorem [7] we can prove that the function x (p,) is differentiable with respect to 
t at the point t 0 and that 

(12) 

where 

for 1°(p)=0 

for JO(p)=/0. 

For brevity we have denoted w = w(p), Hx=Hx(P, x(p)). Furthermore, as 
it is shown in [4], the operator B(p) is nonnegative defined, IlB (p) JI ~ llw- 1 (p)!l 
and if P(p)=/0 then 

(13) 

Next we assume that 

A8) For any p 1 ,p2 E Q(p0
) the section 

[pt,Pz]={p,=tPz +(1-t)pl, O~t~ 1} 

can be divided into a countable number of sub-intervals so as within each of them 
the set r (p,) is constant. 

This assumption means simply that we are dealing with the model having such 
property that the solution x (p,) jumps countable number of times from one wall 
of the feasible set to another. It should be stressed that the above assumption is 
purely technical. It is necessary for some mathematical considerations relating 
to the formula 

(see [7]). From practical point of view the assumption A8 makes no essential restric­
tions on the problem. It is very difficult to construct the model of the system, the 
constraints and the cost function which do not satisfy A8. It seems impossible that 
such a model would be constructed in any practical problem. Finally it should be 
stressed again that A8 refers to the mathematical model only. 

We shall assume also that in Q (p0
) act ive constraints and the equations of the 

model show the property of uniform linear independence: 

A9) 3 (cb 0) (p E Q(p0
)) \f (v E ~ (G: (x(p0

)))) 

d(v, ~(H; (p, x(p))j)~6 11v ll 

where d: Xx P-+R1 is the distance between the point and the set involved. 

Roughly speaking, this assumption has as its purpose to give a sufficient freedom in 
manipulation with values x(p) throu.gh changes in p as it is seen from (12) and (13). 
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The assumption A9 needs some comments. We assume that {Jll(G;)n{Jll(H:)= 
{0}. It means that the equation 

a; du+H: dh=O 

has the unique solution du=O, dh=O in Ux R 1
• The ranges of a; and H; being 

closed, the above is equivalent to the solvability of the set of equations 

ax dx=du 

Hxdx=dh 

for any duE U, dh E R1 (see [5]). The last property in the finite dimensional case 
means that the gradients of system equations (rows of the matrix ax) and the gra­
dients of active constraints (rows of the matrix Hx) are linearly independent. It is 
commonly assumed in various works in the field [3]. (System equations are equality 
constraints for the problem). We assume little more: the angle between the two 
subspaces spanned by the two groups of gradients is always greater than a positive 
angle rp =arc sin b. 

6. Convergence analysis 

Like many other methods for solving nonlinear operator equations the algorithm 
(10) will converge under certain assumptions limiting the distance be.tween the 
initial point and the solution. However, alll assumptions which limit this distance 
directly seem to be of little value, because the solution is not known. Therefore 
we shall avoid assumptions of this kind. We shall try to prove convergence after the 
lines of the famous Kantorovich proof made for the Newton method. (see [2]). 

Let us denote 
V:, (p) =p+sE0 D,:, (x(p)) 

V(p)=p+sE0 D (x(p)) 
(14) 

It will be demonstrated that the operator V* has contraction mapping properties. 
We define in U a new scalar product as follows 

(u, v)0 = (a~ u, A a~ v) 

It can be easily verified (A is positive on {JJl (a~)) that it satisfies all scalar product 
axioma and that the norm ll-llo induced by it is equivalent to the original one in U. 

THEOREM 1. Let the assumptions Al through AlO be satisfied and let 

(i) 3(mA>O,MA>0)V(xE{Jll(a~)) 

mA llx ll 2 ~(x, Ax)~MA llxll 2 

(ii) 3 (Mw>O) V (p E Q(p0
)) V (z EX) 

(z, W(p) z)~M .. llz1J 2 
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(iii) 3(L>O)V(p1,p2 E!2(p0
)) 

llDx(x(p1)) B(pz) G; (x(p1))-Dx (x(pz)) B(pz) G~ (x(pz)) l lo~L IIP1 -pzllo 

Then the operator V defined by (14) satisfies the following inequalities 

37 

IIV(pz)- V(p1) 11o~( a(e) +e IIEo llo L max (IIPz -polio, IIP1 -polio)) llPz -p11io (15) 

I IV(p)-po il~t eiiEo llo L IIP-P0l l~+a(e) lip-polio (16) 

( 
2J2 1 )1/2 

a(e)= l-e ---+e2 - 2- 2 • 
MAMw w mA 

Proof. We define the function V0 : Ux U-+U as follows 

Vo(Pt,Pz)=(l-eEo Do j B(pr) dt G~) (pz-P1) 
0 

1 

(17) 

where Pr = tp2 + (1- t) p1. Existence of the integral J B (Pr) dt results from A8. 
It has been proved in [6] that 0 

if p1,p2 E!2(p0
). Now it is easy to prove (15) and (16). We have 

1 

+eEo J [Do B(Pr) G~-Dx (x (Pr)) B(pr) G; (x(p1))](p2 -p1) dt (18) 
0 

From (18), (iii) and (17) we obtain 

1 

IIV(pz)- V(p1)11o~<X(e) ilPz -p1llo+e IIEollo J LJipr-P0 llo dt Jlpz -p1ilo· (19) 
0 

The formulae (15) and (16) immediately result from (19) because 

1 

J ilPr-P0 llo dt~max (IIP1 -polio, liPz -P0 Iio ) 
0 

and for p2 =p0 

1 

J llPr-P0 llo dt=± JIP1 -poll~ 
0 

The theorem has been proved. 

Now we shall call the inaccuracy of the model into considerations. Let us denote 

15 (x)=D* (x)-D (x) 
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THEOREM 2. Let the assumptions of theorem 1 h.)ld arid let for p, p 1 , P2 E Q (p") 

(i) 

(ii) 

We set 

IlD (.x(pt)) -D (x(p2))l fo::::;L 11Pt--P2IIo 

[[D(x(p))l fo::::;a 

bo=IIEol f.o 

h=ab; L 

( = (1-a(e))/e 
·' 

r2=---
b0L 

. , Let furthermore the following conditions be satisfied 
· \ ' . 

Ciii) Jib; v +2h<( 

(iv) S(p?; ,r1)={p: [/p-p0
[[0 ::::;rr} c Q(p0

) 

Then 
1° The equation (9) has the solution p in S (p 0

; r 1). 

2° The sequence t10) converges to p and the following inequalities hold 

Ill ~ 1 -;j}llo::::; q f[pk-pllo 

where 

q=ai+eb0 [,r 1 + eb0 L< 1. 

3° The solution p is unique · ir1 Q (p0
) n S (p0

; r 2 ) and the sequence pk+ 1 = 

V*(pk) convergesto it for all p 0 such that . r 3 = [[p0 -p0
[[ 0 <r2 and S(p0 ;r3) c 

cQ(po) . 

Proof. Let PuP2 E S(p0
; r 1). We have 

'· 
[[V* (Pt) - V:, (p2) /f o::::; /[V(pl)- V(P2) 11o +e [[Eo ilo IlD (x(pl)) - D (x(p2)) /lo. (20) 

The first constituent of the right ha~d side of the. above inequality may be esti~ 
mated according to theorem 1 by ·(15). Taking into account assumption (ii) we 

. I 

obtain from (20) 

[[V* (pl) - V* (p2)/ fo::::;(cx + ebo L r1 + ebo L) IIP1 -p2flo 

On the other harid, if p E S(p•; r 1) then 

[[V* (p)-p"f/o::::; [[V* (p)- V(p) /lo + f[V(p) - p"llo · 

(21) 

------------------------------------------------------------------
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It follows from the assumption (ii) and (15) that the following inequality holds 

Moreover, r1 is a root of the trinomial 

w(r)=-1- sb0 Lr2 - (l-C1.) r+sb0 a 

and theiefrom for p E S (p0
; r1 ) 

We have demonstrated that in S(p0
; r1 ) 

. and that 

(22) 

. ' 

Inequality q< 1 results immediately from (iii). Applying the contraction mapping 
theorem we obtain 'the points 1° and 2° of bur proposition. It remains only to prove 
the point 3°. 

Let r1 < l/ p-p0
1/0 <r2 • Then 

11 V* (p) - P0 llo < liP-P0 llo (23) 

because for r 1 <r<r2 the trinomial w (r) attains negative values. Therefore p cannot 
be a fixed point of V*. Let r 1 < llp0 -p0 ll 0 =r3 <r2 and S(p0

; r3 )cQ(p0
) . If for any 

'i there is I I .Pi -p0 llo ~r1 convergence will result from 2°. Otherwise it follows from 
the inequality (23) that, p~e · sequence {II.Pk - pollo} converges down to r1 • Then the 
sequence {.Pk} r.emains in Q (p0

) and we have 

llft - _pk +l llo = IIV* (ft) - V* (pk) ll o~(CI. + cbo L ll .Pk-pollo + 

+ sbo L) lift-Pkllo = q li ft - Pkllo 
where 

· q = q+sbo L(l jpk-pollo - r1). 

It is obvious that for sufficiently large k it will be q < 1 and {.Pk}--"ft. 
' · The theorem bas ;been proved. 

Let us discuss , briefly the meaning of the assumptions of theorem 2. The assump­
tions (i) and (ii) require from the difference 15 between the system and the model 
to be bounded and Lipschitz continuous. The condition (iii) limit~ the upper bound 
a and the Lipschitz constant L. It is obvious that a condition of !this kind must be 

.• . . .. . ·" . . •. I 
included. If we want to coordinate . the real system basing on tHe model we must 
have a sufficiently 'good model. . 

Let us note that co~vergence conditions for the above theorem are greatly si· 
, I 

milar to those fqr Newton method (see [2]). It is worth to bring out into relief that 
the equation under consideration is far more difficult t~ solve than those ones 
previously investigated. In particular there is no assumption of differentiability of 
any of the functions D* (x(p)) and D (x (p)) with respect top made in our considera-
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tions. If the function D (x( · )) (obtained from the model) were differentiable it 
would be possible to apply the method suggested in [8] to the equation (9). The 
results obtained there are of the same nature as the conditions of theorem 2. In 
our case however the function D (.X ( ·)) may be nondifferentiable which makes 
the task of solving the equation (9) more difficult. Perhaps it is possible to find 
a certain differentiable approximation of the function D* (x (·)).and then apply the 
results of Zinchenko. But it seems rather difficult. We have chosen another way­
taking advantage of specific properties of our problem. 

7. Some computational results 

In order to test the suggested algorithm the following example of a system has 
been considered: 
subsystem 1: 

subsystem 2: 

subsystem 3: 

y1 =ci-c~+2u1 +A 1 (ci)2+A2 (ci+c~-2) u1 

Ql (cl, ul)=(ul-1)2+(ci)2+(c~-2)2 

CU1 ={(ci, c~, u1
): ci+u1 ~1.007} 

Yi=ci -c; +ui -3u; 

y; = 2c;- c;-ui + 2u; 
Q2 (c2, u2

) =2 (ci -2)2 + (cD2 + 3 (cD2 +4 (ui)2 +(u;)2 

CU2 =R5 

Q3 (c3, u3) = (c3 + 1)2 + (u3 -1)2 

CU3={(c3, u3): c3+u3;?:; -0.5} 

The structure of the above system is shown in Fig. 2. In a mathematical model 
at our disposal there were: A1 =0, A 2 =0, A3 =0. Due to linearity of the model the 

cf c§ cJ 

Fig. 2. The structure of tested systems 



Convergence conditions for the interaction 41 

local minimizations (6) have been solved in an analytical way. The choice of A = Q;x1 

has been made (the detailed motivation of it in the linear case is contained in [4]). 
Various combinations of the values of Au A 2 , A 3 in the real system have been tested. 
Representative are the six presented in Table 1. The introductory step of coordina-

Table 1. Number of iterations required to obtain the discoordination 10- 6 

No. A1 A2 A3 e Iterations · Constraint in Sl 

- 0.5 0.5 -0.5 0.8 83 active in all steps 

2 0.13 0.5 -0.5 0.8 16 active in first 11 steps 

3 - 0.5 - 0.5 - 0.5 0.8 24 active in all steps 

4 0.5 0.5 0.5 0.8 16 inactive 

5 0.13 0.5 -0.5 1.2 10 active in first 7 steps 

6 0.13 0.5 - 0.5 . 1.8 73 active in every second 
step up to the 23 

tion - solution of the model equation D (.X (p)) = 0-has been omitted, since in 
the linear model the derivatives Dx (x(p0

)) and Gx(x(p0
)) do not depend on p 0

• 

The initial prices were p 0 = (0, 0, 0, 0), which corresponds to full decentralization. 
Numbers of iterations required to obtain the accuracy llii(p) - u* (c(p))~l0- 6 

are presented in Table 1. Constraint in S3 was active in all iterations. Constraint 
in Sl has been chosen so as to be sometimes active and sometimes not. The process 
of norm minimizations is illustrated in Fig. 3. 

iterations 

Fig. 3. The process of norm minimization under various disturbances 



42 A. RUSZCZYNSKI 

8. Final conclusions 

The algorithm of real system coordination presented in this paper has several 
important features. It takes advantage of the measurements of real interactions, 
but its parameters c: and £ 0 are constant and may be computed from the model. 
Although coordination equation is not diJTerentiable convergence of the algorithm 
has been proved. The convergence is linear. The conditions obtained in the paper 
are greatly similar to those developed for Newton-like methods. Numerical experi­
ments indicate that the algori thm is efficient. 
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Warunki zbieznosci algorytmu zrownowazenia inter~kcji 

opartego o przyblizony model matef!~~tyczny · · · 

.. .. 

W pracy przedstawiony jest nowy algorytm koordynacji ·procesu rzeczywistego. Algorytm 
oparty jest na modelach matematycznych podsyst~m6w i wykorzystuje sprz'<i:enie zwrotne od 
systemu rzeczywistego. Przy warunkach typu J:San~rovica oraz pewnych zaloi:eniach ogranicza­
j~cych r6i:nic'< mi'<dzy modelem matematycZHym a systemem rzeczywistym udowodniona zostala 
zbiei:nosc tego algorytmu. Wszystkie rozwa:i:ania prowadzone s~ w przestrzeniach Hilberta. Uzyskano 
zach'<caj~ce wyniki numeryczne. 



Convergence conditions for the interaction 

Y CJIOBHH CXO~HMOCTH ~JIH aJirOpHTMa COr JiaCOBaHIIH B3aH­

MO~HHCTBHH OCHOBaHHoro Ha npn6JIHiKeHHOH MaTeMaTU­

'IeCKOH MO~eJIH 
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B CTaTbe rrpep,cTaBJieH HoBoit aJiropuTM Koopp,uHaU:HR p,eitCTBRTeJihHoro npou:ecca. AIIropuTM 

OCHOBaH Ha MaTeMaTH'!eCKllX MOP,eJil!X IIOP,CllCTeM ll llCITOJib3yeT o6paTHyiO CBll3b OT peaJibHOH 

O!ICTeMbi, Ilpn ycJIOBIUIX Tnrra KaHTopOBH'!a u HeKOTOphrx rrpep,rroiioJKeHIDtl!X orparnPiHBaiOmux 

pa3HOCTb MeJKp,y MaTeMaTH'!eCKOH MOP,eJIIO a p,ei1:cTBHTeJibHOH CHCTeMOH P,OKa3aHa CXOP,HMOCTb 

3Toro aiiropHTMa. Bee paccyJKp,eHHl! rrpoBOP.l!TCll B rHJih6epTOBhiX rrpocTpaHCTBax. IloJry'!eHhi 

o6ema10mHe '!HCJieHHI>Ie pe3yiihTaThr. 




