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An optimal control problem for a system described by linear parabelic equation with mixed boundary
conditions is considered. The coefficients of the equation depend on control function while the cost
functional depends on the terminal state.

To find an approximate solution of this problem an external approximation (finite difference)
method is used. It is shown that this approximation is convergent.

Theoretical results are illustrated by numerical examples.

Introduction

In the paper the approximation of a parametric optimization problem is consi-
dered [1]. In the problem coefficients of linear partial differential equation of para-
bolic type-state equation-depend on control function. Problems of such type appear
in technology of solid state devices [6] and in identification theory [1] and were
investigated by Bensoussan [1], Chavent [3], Sokotowski [9], [10], [11].

In the paper we prove convergence, in some sense, of external approximation
for parametric optimization problem and then we give a numerical example.

In section 1 we recall some existence results concerning weak solutions of linear
parabolic equations.

In section 2 we formulate parametric optimization problem and recall an exi-
stence result.

In section 3, 4 we define some spaces of steps functions over discretized domains
and we recall some regularity results for discretization of domain due to Cea [2].

In section 5 we define external approximation of linear parabolic equation.

In section 6 we show that external approximation of parametric optimization
problem is convergent in some sense. '

In section 7 a numerical example is given.
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1. Preliminaries

Let Q be given domain in R" with enough regular boundary I'=0Q.
By V=H"* (Q) we denote Sobolew space of functions (class of functions) y € L? (Q),

ay
such that ™ eL?(Q), i=1,..,n, where H=L?(Q2) is the usual Hilbert space
of equivalence class of real-valued, square-integrable functions on Q. By V' =(H* (Q))’
we denote dual space to H'(Q).

Let E be a given Hilbert space, L>(0, T; E) is the Hilbert space of equivalence
classes of E-valued, square-integrable functions on [0, 7'].

By W(0,T) we denote linear subspace of L*(0,T; V):

: [ 2 df 2 v /{
W©,T)={feL?(0,T; V)| 7 eL* (O, T; V)J. (LD

W (0, T) is a Hilbert space [4] under the scalar product:

H dy dz
(7, Dweo. 1y = f () 26D+ 6y @) | s (12)
It is known [4], that imbedding
W, T)cC(0, T; H) (1.3)

is continuous, where by C(0, 7; H) we denote the Banach space, of continuous
mappings [0, 7]+— H with usual sup norm.

On the space H'(Q) we define a bilinear form (y, z)a, (¢; ¥, z) depending
on a real parameter r setting:

L dy 0z
a(t;7,2)= D [al,x 05— 2-d2+ [ g0, x,0)yzdr,
i=1 @ e ¥ r

Vy,ze H*(Q), reR. (1.4)

LEMMA 1. Assume:

O<oo<a(r,x, ) <M | Vrel0,1]
0<g(r, x, )SM |V (x,)e0=02x]0,T]

(1.5)
then
() la, @2 DI<Cylvlzlly, Yy, zeV=H"(Q) Viel[0,T], Vrel0,1]; (1.6
Gi) a ;9 N+ E=e iz, «>0 vyeV, Vre[0, 1], Vte[0,T. (1.7)
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Proof of the above lemma is elementary. Let there be given functions:
u=u(x,t), 0<u(x, <1 ae. in Q0
ueL*(0)
B0 T 7) (1.8)
e e 20, T;8), S=H12(I)
Yo H
then [4] there exists the unique solution
y=y,€ W0, T) 1.9)

of the following parabolic equation:

(;j—;v ), Z)V’V+a“ (3@, 2)=(f @), 2)vv+ (0 (), 72)s's, VzeV
ae. in [0,T] (1.10)
¥ =y, (1.11)
where by yze H'/?(I')=S we denote trace [4] of ze H'(Q).

ReMARK 1. Formally problem (1.10), (1.11) can be interpreted as follows:

BY 8( ay)
aiy|=f (60eQ

ot ~ %
=

8}ﬁ+ - (1.12)
31’1 g)’-—(ﬂ, (17 t)e
¥ (x, 0) =y, (x), xeQ

RemMARK 2. If we assume more regularity for function ¢, that is ¢ € L? (X), then
duality pairing (-, «)s's coincides with scalar product of L2 (I').
Let us denote by U a subset of the Banach space L® (Q), given by

U={ueL*(@Q)0<u(x, H<1, ae. in 0} (1.13)

LEMMA 2. Assume mappings
[0,1]13r a;(r, -, -)eL*(0), i=1, ..,n (1.14)
B lsreglr e LB (E), (1.15)
to be Lipschitzian, then mapping generated by (1.10) (1.11)

L*>(Q)>Usur>y,e W0, T) (1.16)
is continuous.

Proof is given in [11].
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RemARk. If mappings (1.14), (1.15) are differentiable, then the mapping (1.16) is
differentiable [11].

2. Parametric optimization problem

Let there be given a Hilbert space U of controls (parameters) such that

vers 2.1
with continuous imbedding © : 2.1

Example. If u=u(t) depends only on time variable # € [0, 7], then U=H* (0, T)
may be chosen and (2.1) is satisfied.

We assume, that the set of admissible controls U,;< U is a bounded, convex
and closed subset of U.

Let z, e L? (Q) be given function.
Our problem of parametric optimization is the following:

(P) minimize cost functional

1 v
J@=75 [ (uls D=z det— Iy, v>0 @2
Q
subject to ue U,y and the state equation (1.10), (1.11).

LEMMA 3. Assume set U,y to be a compact subset of L* (Q), then there exists a
solution @€ Uy, to (P).

Proof. Lemma 3 follows from Lemma 2 and Weierstrass theorem. In the se-
qual for the sake of simplicity we assume that the set U,, has the following form:

Una={ue H' (0, T)0O<u()<1,

du .
gisl a.e. in [0, T']}. (2.3)

LEmMMA 4. Set (2.3) is a compact subset of Banach space C [0, T'].

Proof. Set U,, being convex, bounded and closed subset of Hilbert space
H' (0, T) is weakly compact. By imbedding theorem [4] it is a compact subset of

!
Sobolew space H=#(0, T), Ve>0,
Taking advantage of the imbedding H'/2%%(0, T)=C (0, T) which is continuous

V>0 [4], we obtain required result. From Lemmas 3 and 4 we get,

THEOREM 1. For U,y of the form (2.3) there exists an optimal control tie U,y to
the problem (P).

ReMARK. Theorem 1 is valid in general case, for problem (P) with cost functional

f the fi <
S T, 7, we Usg
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where functional
I(-, - ): L0, T)x WO, T)—R.

is assumed to be continuous.

3. External approximation — discretization of the domain

In this section we introduce the clasical concept of discretization of domains
Q and Q in order to define some spaces of step functions over discretized domain
Q,, Q. where 7=(h, At) denotes vector parameter of discretization; A, At correspond
to discretization of space and time variables respectively.

We also shortly describe some regularity properties of discretization of the do-
main 2, which were introduced by Cea [2]. These regularity properties are satis-
fied provided that domain @ has piecewise Lipschitzian boundary I. They ensure
existence of limits, in some sense, of sequences of traces of steps functions.

We Genote By s Bl

he= 302
1=

|22 = 1A+ (41)?, where =(h, 41).

By t—0 (resp. #—0) we mean [7]>—0 (resp. |h[*—0).

For given parameter 4 we introduce mesh R, of nodal points M, where M=
(s iy wor Ju» By) € RY, ), 1 — integers.

For given parameter 4, mesh R, corresponds to discretization of space variable x.

Let M=(my, ..., m,) be given point of R, we define two sets:

n hi hi
: =I l = myt— )
Qh(M: ()) L1 [Inl 2 3 ml 2 [ (3 1)
0,(M. )= | 0,(M+%(ji hy+...+ju )3 0) (3.2)
JJ|<t

where |jl=j;+...+J,
El =k, 0, 55 0)

ﬁn:(O: weesy 05 hn)'

We denote by @ (k) subset of mesh R, corresponding, in some sense, to the
domain Q: '

Q) ={M e R,|0,(M; 1) N Q+#D} (3.3)
and we set:
Q= U 0,(M:0). (3.4)
MeQ(h)

Let there be given a subset I,&1.
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DerNiTION 1. Collection of points A € Q (k) such that
0,(M;0)NT,#D (3.5)
will be called “the set of boundary points of 2 (%) with respect to I,”.
For given point M € Q (h), we denote
Q,=02n0,(M;0) (3.6)
Iy=In0,(M;0). , G.7

DEFINITION 2. Family {I',, Ry}y>o is called “pre-regular” if for any given point
M e Q (h) which belongs to the set of boundary points of Q (h) with respect to
T, the following conditions are satisfied:

(i) there exists an integer i=i(M), i=1, ..., n, which will be called “Index of
regularity of point M” such that:
hi [Ty < C|Qy] (3-8)
where
Ful= [ dI, 1Qul= [ de;
s 2m

(ii) at least one of the following inclusions takes place:
O I'ycQ or o] Iy=Q 3.9
where
OF Dyp={x=(%1, ves Xn) | (15 o5 Xpts X3 —PHsy Xy 15 ooy X) € Ty (3.10)
p>0, 0<ph;<l}, 1>0;
07 L= = ) ven g T o oy Xty Kk PHis Kot ooy X € Lo P),

O<ph,<l}, [>0; (3.1
(iii) constants C,/ do not depend on 4.

DerNITION 3. Family {I, Ry},so is called “regular” if there exists a finite cover
{I'}yca of boundary I'=22, such that:

(i) all boundary points M e Q (k) corresponding to given set I', have the same
index of regularity i (M)=i (v) and family {I,, R,}s>o is pre-regular;
(ii) at least one of the following inclusions holds:

o Iy,e@ or 87 el (3.12)
where
ay Iy= UJ S Ta (3.13)
MeQh)
I'yn0,(M;0)#Q)
srE= () & Ty (3.14)
MeQ(h)

I'yn0p(M;0)# (s
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(iii) for & small enough, at least one of the following inclusions holds:

0, I,c6Q or 6, I,céQ;, i=i(v) (3.15)
where :
Oy Ly=d," T\Joy T (3.16)
o =0T, 3.17)
0Q; =N\ INQ; (3.18)
and

Qr={X=(X1, .00, %) ER(X 1y ees X 1, Xs —F Pl X1 4.1, .., X)ER, O0<p<1} (3.19)
Qé={x=(x1’--~a-xn)ERnl(x1='-~>xi—1:xi+%phi:xi+1y--~:xn)E‘Q, 0<P<1},

(iv) above conditions (i), (i), (iii) are satisfied Vv e 4.
We define also a mesh on the space R"**, which we use to approximate some
elements of L2 (Q), 0=0x]0, T [cR"** we put

L=(M, jd¢), M € R;, j — an integer (3.20)

and we denote by R, collection of such nodal points L.
In the same way as before we put

Q(D)={L € R|L=(M, jdi), M € @ (h), jdt € [0, T+ At[} @21
and we define 0.= J 0,(M, 0)x [jdt, (j+1) 4. (3.22)
LeQ(d)

For given 7>0, set Q, is considered to be an approximation of the set Q.

Let X2, be a given subset of 2X=I"x]0, T[, assume Xo=Iox]0,T[; I <TI.

Our object now is to give suitable hypotheses on the set X, and family R, in
order to ensure regularity of the family {2, R,}. The following lemma holds:

LemMA 5. If the family {I'y, Ry} is regular then the family {X,, R} is also regular.

Proof. By regularity of family {I,, R,} there exists a finite cover {I}},e4 of
the set I'y. Define X, =1, x]0, T[, hence the family {X,},., is a finite cover of the
set X,. It is easy to see that the family {X,},. 4 satisfy all requirments of the defini-
tion 3 of regularity of family {Z,, R.}.

4. Some properties of steps functions

Steps functions are not differentiable, hence in order to approximate derivatives
of given function y=y (x), or z=z (x, f) we use so called finite differences.

We put 1
@:9) G, xi)=h—l[y(-, Xi+3h)—y (-, xi—3 )l @1

1
(90 z)(-,t)=Zt[Z(-,t+At)—-z(-,t)] 4.2)
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where 0; (resp. do) is finite difference operator with respect to space variable x;
(resp. time variable 7).

REMARK. Let us observe, that for a function defined on Q,, its finite differences
with respect to space variables are well defined on .

We denote by V,, the linear space of step functions defined on ©Q,. Elements of
Vi have form:

2()= D z(M) Wy(x), xe, @3)
MeQ®)
where
z(M)e R
1 for xe0,(M,0)

Wit (x) =
=10 for x ¢ 0, (M, 0).

We define two norms |-y, ||+l in V3,  namely

oy =hy ke ) 22 (M) 44
MeQ () d
Wl =1z0l2 + 3 102 zallZaa)- (4.5)
i=1

These norms can be considered as discrete versions of norms in L? (£) and
H*(Q) respectively.
We denote by E, the linear space of step functions defined on set O, corres-
ponding to mesh O (z), we consider elements of E, as mappings:
2.1 [0, T+ At[ > V. (4.6)
It is clear, that for a given element z, € E, there exists a sequence {z;}, i=0, 1, ...
.s N, NAt=T, such that
z,=2' telidt,(i+1) 4t[, z'e V. 4.7

We define a norm ||+, in E; which corresponds to the norm in L2(0, T; H* (.Q)),
that is:

2= D) At lle. | (4.8)

Elements of ¥, (resp. E,) are well defined on the set Q (resp. 0) hence we can
define trace '

Ya=Yulrs  VIn€ Va 4.9)
resp.
VZ,=Z|sy, VZ;€E,.

Moreover, some a priori estimations hold:
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LEMMA 6. Assume family {I', R,} to be regular, denote by i=i (v) index of regularzty
of a set I'\cT, then

@ ]|VJ’h||L2(rv)< C; (H)’h”iz(g)‘i“iai Jﬁ.”i%o))a i=i(v), Yy, Vy, Yh>0; (4.10)
(i) zellz2 2y < Ca (I2l72 gy + 18: 272 (), i=i (), Vz; € E,, VT>0; 4.11)
where constant Cy (resp. C,) does not depend on h (resp. 7).

Proof of (i) is given in Cea [2], and of (ii) in [11].
REMARK. We derive some properties of step functions, which can be verified by using

of above lemma, provided that the family {I, R,} is regular:
(i) given sequence y, € V3, let for h—0:

Mle—y in L*(Q)  strongly (resp. weakly) 4.12)
dy
9; Vala— é-x*in L2(Q)  strongly (resp. weakly) i=1,..,n

for some y e H*(Q), then
yp—yy in L2(I) strongly (resp. weakly);
(ii) given sequence z, e E,, let for t—0:

zr|0—>z‘in L2 (Q) strongly (resp. weakly)

0 Z o= 5 m L2,Q) strongly (resp. weakly) i=1, Tl (4.13)

ox;
for some zeL*(0, T; H' (2)), then
‘ yz,—yz in L2 () strong}y (resp. weakly).
For given element y, eV, (resp. z, € E;) we put
Puru=0nlos & ilas s G Vil W EF @414
F=[L*(@I*' x L* ()
(resp. P, z,=(2:lg> 91 Z:lgs - On Zelos ¥22) € L* (0, T; F)).

It is easy to see, that P,e £ (V;; F) (resp. P,e & (E,; L*(0,T; F))):
We denote by o, € Z(L?(0, T; H'(Q)); L*(0, T; F)) a linear mapping

HY (Q)3y()—oy(@)eF, ae. in [0,T] - {415)
where o € & (H*(Q); F) is defined as follows:
o &y
w: H' (Q) 3 y>ay=\y, paett el eF, (4.16)
LeMMA 7. Assume ||yullh<C for h—0, then there exist an element j € H*(Q), and
a- subsequence h'—0, such that SRk : -

Py yy—wy weakly in F.
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LEMMA 8. Assume ||z,l,< C for t—0, then there exists an element e L?* (0, T; H' (Q))
and a subsequence t'—0, such that

P,z—w, Z weakly in L* (0, T; F).

Lemma 7 is proved in [2], lemma 8 in [12]. To define finite dimensional approx-
imation of the problem (P) we have to have:

(i) approximation of the set U,

(ii) approximation of the state equation (1.10), (1.11).
First we define an approximation of the set U,,.
For given 7>0 we set

Uza={u. € H' (0, T)0<u()<1, (4.17)

du, -
E;(t):f% v, Wi(t), NAt=T, 0<v;<1, I=1, ..., N}

where
1, te[ide, (+1) 4]

Wi ()= {
0,1 ¢ [i 4t, (i+1) 41].

REMARK. Set U;, depends in fact only on At
Family {U},} constitute an approximation of the set U,

LemMMA 9. Given sequence u,e U, At>0, then there exists subsequence At'—0
and an element @ € U,y such that uy 7551 weakly in H (0, T) and also uy 77557 i
strongly in L (0, T).

Proof. Set U,, is bounded in H*(0, T) and U},=U,,, for every v>0, hence
lletellgre 0,1y < Cs VT>0,
then for some ye H' (0, T) and some subsequence 7'—0 we have
uy—y weakly in H*(0, T)

but U,, is weakly compact hence y=ie U,,.
By compactness of the imbedding H! (0, T)=L® (0, T) we have

u—i strongly in L® (0, 7).
In order to extend in some sense bilinear form (1.4) to the space V;, >0 we put
a,(t; oy, 0z)=a,(t;y,2) Vy, z€ H' (2)

Yue U,,, Vte[0, T]. (4.18)
Bilinear form

a’,i(-, ): Vax Vi3 Vns Za) = @y (= 5 Py Yo, Py 2,) € L™ (0, T)) (4.19)
is then well defined.
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For given element u, e U;, we put
1 N=1,G+D4e i
@, (t; Yu> Zn) =1 i;(; ( iAjt. aﬁ, (5 Yus 20) dt) Wi(t) VywzueVy. (420)
LemmA 10. Assume:
Py, o> w, ¥ strongly in L*(0, T'; F)
P, z,—=5~ w, Z weakly in L*(0, T; F) 4.21)
u,—i weakly in H*(0,T)
then:
a; (+5 Ve 2) =y (+; ¥, Z) weakly in L (0, T). (4.22)
Proof. Let us define
Ay, e L” (0, T; & (Vi Vi) (4.23)
by equality
a,(+; Py Y, Py z)= (Ah(') Yhs Zh)h . (4.24)
It can be checked that if for h—0 '
P, y,—~wy strongly in F, ye H*(Q)
P, z;—wz weakly in F, ze H' (Q)
u,—u strongly in L® (0, T)
then
(AZ',,(') Vns Zh)h—’au(' ; ¥, z) strongly in L*(0, T). (4.25)
Formula (4.20) gives us in fact an approximation of the sequence
AL ()eL*(0,T; £ (Vi V) (4.26)
by means of steps functions
A, ()eL? (0, T3 L (Ve V,,)), p=1 4.27)
where
(i+1)4de
A()=— f At (s) ds=AL, t € [idt,(i+1) 4] (4.28)
ide
It can be checked [12] that if for Af—0
u,—1 strongly in L* (0, T) (4.29)
then
A.(-)-A4()

strongly in L? (0, T; & (V3, Vi), Vp € {1, oo[.

(4.30)

Combining (4.25), (4.30) and some results of Temam [12] (p. 245) we obtain

the required result.
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5. External approximation of linear parabolic equation with
mixed Neumann boundary conditions

Now we are in the position to define a finite dimensional approximation of
state equation (1.10), (1.11).
Let us assume, that domain @ has extension property of order 1, that is there
exists linear bounded mapping
Pe Z(H*(Q): H*(RM) N Z (L*(Q); L*(R") 5.1
such that |
(Py) (x)=y(x) a.e. in 2, Yye H'(Q). (5.2)
In order to approximate elements of functional spaces L?(Q), H 1‘(Q), L2 (F),
L? (%), L*?(Q), we introduce the following restriction operators:
(i) restriction operator r,e £ (H'(Q); V,):
a3) ) =Chr-ooh)™t [ (PY) (¥) dx, Yy e H (@), (5.3)
0, (M;0)

xe0,(M;0), Me Q(h), h;>0;

(i) restriction operator rye & (L*(Q); V3):
2 ) @=(y-oh)™t [ F() dx, VyeL*(Q), (5.4)
05, (M3 0) '
xe0,(M:;0), MeQh), h>0;
(iii) restriction operator p, € & (L*(I); V},):
(orw) () =(hy=coby)™? f w (x) (YWn (x)) dT, (5.5)
04 (M;0) Al
Yy e L2(I'), x €0, (M; 0), M € Q(h), h; >0,
where
~ z(x), xeQ
Z(x)= p
0 ,x¢Q

The above operators have the fol!owing properties [2], [8], [12]:

l(i) Pt Yo~ wy strongly in F, (5.6)
Vye H (Q); |
1) r,‘ﬁzm% 7 strongly in L? (R™ (5.7
. VyeL*(Q);
(iii) (Pu V> Y= f P WY, dQ m-*fwﬁ dF, -+ - (5.8)
_ . B B i

PP e
32 Dl

YweL?(I'), if P,y,—~wy weakly in F. ...
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(7

We denote by £,, ¢, finite dimensional approximations of fe L? (Q) and ¢ € L? (X)

respectively, that is:
1 (i+1)4e

fi=ft(t)=2—t f rp f(s) ds, t e [idt, i+ 1) 4¢[, i=0,1,.., N, (5.9)

idt
(i41) 4t

o=0.00=" [ puo@ds telidt (+) 4, i=0,1,.,N (5.10)

idt
For given parameter t>0 we denote by .
Y. ()=p.(u:; D EE, (5.11)
the solution of the following equation
(@0 . @), va)u+ai (23w (0, v) =(£ @), v+ (0: (), T)ns Vo€ Vi (5.12)
a.e. i [0, T
7 0)=r 7 (5.13)
where w, (t)=y, (t+ 41).

REMARK. (5.12), (5.13) is an implicit difference scheme for the problem (1.10), (1.11),
and it is well known that the following result takes place:

LeMMA 11. Assume that there exists constant «.>0 such that
a;("? Py yps Py yp) = ”J’h”f 9 (5.14)
then Y©>0 there exists the unique solution to the problem (5.12), (5.13).

The following theorem is a variant of general theorem which is given in [12].

THEOREM 2. Assume:
u,—~i weakly in H*(0,T), u,ie U, (5.15)

then: the sequence of solutions of problem (5.12), (5.13) converges. to-the solution
Y of the problem (1.10), (1.11) with u=u in the following sense:

P, w, o>, y; strongly in L?(0, T; F) : (5.16)
9o(T)—y-(T) strongly in L?(R"). (5.17)

6. Approximation of parametric optimization problem

For given parameter >0 we define optimization problem:
(P,): minimize :

v 1 3
L) = o0t 5 [ Ou(T ) =020 () dx (6.1)
2
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subject to (5.12), (5.13) and
u, € UY, 6.2)

REMARK. Problem (P,) is finite dimensional for each 7>0. In (6.1) second integral
may be taken either over @, or over Q, it has no importance.
Let us denote by #, a solution of the problem (P,).

THEOREM 3. Let i€ U,y be a weak accumulation point of the sequence {il.}, that
is for some subsequence tv'—0, d,—i weakly in H* (0, T), then:

(i) @y 7=~ u strongly in L® (0, T);

(i) @ is a solution of (P);

(l”) Je (ﬁt')) ?—TO_)J(IZ)

Proof. By lemma 9 we have (i). We may use theorem 2, hence

Yoo (T, ) 75057 y2 (T)

strongly in L? (R"), then

[ (e @ x) =520 X)) dx > [ (72 (T, x)—za(x))? dx.

Let {v./} be any sequence such that, v, € U%, and

vy o U strongly in H*(0, T')
then
J (@) =lim J, (v,) = 1im J, (i) =J (i)

hence # is a solution to the problem (P) and

J(@)=J (i)
which implies (iii). Q.E.D.
7. Numerical example

Let us consider the following example of parametric optimization problem:
(P,) minimize

e 5 i
J(v)=—2-fvz () ds+ [ o(x, H=5(x—17dx, >0
0 [
subject to ve L? (0, T) and state equation:

dy 32y_ .
5 (5, 0= F ((L0) (0) 3 = (=122, €10, 1 40, 5[

0
—5(0, n+g((Lv) (1) (0, )=98 £, x=0, t]0, 5[
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d
2 (0 +8((LY) () (1, 9=0
x=1, te]0,5 ][

y 6 0)=0. xe€]0, 1]
where

t

(Lo) () =e~" f So(s)ds, VoeL?(0,5)

0
F)=1+u*
gw)=1/0.01+u3).
Let us observe, that for any ¢>0
J(@)=0<v=0=0
hence problem (P;) has the unique solution »=0.

There were used a gradient method of Polak—Ribiere [7] to minimize discrete
cost functional. For starting point

20 te0;2.5]
-5 te[2.5;5]

U=

and parameters 2#=0.1, 4¢=1 there were obtained the following numerical results:
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Fig. 1. Cost functional J; (v,) Fig. 2. Norm of the gradient of the cost

functional J (v.)
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Conclusions. For the above example numerical results were good. But it seems
that such results cannot be expected in general case because for small values of
parameter ¢ the cost functional is not convex.
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Aproksymacja zewnetrzna pewnego problemu optymalizacji
parametrycznej dla réwnan parabolicznych

Rozwazono zadanie sterowania optymalnego ukladu opisywanego liniowym rownaniem para-
bolicznym z mieszanymi warunkami brzegowymi. Wspolczynniki rownania zaleza od sterowania
a funkcjonat jakosci od stanu koficowego. Dla przyblizonego rEzwiazania tego zadania zastosowano
aproksymacje zewnetrzna (réznicowa). Wykazuje sie zbieznof¢ takiej aproksymacji.

Wyniki teoretyczne zilustrowano przykladem numerycznym.

Buenmas - annpoKcHMagusi HEKOTOPoil 321aYu  napaMerph-
YeCcKoil ONTHMH3AINN IS NapaGonHuecKuX ypaBHeHHit

PaccMaTpuBaerCst 3aava ONTHMANBHOTO YIPABICHUS ‘CHCTEMBI ONMCHIBAEMOI JTHHEHHBIM
napaGoauIecKuM ‘ypaBHEHHEM CO CMEUIAHHBIMH TDAHUYHBIME ycroBusamu. KoabduuwmenTs! ypas-
HEHMsT 3aBHCST OT YIPaBIeHHS, a (YHKIMOHAJ KaYecTBa OT KOHEYHOTO cocTosmus, Jis npubmi-
KEHHOTO DEIICHHS 3a/a4M MCHOJB3YeTCS BHEIIHSS (Da3HOCTHAS) ammpoxcuMarms, IlokasaHa
CXOZMMOCTE TaKOif ammpokcuMaiiy. TeopeTHyeckye pesynbTaThl HIIIOCTPUPYIOTCS Ha YHCICHHOM
IIpHEMEpe.




