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A new performance index for the parametric synthesis of multivariable control systems has
been proposed. This performance index is of a form of a ration of the value of the system’s Lya-
punov function at a chosen time 7> 0 to the value of this function at the initial time. Relationship
between this performance index and square mean indexes in case of linear systems has been shown.
Choice of initial conditions for which the synthesis is performed has been discussed.

1. Introduction

There are many control systems in which, the controller’s goal is to bring the
controlled parameters of the system to the vicinity of the working point, in the
shortest possible time after appearance of a big disturbance. For example, a controller
that maintains tension and frequency of a power generating unit should restore
the state close to nominal after a short circuit or other rapid changes of load in
some section of the system.

The basic problem of designing such types of control systems is to obtain systems’
parameters that make acceptable a compromise between overshoots of particular
variables and the rate of response of the system to the control error. In general,
minimization of mean square type indexes yields systems with too big overshoots.
A few years ago modal synthesis technique was popular [1, 4], however in many
multivariable systems it is rather difficult to give modal values that yield desired
characteristics of the system [6].

In the present paper a performance criterion is proposed which gives fast and
at the same time sufficiently damped behaviour of the system.
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2. Model of the system and definition of the performance
index

2.1. General case

Consider the following system
x=f(x,u), x(0)=x, (1)
y=g ), (2)

where
x=x ()€ R" is a state vector at time ¢,
y=y(t) e R is a vector of outputs at time 7,
u=u(t)e R? is a vector controls at time #,

fR"X R"—>R",
‘ 3
g:R'—>R*. @
Assume, that the control u is a function of parameters F, which must be de-
termined, and of outputs y '

u=h(F,y), FeFcR". 4)

The set & is for the moment only assumed to contain for sure only those values
of parameters F for which the closed-loop system (1), (2), (4) is stable. Moreover,
there may be other conditions imposed on the systems in the specific cases.

~ The performance index is assumed to be of the form

Vix(T), F]

Jr(xo; F):W (%

where V (-) is a Lapunov function of system (1), (2), (4), x (T) is the state vector
at time =7

The performance index (5) expresses a ratio of a value of Lyapunov function
V at a chosen time instant 7>0 to a value of the same Lyapunov function at the
initial time instant #=0. Other words, the index J; determines damping in the time
interval (0, 7] of a function, which being a Lyapunov function, characterises stabi-
lity of the control system.

When interpreting the Lyapunov function in term of energy, the performance

index (5) shows that part of the initial energy has been retained in the system at
the time 7.

The parametric synthesis consists in determining such values of parameters F,
for which the performance index (5) assumes its minimum value.

For nonlinear systems, building a Lyapunov function in itself creats serious
problems [8, 9]. Even for linear systems construction of the performance index
of the form (5) is in general troublesome. However, for linear systems, the per-
formance index can be represented in a different, intuitively clearer form.
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Before proceeding further with the discussion, devoted exclusively to linear
systems, let us consider the dependence of the synthesis problem formulation on
the assumptions on initial condition.

In general, minimization of J (x,, F) over Fe & leads to a controller whose
parameters depend on initial conditions x,. Such a controller can be realized as
an adaptive controller. If we wish to remain in the class of conventional controller
we have the following alternatives:

— minimization of Jy (x, F) for given initial conditions

mindy(xhs F) =Ty (o5 F°) (6)
Feg
where: xz — chosen initial conditions, F°— optimum values of controller para-
meters; '
— minimization of E {Jr (x,, F}, which requires a priori knowledge of multi-

variate probability distribution p (x,)
min® E {Jr (xo, F)} =E {J1 (xo, F%); @)

FegF x, Xo

— minimization of Jr(x,, F) for the least favourable initial conditions

min max Jy (xo, F) =J1 (%0, F°) (8)

Feg x,
where x, — the least favourable initial conditions.
2.2. Linear case
For a linear time-invariant case the system’s equations as
x=Ax+Bu; x(0)=x,; y=Cx; u=Fy, ©)

where A, B, C and F are matrices of constant elements of appropriate dimensions.
As a Lyapunov function for the system (9) a quadratic form of the state vector
may be assumed [7]

V=xT(T) Ox(T); O>0. : (10)
In such a case the performance index (5) is
x"(T) Qx(T)
Jr(xo, F)'_ = 0x, . (11)

The effect of F on J; is due to the fact that the elements of Q are functions of
the elements of F. This dependence will be discussed later.

Necessary and sufficient condition for the quadratic form (10) to be a Lyapunov
function of system (9) is that the following equation should be satisfied [7]

xT (1) Ox (1) = fw xT(7) Rx(7) dr N

where R is a positive semidefite matrix (R>0).
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Equation (12) is satisfied if and only if there exists certain matrix @ >0 which
satisfies the following matrix equation

—R=(A+BFC)" Q+Q(4+BFC). (13)
Using (11) and (12) the performance index may be expressed in the form

fw xT(v) Rx (1) dt

Jr (%0, F) =" : (14)
f xT(7) Rx(z) dr

0

On the basis of (14) the following interpretation of the performance index
Jr (%o, F) may be given. If the scalar quantity x7 (r) Rx (1) is viewed as a squared
generalized control error at time 7 then the performance index (14) expresses ratio
of the generalized integral error on the time interval [T, co) to the generalized in-
tegral error on the time interval [0, o).

Thus minimization of J; (xo, F) is equivalent to elimination of maximum pos-
sible part of the generalized integral error on the time interval (0, 7') for (14) can
be wrilten in the form

fT xT(7) Rx () dr
Jr (2, F)=1—5 : (15)
j xT(7) Rx(7) dr

0

Minimization of (14) is equivalent to maximization of the second term of the
right hand side of (15), which is equal to the ratio of the integral error on the time
interval (0, 7') to the integral error on the time interval (0, o) (Fig. 1).

T

I ‘
§x7(c) Rx (r) e [ (1) Rx(2)ar

Fig. 1. Example of a time profile of a generalized control error

Formulation of the performance index in the form (15), which is reduced in
practice to choosing the elements of R, most frequently diagonal, should not be
a difficult task for the system designer.
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3. Synthesis of a controller in a linear system under various
hypothesis on initial conditions

Optimal parameter values of a controller are usually determined by means of
an iterative procedure. This is complicated by the existence of local minima of the
hypersurface Jp (x,, F) in the space of parameter F. Particular computational-
algorithm to be used depends on the assumptions on initial conditions.

In the simplest case of synthesis, for chosen initial conditions and chosen T and
R the sequence of steps may be the following:

1. Assume values for the elements of F.

2. From matrix equation (13) determine Q.

3. For given x,=x; determine x (7) from the equation

x(T)=exp [(4+BFC)™] x,, .

4. Determine Jy (x5, F) from equation (11).
5. Change F in the direction of minimizing J; (x;, F).
Let us note that from (11)

Jr (x5, F)=Jp (axo, F) for a € R’ a7

so that minimization of (11) for chosen x}, is equivalent to its minimization for all
x, being on the straight line passing through the origin and point x=x}, (Fig. 2).

Fig. 2. Geometrical interpretation of relation (17)

When the probability distribution p (x,) of initial conditions is known, the
synthesis is much more complicated as for chosen F expection of Jy (xo, F) must
be calculated

E{Jr (0, F)}= [ T1(x0, F) p (x0) d2 (x,) (18)
2 (x0)
where Q (x,) is the set of all possible values of x,.

The case of controller synthesis for the least favourable initial condition will
be now discussed in more detail.

It should be emphasized that determining the least favourable initial conditions
within the bounded region of their possible values is computationally very difficult.




42 J. GUTENBAUM, F. NICOLO

Note, that on the basis of (17) the problem of determining the least favourable
initial conditions in any bounded region £ which has a nonempty interior in:z-di-
‘mensional space, containing the origin is equivalent to the problem of determining
such initial conditions in the whole space, as

VX, € R", Jue R': ax,=x5 € QcR". (19)

However, if the region of admissible initial conditions has no interior in
n-dimensional space then determining the least favourable initial conditions in the
whole space we take into account also those initial conditions that can not take
place. .

In the synthesis of a controller for the least favourable initial conditions in the
whole space extremum characteristics of quadratic forms’ ratio may be used [3].

Substitution of (16) in (11) yields

e
_ xo on
JT(xO’F)_ xT on : (20)
‘where
Q=exp’ [(A+BFC) T] Q exp [(4+BFC) T]. (21)
Let J; (F) denote maximum value of Jy (x,, F) for given F. Then
X0 0%

JT(F)—mjluXJT(xo: F)-—ch 0%,
where x, denotes the initial conditions for which the right hand side term of (20)
assumes its maximum value. ‘
On the basis of the theorem on extremum characteristics of a quadratic forms’
ratio [3] J; (F) is equal to the largest root of the equation

det(é-—,uQ)=0. (23)

It follows from (23) that J; (F) is equal to the largest eigenvalue of matrix

0.
In the case of controller synthesis based on minimization of J; (F) the sequence
of steps is following:
1. Assume values for elements of F.
. Calculate matrix Q from matrix equation (13).
. Calculate @ from (21).
. Calculate the largest eigenvalue of matrix Q=1 Q
. Change F in the direction of minimization of Jy (F).

(22)

[ T SNEOSI S ]

4. Choice of starting values for the elements of F in the
optimization procedure

The most serious computational problem of determining the optimal value of
F is created by the necessity of determining global extremum of J; (F) over F. To
facilitate this problem it is suggested to minimize first a geometrical mean of eigne-
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values of matrix @~ ! ) what can be done rather easily. Justification of this approach
follows from the fact that values of J; (x4, F) change from the smallest to the largest
eigenvalue of Q~! @ when x, changes over an unbounded region.

The matrix F obtained as a result of minimization of the geometrical mean can
be used as a starting value for the optimization procedure J; (F).

To compute the geometrical mean of eigenvalues of a matrix a formula known
from matrix analysis [3] may be used

det(@ Q)= [ (24)

where y; are the eigenvalues of @' @ (note that this is a symmetric positive de-
finite matrix).

If the geometrical mean of the eigenvalues of Q' is denoted by J; (F),
then from (24) :

Jr(F)=[det (@~ Q)]'/". (25)
Substituting (21) to (25) we get
Jr (F)={det exp [(4+ BFC) T]}*™. (26)
Then from
detexp [(4+BFC) T]=exp {Tr [(4+ BFC) T} 27)
follows
Jr(F)={exp {Tr [(4+ BFC) T|} }*"" (28)
or
In JNT(F)=§Tr (A+BFC). 28")

Formula (28) or (28') may be used in the following way:

— set a sufficiently small value of J; (F);

— find out whethear there exists F for which equation (28") is satisfied for the
assumed value of J; (F), if not — increase J, (F) until required F is found;

— use the matrix F thus obtained as a starting value for the optimizing proce-
dure of J; (F). ’

5. Example

Consider a second order system
X=X
(29)
X, =dy x1+a2 X2+U.

The controller equation i§ of the form

w=f, %1 +J2 %3 (30)
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Choose
R=diag (ry, r,). (31)

State equations of the closed-loop system corresponding to (29) and (30) are

) (32)
x2=01 Yl -{—612 X
where
dy=a;+f1,
" (33)
612 =02 +f2 .

Parameters @, and d, instead of f; and f, will be viewed as variables for con-
venience.
Assume that the set # is given by stability conditions

a,<0;a,<0 (34)
or
S fi<—a fo<—a;,.

From matrix equation (13) we have

1[(52—!— 1)' +ﬁ1_
‘]11—2 a, a, Iy a, |

G12=q51=1,/248, (35)

Iy,

1 (r1+ )
gzz“Zdz a, Fa. ).

Values of J; (F) were determined numerically from equations (13) (21) and
~2

a
(23). For dl+—42—<0 we have

E sin T
coswT +—sin wT
0]

exp (A+BFC)T]=

) .
- : exp (—¢&T)  (36)
<
= (— B a)) sinoT coswT——sin wT
W W

&4
o=y ThT s

Results for T'=4, r;=r,=1 will be discussed.
Starting values for optimization are obtained, according to (28), from the
equation
InJ; (4,)=Ta, . (37

Setting J; (@,)=0.02 we get from (37) d,=—1.
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Figure 3 presents changes of parameters in the optimization procedure for three
different starting points @,. It can be seen that the procedure has been stopping at
several points on the (4, @,) plane. It has not been discovered whether this resulted
from a flat ridge of J; (d,) in the vicinity of an extremum or from existence of local
extrema.

LA
4 @’_0-

c
3 e T
P R £ .
I_

| ‘ ! ! J'5’>

0 1 2 3 4 G

Fig. 3. Changes of parametets d; and &, in the optimization procedure for various initial values
of the parameters

Fig. 4. Trajectories of system (32) for @, = —2.165, a,= —2.5 against a background of isoquents of ¥

The optimal values of the parameters give a system whose states change in time in
an oscillatory manner with considerable damping, which tesifies usefulness of the
chosen performance index. Thisisillustrated by the curve @ =0 on Fig. 3 which determ-
ines a boundary between oscillatory and aperiodic behaviour of the system’s state.

Figure 4 presents trajectories of the system on (x,, x,) plane and isoquents of
Lyapunov function corresponding to the values @, = —2.165 and 4, = —2.5 obtained
from the optimization procedure (curve a on Fig. 3)

V=121 x2+2x0.23x, x,+0.29 x2. (38)
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6. Conclusions

A new performance index for the parametric synthesis of multivariable control
systems has been proposed. The performance index considered is of a form of a
ration of the values of Lyapunov function of the system at time 7>0 to the value
of this function at the initial time.

Physical interpretation of the performance index shows reasonability of its
application to the synthesis of systems requiring fast damping of large control
errors with moderate overshoots while small deviations from the working point
have no greater significance. The above example of controller synthesis for a second
order system supports this view.

Choice of initial conditions used in the synthesis was discussed, with the empha-
sis on the synthesis in case of the least favourable initial conditions.
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Synteza liniowych wielowymiarowych ukladéw regulacji ma
podstawic wskaznika jakeéci charakteryzujacego stopien
tlumienia przebiegdéw

Zaproponowano nowy wskaznik jakosci do syntezy parametrycznej wielowymiarowych ukta-
déw regulacji. Wskaznikiem tym jest stosunek wartosci funkcji Lapunowa ukladu w wybranej
chwili 7>0 do wartoéci tej funkcji w chwili poczatkowej. Pokazano zwigzek tego wskaznika z
wskaznikami $redniokwadratowymi w przypadku uktadow liniowych. Omowiono wybor warunkow
poczatkowych, dla ktorych dokonuje si¢ syntezy.
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Podano przyklad ilustrujacy celowos$é zastosowania zaproponowanego wskaznika do syntezy
ukladow wymagajacych szybkiego tlumienia uchybu regulacji przy umiarkowanych przeregulo-
waniach.

CuHTe3 JMHEHHBIX MHOTOMEPHBIX CHCTEM peryJHpoBaHusT
HA OCHOBE MOKA3aTels KayecTBa oOUpeJe/sIONEro CTeleHb
HeMIgupoBaHNs MPOUECCOB

TIpenmaraercs HOBBIM MOKa3aTelb KayeCcTBAa TSI UAPAMETPHYECKOTO CHHTE3a MHOIOMEPHBIX.
CHCTEM pEryJIMpOBaHWs. TaKuM TIOKa3aTesieM SIBIAETCS OTHOLIEHWe 3HayeHus (ynkoum Jldmy-
HOBa CHCTEMBI B BHIOpaHHBIN MOMeHT 7>0 K 3HAYCHHWIO 3TON (YHKIMH B HAYAIBLHBIM -MOMEHT
BpemMenn. [Toka3aHa CBs3b 3TOrO IOKa3aTelNlsd ¥ CPeIHEKBAIPATHIX TOKA3aTeleil B Cllyyae JIHHEIHBIX
cucrem. PaccMOTPeH BRIOOp HayalbHBIX YCIOBHU IS KOTOPBIX MPOBOAMTCS cHHTE3. [daH mpumep
MIIIFOCTPUPYFOIIKN  1e7ecO00pasHOCTh IPUMEHEHHsT IPeUIaraeMoro IoKaszaTesiss K CHHTE3Y
CHCTEM TPEIYIOUMX OBICTPOro HorauieHus OTKJIOHEHHS PEeryJiMpOBaHHA B Cilydae CpEIHEro me-
peperyIrpOBaHus.







