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A new performance index for the parametric synthesis of multivariable control systems has 
been proposed. This performance index is of a form of a ration of the value of the system's Lya
punov function at a chosen time T> 0 - to the value of this function at the initial time. Relationship 
between this performance index and square mean indexes in case of linear systems has been shown. 
Choice of initial conditions for which the synthesis is performed has been discussed. 

1. Introduction 

There are many control systems in which, the controller's goal is to bring the 
controlled parameters of the system to the vicinity of the working point, in the 
shortest possible time after appearance of a big disturbance. For example, a controller 
that maintains tension and frequency of a power generating unit should restore 
the state close to nominal after a short circuit or other rapid changes of load in 
some section of the system. 

The basic problem of designing such types of control systems is to obtain systems' 
parameters that make acceptable a compromise between overshoots of particular 
variables and the rate of response of the system to the control error. In general, 
minimization of mean square type indexes yields systems with too big overshoots. 
A few years ago modal synthesis technique was popular [1 , 4], however in many 
multivariable systems it is rather difficult to give modal values that yield desired 
characteristics of the system [6] . 

In the present paper a performance criterion is proposed which gives fast and 
at the same time sufficiently damped behaviour of the system. 
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2. Model of the system and definition of the performance 
index 

2.1. General case 

Consider the following system 

x=f(x, u), X (0) =Xo, 

·y=g (x), 

where 
x=x(t)ER" is a state vector at timet, 
y = y (t) E Rq is a vector of outputs at time t, 
u=u (t) E RP is a vector controls at time t, 

f: R" X RP->R"' 

g:R"->Rq. 
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(1) 

(2) 

(3) 

Assume, that the control u is a function of parameters F, which must be de-
termined, and of outputs y · ' 

u=h(F,y), FE:FcR"'. (4) 

The set :F is for the moment only assumed to contain for sure only those values 
of parameters F for which the closed-loop system (1), (2), (4) is stable. Moreover, 
there may be other conditions imposed on the systems in the specific cases. 

The performance index is assumed to be of the form 

V[x (T), F] 
lr(X0 ,F)= V(xo,F) (5) 

where V ( ·) is a Lapunov function of system (1), (2), ( 4), x (T) is the state vector 
at time t =T. 

The performance index (5) expresses a ratio of a value of Lyapunov function 
V at a chosen time instant T> 0 to a value of the same Lyajmnov function at the 
initial time instant t =0. Other words, the index JT determines damping in the time 
inte.rval (0, T] of a function, which being a Lyapunov function, characterises stabi
lity of the control system. 

When interpreting the Lyapunov function in term of energy, the performance 
index (5) shows that part of the initial energy has been retained in the system at 
the time T. 

The parametric synthesis consists in determining such values of parameters F, 
for which the performance inde~ (5) assumes its minimum value. 

For nonlinear systems, building a Lyapunov function in itself creats serious 
problems [8, 9]. Even for linear systems construction of the performance index 
of the form (5) is in general troublesome. However, for linear systems, the per
formance index can be represented in a different, intuitively clearer form. 
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Before proceeding further with the discussion, devoted exclusively to linear 
systems, let us consider the dependence of the synthesis problem formulation on 
the assumptions on initial condition. 

In general, minimization of lr (x0 , F) over Fe, ff leads to a controller whose 
parameters depend on initial conditions x 0 . Such a controller can be realized as 
an adaptive controller. If we wish to remain in the class of conventional controller 
we have the following alternatives: 

-minimization of lr (x0 , F) for given initial conditions 

(6) 

where: x~- chosen initial conditions, F 0
- optimum values of controller para-

meters; , 
-minimization of E {lr (x0 , F}, which requires a priori knowledge of multi-

x o 

variate probability distribution p (x0 ) 

-minimization of lr (x0 , F) for the least favourable initial conditions 

min max lr (x0 , F) =lr (xo, P) 

where x0 - the least favourable initial conditions. 

2.2. Linear case 

For a linear time-invariant case the system's equations as 

x=Ax+Bu; X (0) =xo ; y=Cx; lt=Fy ' 

(7) 

(8) 

(9) 

where A, B, C and F are matrices of constant elements of appropriate dimensions. 
As a Lyapunov function for the system (9) a quadratic form of the state vector 

may be assumed [7] 

V=xr(T) Qx(T); Q>O. (10) 

In such a case the performance index (5) IS 

(11) 

The effect ofF on lr is due to the fact that the elements of Q are functions of 
the elements of F. This dependence will be discussed later. 

Necessary and sufficient condition for the quadratic form (10) to be a Lyapunov 
function of system (9) is that the following equation should be satisfied [7] 

00 

xT(t) Qx(t)= J xT(r)Rx(r)dr (12) 

where R is a positive semidefite matrix (R~O) . 
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Equation (12) is satisfied if and only if there exists certain matrix Q>O which 
satisfies the following matrix equation 

-R=(A+BFCY Q+Q(A+BFC). (13) 

Using (11) and (12) the performance index may be expressed in the form 

00 

J xr(,)Rx(c) do 
T lr (xo, F)= _ oo _____ _ (14} 
I xr(,)Rx(c)dc 

0 

On the basis of (14) the following interpretation of the performance index 
lr (x0 , F) may be given. If the scalar quantity xr (c) Rx (c) is viewed as a squared 
generalized control error at time ' then the performance index (14) expresses ratio 
of the generalized integral error on the time interval [T, =) to the generalized in
tegral error on the time interval · [0, = ). 

Thus minimization of lr (x0 , F) is equivalent to elimination of maximum pos
sible part of the generalized integral error on the time interval (0, T) for (14) can 
be written in the form 

' 
T 

I xT(r)Rx(r)dc 
0 

J r (x0 , F) = 1 - -
00
_,..------ (15) 
J xr(,) Rx(c) do 

0 

Minimization of (14) is equivalent to maximization of the second term of the 
right hand side of (15), which is equal to the ratio of the integral error on the time 
interval (0, T) to the integral error on the time interval (0, =) (Fig. 1). 

T 

T 
T 

~ jx r(r)Rx(r)dr 
0 

~ fxr(r} Rx(r}dr 
0 

Fig. 1. Example of a time profile of a generalized control error 

Formulation of the performance index in the form (15), which is reduced in 
practice to choosing the elements of R, most frequently diagonal, should not be 
a difficult task ·for the system designer. 
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3. Synthesis of a controller in a linear system under various 
hypothesis on initial conditions 

4t 

Optimal parameter values of a controller are usually determined by lJ1eans of 
an iterative procedure. This is complicated by the existence of local minima of the 
hypersurface Jr (x0 , F) in the space of parameter F. Particular computational
algorithm to be used depends on the assumptions on initial conditions. 

In the simplest case of synthesis, for chosen initial conditions and chosen T and 
R the sequence of steps may be the following: 

1. Assume values for the elements of F. 
2. From matrix equation (13) determine Q. 
3. For given x 0 = x~ determine x (T) from the equation 

x(T) =exp ((A+ BFC)T] x~. 

4. Determine Jr (x~, F) from equation (11). 
5. Change F in the direction of minimizing Jr (x~, F). 
Let us note that from (11) 

Jr(x~,F)=Jr(rJ.x0 ,F) for li.ER' (17) 

so that minimization of (11) for chosen x~ is equivalent to its minimization for alt 
x 0 being on the straight line passing through the origin and point x =x~ (Fig. 2). 

x,. 

Fig. 2. Geometrical interpretation of relation (17) X7 

When the probability distribution p (x0 ) of initial conditions is known, the· 
synthesis is much more complicated as for chosen F expection of Jr (x 0 , F) must 
be calculated 

E{Jr(Xo,F)}= J JT(x0 ,F)p(x0 )dQ(x0 ) (18) 
Q(xo) 

where Q (x0 ) is the set of all possible values of x 0 • 

The case of controller synthesis for the least favourable initial condition will 
be now discussed in more detail. 

It should be emphasized that determining the least favourable initial conditions 
within the bounded region of their possible values is computationally very difficult. 
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Note, that on the basis of (17) the problem of determining the least favourable 
initial conditions in any bounded region Q wJ;l.ich has a nonem:pty interior in · n~di

mensional space, containing the origin is equivalent to the problem of determining 
such initial conditions in the whole space, as 

'v'x0 ER", :J(X E R1 : (XX0 =x~ E QcR". (19) 

However, if the region of admissible initial conditions has no interior in 
n-dimensional space then determining the least favourable initial conditions in the 
whole space we take into account also those initial conditions that can not take 
place. 

In the synthesis of a controller for the least favourable initial conditions in the 
whole space extremuin characteristics of quadratic forms' ratio may be used (3] . 

Substitution of (16) in (11) yields 

where 

Q=expr[(A+BFC)T] Qexp [(A+BFC)T]. 

Let JT (F) denote maximum value of lr (x0 , F) for given F. Then 

XoQXo 
JT(F)=maxly(x0 , F)= AT QA 

xo Xo Xo 

(20) 

(21) 

(22) 

where x0 denotes the initial conditions for which the right hand side term of (20) 
.assumes its maximum value. 

On the basis of the theorem on extremum characteristics of a quadratic forms' 
ratio [3] lr (F) is equal to the largest root of the equation 

det(Q- ,uQ) =0. (23) 

It follows from (23) that lr (F) is equal to the largest eigenvalue of matrix 
Q-1 Q. 

In the case of controller synthesis based on minimization of JT (F) the sequence 
of steps is following: 

I. Assume values for elements of F. 
? Calculate matrix Q from matrix equation (13) . 
3. Calculate Q from (21). 
4. Calculate the largest eigenvalue of matrix Q- 1 Q. 
5. Change F in the direction of minimizat!ion of lr (F). 

4. Choice of starting values for the elements of F in the 
optimization proced\]re 

The most serious computational problem of determining the optimal value of 
F is created by the necessity of determining global extremum of lr (F) over F. To 
facilitate this problem it is suggested to minimize first a geometrical mean of eigne-
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values of matrix Q- 1 Q what can be done rather easily. Justification of this approach 
follows from the fact that values of lr (x0 , F) change from the smallest to the largest 
eigenvalue of Q- 1 Q when x0 changes over an unbounded region. 

The matrix F obtained as a result of minimization of the geometrical mean 'can 
be used as a st<~;rting value for the optimization procedure 1r (F). 

To compute the geometrical mean of eigenvalues of a matrix a formula known 
from matrix analysis [3] may be used · 

11 

det(Q- 1 Q)= n f-l i (24) 
i::; 1 

where f-/; are the eigenvalues of Q- 1 Q (note that this is a symmetric positive de
finite matrix). 

If the geometrical mean of the eigerivalues of Q- 1 Q is denoted by lr (F), 
:then from (24) 

JT (F)= [det CQ-.1 Q)Jl ln. 

Substituting (21) to (25) we get 

J r (F)= { det exp [(A+ BFC) T]p l". 

Then from 

det exp [(A+ BFC) T] =exp {Tr [(A+ BFC) T]} 

follows 

o r 

lr(F)={exp {Tr [(A+BFC) T]}r l" 

_ 2T 
lnlr(F)= - Tr (A+BFC) . 

n 

Formula (28) or (28') may be used in the following way: 
- set a sufficiently small value of lr (F); 

(25) 

(26) 

(27) 

(28) 

(28') 

-find out whethear there exists F for which equation (28') is satisfied for the 
a ssumed value of lr (F), if not - increase lr (F) until required F is found; 

-use the matrix. F thus obtained as a starting value for the optimizing proce
dure of lr (F). 

5. Example 

Consider a second order system 

(29) 

The controller equation is of the form 

(30) 
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Choose 

(31) 

State eqtiations of the closed-loop system corresponding to (29) and (30) are 

(32) 

where 

Gz=Gz+fz. 
(33) 

Parameters ii1 and ii2 instead of[1 and / 2 will be viewed as variables for con-
vemence. 

Assume that the set §' is given by stability conditions 

(34) 

or 

/1 < -at ; fz < - Gz . 

From matrix equation (13) we have 

1 [(az 1 ) . al] q = - - +- r +- r 
1 1 2 ill Gz 1 Gz 2' 

(35) 

Values of lr (F) were determined numerically from equations (13) (21 ) and 

a~ 
(23). For ii1 +4<0 we have 

exp [(A+ BFC) T] = l
cos wT + i_ sin wT 

0) 

- ( ~ + w) sin wT 

sinwT 

l exp ( -(,T) 
~ . 

cos wT- -;- sm wT 

Results for T=4, r1 =r2 =1 will be discussed . 

(36) 

Starting values for optimization are obtained , according to (28), from the 
equation 

In JT (ii2 ) = Tii2. (37) 

Setting lr (ii2) =0.02 we get from (37) ii2 = -1. 
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Figure 3 presents changes of parameters in the optimization procedure for three 
diJferent starting points fi2 • It can be- seen that the procedure has been stopping at 
several points on the (fi1 , fi2 ) plane. It has not been discovered whether this resulted 
from a flat ridge of JT (fi2 ) in the vicinity of an extremum or from existence of local 
extrema. 

0 

c 
----,Lr 

b 

3 

,Q 
l)) • • 

4 5 

Fig. 3. Changes of paramete1s ii1 and ii2 in the optimization procedure for various initial values 
of the parameters 

..... ··· 
! 

..... 

· ... j . 
. · ~ 

Fig. 4. Trajectories of system (32) for ii1 =- 2.165, iiz =- 2.5 against a background of isoquents of V 

The optimal values of the parameters give a system whose states change in time in 
an oscillatory manner with considerable damping, which tesifies usefulness of the 
chosen performance index. This is illustrated by the curve w =0 on Fig. 3 which determ
ines a boundary between oscillatory and aperiodic behaviour of the system's state. 

Figure 4 presents trajectories of the system on (x1 , x 2 ) plane and isoquents of 
Lyapunov function corresponding to the values fi1 = -2.165 and o2 = -2.5 obtained 
from the optimization procedure (curve a on Fig. 3) 

V=1.21 xi+2x0.23x1 x2 +0.29 x~. (38) 
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6. Conclusions 

A new performance index for the parametric synthesis of multivariable control 
systems has been proposed. The performance index considered is of a form of a 
ration of the values of Lyapunov function of the system at time T> 0 to the value 
of this function at the initial time. 

Physical interpretation of the performance index shows reasonability of its 
application to the synthesis of systems requiring fast damping of large control 
errors with moderate overshoots while small deviations from the working point 
have no greater significance. The above example of controller synthesis for a second 
order system supports this view. 

Choice of initial conditions used in the synthesis was discussed, with the empha
sis on the synthesis in case of the least favourable initial conditions. 
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Synteza Iiniowych wielowymiarowych ukladow regulacji na 
podstawic wskaznika jako§ci charakteryzuj~tcego stopieii 
tlumienia przebiegow· 

Zaproponowano no'wy wskainik jakosci do syntezy parametrycznej wielowymiarowych ukla
d6w regulacji . Wskainikiem tym jest stosunek wartosci funkcji Lapunowa uk!adu w wybranej 
chwili T> 0 do wartosci tej fuokcji w chwili poczqtkowej. Pokazano zwiqzek tego wskainika z 
wskainikami sredniokwadratowymi w przypadku uk!ad6w liniowych. Om6wiono wyb6r warunk6w 
pocz11tkowych, dla kt6rych dokoriuje si~ syntezy. 

-- -----------------------------------------------------------------------------
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Podano przyklad ilustrujilCY celowosc zastosowania zaproponowanego wskaznika do syntezy 

uklad6w wymagaj'lcych szybkiego t!umienia uchybu regulacji przy umiarkowanych przeregulo

waniach. 

CnuTe3 mmeiinLIX MHoroMepHLIX cncTeM peryJinposaunSI 

Ha OCHOBC DOKa3aTCJISI Ka'ICCTBa OIJpe,!J,eJISIIOI.liCrO CTCDCHh 

)l,CMII~llpOBaHliSI DpO~CCCOB 

Ilpe)J;JiaraeTCH HOBhiH llOKa3aTeJJb Ka'ieCTBa ,!l;JJH napaMeTpH'IeCKOfO CHHTe3a MHOfOMepHhJX. 

CMCTeM perylllipOBaHHH. TaKHM IJOKa3aTeJieM HBJI5leTCH OTHOIDeHHe 3Ha'ieHM51 !j:lyHKI.IIDI JJ5IIJy

HOBa CHCTeMhl B Bhi6paHHhrH MOMeHT T> 0 K 3Ha'!eHJUO 3TOH !j:lyHKI.IllH B Ha'iaJihHhiH ·MOMeHT 

speMeHH. IloKa3aHa CB513h 3TOfO IIOKa3aTeJI51 H Cpe,!l;HeKBa,!l;paTHhiX llOKa3aTeJiei1: B CJiy'!ae JIHHeHHhiX 

CHCTeM. PaCCMOTpeH Bh!60p Ha'!aJihHh!X YCJIOBHi1: ,!l;JIH KOTOphlX 11pOBO,!l;llTCH CHHTe3. )].aH IlpHMep· 

HJIJIIOCTpHpy!Oll.IIIli l.leJiecoo6pa3HOCTb Ilpi!MeHeHH51 rrpe,!l;JiaraeMOfO IlOKa3aTeJIH K CHHTe3y 

cn.cTeM Tpe)J;YIOll.IIIX 6hiCTporo norameHMll OTKrroHeHIIll perynHposaHIIH a cny'lae cpe,I:\Hero ne

peperyJIHposamm. 




