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A finite difference approach to the problem of minimizing an integral cost functional subject
to a differential equation with delay and state and control constraints is presented in the paper.
The problem is viewed as a variational minimization problem subject to nonholomic constraints
and is treated using Lagrange multipliers. Error estimate for the control is established under
appropriate smoothness and boundedness conditions.

1. Introduction

The convergence properties of finite-difference approximation are examined
for state and control constrained optimal control problem with delay. An approx-
imation of constrained optimal control problem for system described by ordinary
differential equations was considered in a number of papers.

In [1] a finite-difference approach applied to state and control constrained
control problem gouverned by nonlinear ordinary differential equation was analysed
and the convergence result was obtained.

In [2] the Ritz—Trefftz approximation for control problem with quadratic
cost, linear dynamics and linear inequality state and control constraints was consi-
dered. The rate of convergence the solution of finite dimensional approximation
to the solution of continuous optimal control problem was estimated. The both
approaches presented in [1, 2] do not assure in general that the state of continuous
system corresponding to discrete control determined by numerical algorithm sa-
tisfies constraints. So it seems that a problem to be important for treating state
constrained optimal control problem is to find an approximation of the set of
admissible states such that the above mentioned requirement is satisfied.

In [3] a finite-difference approximation for control constrained nonlinear opti-
mal control problem with delay was anylysed and the error bound has been estab-
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50 1. LASIECKA

lished. The main purpose of this paper is to generalize the results presented in [3]
to problems of delay optimal control with constraints imposed both on state and
control.

An approximation of state constraints set different to that given in [1, 2] is pro-
posed. The method of approximation presented in the paper assures that the tra-
jectory of continuous system corresponding to discret control belongs to the set
of the admissible states. Moreover, the rate of convergence for the solution of
discret problem to the solution of continuous problem is estimated. The general
considerations are illustrated by an example.

2. Notations and conventions

H' [0, T; R"] denotes the Sobolev space defined by

dx '
H* [0, T; R"]={{x e L* [0, T;R"];*d?eL2 [0, T; R“]}- 2.1)

C [0, T; R"] denotes the space of all continuous on [0, 7] functions
with the values in R". 2.2)
The norm in C [0, T; R"] is given by |x|= sup |x (?)]
te€[0,T]

V[0, T; R*] denotes the space of bounded variation functions defi-

ned on [0, T] with the values in R" induced by the norm |x|, =var x (). (2.3)
t€[0, T]

PC [0, T; R"] — a space of piece-wise continuous functions (x: [0, T]—
— R" is called piece-wise continuous function if the number of discon-
tinuouities is finite: #,, t,, ..., ¢, and for every 1 € [0, 7] x (1) =x (—=0)). (2.4)

The norm in PC [0, 7; R"] is given by

x| = sup |x ()l

tefo, T
oy oy _ scalar product in L2 [0, T k”] 2.5)
||| —a norm in L? [0, T; R"] (2.6)
{+, «yg — scalar product in L? [Kh; (K+1) h; R"] where £>0:
m if“%is assumed to be an integer. Q2.7
I-Ilx —a norm in L? [Kh; (K+1) A, R"] (2.8)
|-] —a norm in L* [0, T; R"] (2.9)
(,) — scalar product in R® (2.10)

7 «,» — general form of functional in C [0, T; R"] i.e. (2.11)
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T
«,»:ff(r) dg (t); fe C[0,T; R"]; g V[0, T; R

P’ (x°) — Frechet derivative of operator P at the point x° (2:12)

S (x°) — partial derivative of f with respect to x at the point x° 2.13)

U (x°) — denotes a neighbourghood of x°. (2.14)
p—1
Forxe PC0, T; Blty [} H* [t te 3 B, £p=0 (2.15)
=0
=1 /| dx )
il b :
S 2( dr ||i +5’»

dx |I? "'“'dx(t)IZ
dtli—t_ dt ‘ L

t;,, i=1,...,p a point of discontinuity of x, J,2Lx (z,4+0)—x (¢,—0).

where p is the number of discontinuity points of x;

3. Continuous optimal control problem

Continuous optimal control problem statement and some smoothness pro-
perties of optimal solution are given in this section. Since the optimal control problem
can be viewed as a variational problem of minimizing a cost functional on the
Hilbert space subject to some constraints, so using Lagrange functional another
formulation of the original problem is presented.

The problem of existence of normal Lagrange’s multipliers is discussed and
some sufficient conditions of existence are formulated.

3.1. Problem description

The following optimal control problem is analysed in the paper: minimize
T

J (x, u) £ J @ (x (1), u (¢), t) dt subject to constraints:
0

dx () '
o +f(x @), x(t—h),u(),t)=0 ae. te[0,T] (3.1.1)
x(Q)=¢(Q) Qe[-h0] (3.1.2)
S(x(),t)eK tel0,T] (3.1.3)
ueQ (3.1.4)

where
xe H' [0, T; R"]; dx/dt e PC [0, T; R"]
LR R R"x [0, F]l->R"
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@:R"XR"x [0, T]-R!

S: R*x [0, T]->R* '

pe H' [—h,0; R

QcPC[0,T; R"] a given convex, closed subset of all functions u e PC [0, T; R™]
such that u is absolutely continuous function on all intervals of continuity
of u. i.e. ue H' [t;,t;,,; R™] where 1, 1,,; i=1, ..., p, the points of discon-
tinuity of w. .

K< R¥—a given closed convex cone with vertex at zero. Int K#0

Assume that the following hypothesis are satisfied: -

HI1. f(& p,n,1), D (& 7, t) are continuously differentiables for every ¢, y e R”,

neR" tel0,T]. :
H2. J (x, u) is radially unbounded i.e.:
J (x (u), u) T, 00
where x (1) denotes the solution of (3.1.1) corresponding to w.
H3. (i) S(&, t) is continuously differentiable with respect to ¢ and ¢.
(i) S (&, ¢) is K-convex i.e.

for any O0<a<l, &, & e R 1y, 1,€]0, T,
S(océ'1+(1 —a) &, ot +(1—a) 72)_0( S €y t) =l =) S(Cos ) € K.
H4. f is a strongly monotonne function i.e.:

Jou>0; Vxy, x5, € PC[0,T; R"; ue PCI0,T; R"],0<t<T

f(f(xl (z‘),y(t), Z.I(t), t) _f(xl (t),y(t),u(t), t)’xl (t)_xz (t)) dt; fﬁﬁ (t)—x2 (t)|2 dt-

Using the standard arguments simillar to that given in [4] it is easy to show that
HI1-H2 imply the existence of optimal solution. We shall refer to the above
described problem as problem P, and the optimal solution of P, will be denoted by
2%, 2

Some property of optimal solution x°, u° is given by the following:

Lemma 3.1. If hypothesis H1 and H2 are satisfied then there exists d <oco such
that

xule GeC 0, T RxPCa, T R™]

where
G- {(x,u)e C [0, T; R"|x PC [0, T; R™]; |x| <0; |u| <5}
Proof. By hypothesis H2 it can be shown (see [3]) that:
30>0, |[u°|<d.

Then after applying Theorem 1.3 given in [5] we arrive at the desired result.
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3.2. Lagrange formalism — dual control problem

Optimal control problem with constraints on control and state can be trans-
formed by duality (according to Rockefeller formalism [6]) into a dual control
problem without constraints. Hence it is a natural idea to replace the primal (ori-
ginal) problem by the dual problem. In this section the duality formalism is intro-
duced and the connections between the both problems are investigated.

Denote A (x, y, u) ()~ f (x (), y (1), u (1), £)

A:PC 0, T; R < PC [0, T; REI<PC [0, T R¥ 12 [0, T: R']
5 ) O=5(x ), 1)
S: PC D, T: R)>PC [0, T; R

Let us introduce Lagrange functional
L: B [=hT: RPI%PC [0, T; RP % L2 [0, T: R % ¥ [0, T: RF—>R*

defined by the following formula:

dx 63
L(x, 4, A, ) =J (x, )+ <;,; Ay, u)> +S@. . G2l

Since S: H' [0,-T; R"]—»C [0, T; R¥] then the dual control problem consists
in finding ' ;

max min L, u; 4 1)
ASE? [05T; R"] x€H'[-h, T; R"]
ne ~K* x(Q)=¢(Q).Qe[~h,0]
ue .

where

~ df

K= {yeCI[0,T; R*l; y(t)e K, t €0, T}
d

N (3.2.2)
K=

“{pe V[0, T; R, «x, =0 VYxe K}

In order to establish the relations between the primal problem and dual problem
we recall the following result given in [7].

Lemma 3.2 [7]. Let:

(1) E, E,, E, be Banach spaces; and McE,
(i) K,<E, be a convex cone w.th vertex at zero,
(iii) S;1: E—~E;; S,: E—FE,,
(iv) J (x°)=min J (x), where Y={xe M; S, (x)=0; S, (x) e K,},

xeY
(v) S; (x°) is a surjection on E,
(vi) 3z e Ker S; (x9), S, (x)+ S, (x°) % € Int K,
(vii) M possess a “‘good conical approximation” at x°, i.e. the set

Myo=={x e E;3e,>03U (%) VO<e<é; Vxe U(X) x°+exe M}

1S a convex cone,
(viil) 3% Ker 8, GO) riM.0; S5 (0748 () £ e K,
! f
(ix) L(x, )50 () +(Sy (0, A)g, gz +((S> @)y 1)z, 52
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Then there exists 1°e Ef;#°e —K, such that
@) o0z L (x% A% %) (x=x°)=0, Vxe M.,
(1) d;.L (x° 4% #%)=0,
(i) ((S> (x°), #%)=0. _
To apply the result of Lemma 3.2 to Problem P, with Lagrange’s functional
defined by (3.2.1) we put:
E=FH"'[0. T:R|xPC|Q, T:R"]
Ey=F> [0, T3 RY,
= C 0,75 R,
K,=R={yeC[0,T; R;y () ek, Vie[0, T]}

M=H![0, T; R]x Q - (3.24)

dx o
Sy (x z:)=E—A(x, ¥, u) where y () =x(t—h)

S, (x, w)=5 (x).

So, the optimization problem P, is reduced to finding min J (x, u) over Yo F
where Y={(x, u) e M; S; (x)=0; S, (x) € K,} with M, S}, S,, K, defined by (3.2.4).

Now we are going to verify assumptions (v), (vii) of Lemma 3.2.

It is known (see [8]) that the Volterra equation

x(0)— [ [fe (3 @, 57 () w0 () £ @+F, (x° (0, 0° @) 0 (@) F (O] di=a, (1) (3.2.5)

has a solution xe H*' [0, T; R"] for any a, € H' [0, T’; R"].

Moreover for any be L? [0, T; R"] there exists ae H' [0, T; R"] such that:
ty da
i

So, by (3.2.5) and (3.2.6) we obtain that: for any be L? [0, 7; R"] there exists
x e H' [0, T; R"] such that: '

dx
7 4 (x% ¥% u?) x— A4, (x° y°, u’) y=b.

b (3.2.6)

It means that for any b e L? [0, T; R"] there exists x € H* [0, T; R"] such that
Sy (x°, u®) (x, 0)=bh

what completes the proof of the fact that S} (x, #°) is onto E;, so assumption (v)
is satisfied.
(vii) By convexity of Q- it follows that
Moo o=\ A(u—u?)xC[0,T; R", ucQ (3.2.7)
2>0
is a convex cone, so it is a “good conical approximation” of M and assumption
(vii) is satisfied.
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The above considerations yield:

Lemma 3.3 Let:

(1) x° u° be an optimal solution of problem P,
(i) L (x, u, 4,7n) be defined by (3.2.1),
(iii) there exists (%, 2)e H' [0, T; R"]x PC [0, T'; R™]
such that:
dx (1)
dt

L (00, (1), w0 (1), 1) X () +1, (x°(0), 2° (), w® (1), 1) F (D) +

+f (x° (1), y° (0), u° (), 1) @ (£)=0 (3.2.8)
¥(Q)=0, Qe[-4,0]
and
S (x0 (), 1)+ S (x° (1), ) % (1) e Int K, V¢ € [0, T].
(iv) There exist (%, u7)e H' [0, T; R"]xQ such that (%, ) satisfy (3.2.8) and
S(x0 (1), 1)+ S (x° (1), 1), X (1) e K, YVt € [0, T]
then there exist: A°e L2 [0, T; R"], n° e —K*<=V [0, 7, RK] (K* given by (3.2.3)),
such that :
(1) <5x L (xo’ u’, ;“0> ’70)3 x—xo> +<(5y L (xoa ue, )Vo, ’70)7 J’“.V") =0
Vxe H! [-hT; R"]; x (Q)=¢ (Q) Qe [-h,0],

(1) 05 L (%% 0% 4% 17) =0, :

(iii) <9, L (x°, u®, 2%, n°), u—u°>>0 Y ue £,

(iv) «S (x%), y°»=0.

The proof of the Lemma follows immediately from Lemma 3.2 if we note that
our assumptions (iii) and (iv) respectively imply (vi) and (viii) in Lemma (3.2) and
that for M., , given by (3.2.7) point (i) in the result of Lemma 3.2 reduces to
(i) and (iii) in Lemma 3.3.

If Lagranglan L (x, u, 4,#) is strictly convex then it enjoys saddle-point pro-
perties. Actually suppose that:

La(@ Lo @ La@][*] [=
H5 Ly (@) Ly (@) L@ 2|, | 2y [lul
Nlw@ @ ze@|[«] [«]/
where y>0; g (%, i, 1, 7) is any point of some neighbourhood of the optimal
point (x°, u°, A°, 1°)

Lemma 3.4. If all assumptions of Lemma 3.3 and hypothesis H5 are satisfied
then: L (x, u, A,77) has a saddle point at (x°, u°, 2%, °) i.e.:
L (x°, u°, A, )<L (x° u°, 2°, n°)<L (x,u, 2°,n°) for any xe H' [~h, T; R"];
X (Q):(o (Q)’ Q € [_115 0]5
Ael? [0, T; R?]
ue
ne —K*.
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Proof. Expanding L (x, u, 2%, °) into Taylor series about (x°, u°) we obtain:
L (x, u, 2° 1°) =L (x° u°, 2, n°) +<6x L (x°, u®, 2°, °), x— x>+
+<0, L(x°, u®, 2°,1°), y—3°p +<{0, L (x°, w°, 2%, n°), u—u’>+ H

where H is the second derivative of the operator L evaluated at (&%, 4, 4,7)e
e U (x% u°, 2%, n°).

After applying Hypothesis H5 and Lemma 3.3 we arrive at:
L(x,u, 20192 L (x°, u°, 7%, 1°) Vu e Q

what proves the right-hand side inequality. The left-hand side inequality results
from the fact that:

) dxo +A 0 0 0
<‘~»; dt (x,y,u)>:0

«8 (x°), ;<0 Vye —K*.

and

Namely,
dx?
L(x% u? 2% o) =J (x2, w®)=T (6% v°) -+ </1, ar + A4 (x°% »°, u”)> +
+«S (x°), pp=L (x°, u°, A, 7)) Vn e —K*. Q.E.D.

Observe that hypothesis H5 implies the uniqueness of optimal solution to
problem P,. '

Summing up the results obtained in this section we conclude that the equi-
valence of primal and dual problem was established providing that hypothesis H5
and assumptions of Lemma 3.3 are satisfied.

4. Discrete optimal control problem

The main goal of this section is to approximate continuous optimal control
problem by finite dimensional one. To do that the finite-difference method is used.
In order to define the discret problem an approximation of the set of admissible
statés is constructed and its properties are discussed. After formulating the finite-
dimensional control problem the Lagrange’s multipliers approach is applied to it.

4.1. An approximation of state and control spaces

In this section we are going to introduce some definitions essential in the sequel.
First let us define an approximation of L?>[—#A, T; R"] and H' [—h, T; R"].

Let 7 be a given parameter such that 7—0. Denote: M -

T ow
sumed that M and N are integers. !

; N=——. It 1s as-
<1
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Define the space E,[—h, T+7; R"] which is to be an approximation of’
L? [—h,T+7; R and H' [—h, T+7; R"] in the following way: E; [~ h, T+7; R"]=

M
={x;x.()=> x, (r7) W, (1)}, where x,(r1)e R"; W,(¢) is a characteristic
r=N

function of the interval [rz;r+ 17). :
Let be given an operator P,: PC[—h, T; R"]-E.[—h, T; R"] defined by
M-1
Ptx(t)zz x (t,) W, (t) where t, € [rt; (F+1) 7] (4.1.1):
r=—N

It is easy to verify that the following estimations take place:

dx dx
Vxe H [—h, T; R ||P, x—x||+||P; x—x|| -1 <7 ¥ S5 P E (4.12.a).
dx _|ld* x
Vxe H?[—h,T; R"] VTX—E <‘5V2‘ 71 ‘ (4.1.2.b)
1l dx ‘ dx
Vxe H' [—h, T; R} |P, x— x| +|P, x—x]..; <7* ~7ﬂ+ — . (4.1.3)
dx
Vxe H' [—h, T; R"]; and such that;,t—eL‘” [~A, T; R, (4.1.4)
» » [}dx +|dx ]
— x| —x|_ <t |—|+I—
! X )‘|+[ X -XI—I\T !dt 1df .
P
VxePC[—h,T; R0 () H' [t;, t;11, R']
i=1
- _]dx . \
[Pex—x||+ [P x—x||_ <12 —I| T74+9d;|- (4.1.5)
Edi i
i=1 © :
where: pis a number of points of discontinuously of x on [—0, 7],
dx||* T ldx (0)]?
=== =i
dt ||i dt

t, — the points of discontinuity of x; &, x (t;)—x (7).
P.QcFE. [0, T; R"] is called an approximation of € if and only if:

2. Q is a convex, closed set in E, [0, T; R™] (4.1.6)
YueQu e ?, Q, |u—u)|<C /2D (4.1.7)
Yu,e . Qlue Q, |lu—ul|<Cr'/2. 4.1.8)

In finite-difference schemes the differential is replaced by finite-difference ope--
rator

V.:E. [0, T+7; R"|>E, [0, T; R"] defined by

R (H? =50 o te, Tl 4.1.9).

) The constant C is used throughout the paper to designate a generic constant.
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4.2. An approximation of the set of admissible states

A most natural approach to an approximation of the set of admissible states
is to replace original continuous constraints (3.1.3) by discrete constraints of the

type (see [1,2]):

S (x, (2), 1) e K, (4.2.1)
where
M-1
=Y 1t W, (),
r=0

%.e.E. 10, T: R

In this case the finite-dimensional control problem to be an approximation of
problem P, consist in finding min J (x, u) subject to:

Vo, () +f (x; (1), x. (t—h), u, (2), £,) =0,
X (Q)=P. 9 (Q) Qe[-10)
. 0)=9 (0) 4.2.2)
Sx (1),t)eK
u, € P, Q2

where x, e E, [0, T+71; R"]; u, € E. [0, T; R™].
However in this case there arises the question whether the solution of conti-
nuous problem

Gl S j -0 0,T
o S(x @), x@t—h),u. (),t)=0, te]0,T], (855
x(@)=¢(Q), Oel—h 0],

corresponding to discrete optimal control u, (u, determined by (4.2.2)) satisfy con-

tinuous constraints:

S(x(),1) ek, te[0, T]. , ‘
Obviously, we would like to obtain the solution of (4.2.3) x (#,) which satisfies
S(x(u) (@), )e kK. ‘
However this requirement in general is not satisfied with the approximation of
constraints given by (4.2.1). ‘
Therefore in this section we are going to study the problem of finding such
an approximation the set of admissible states that the above mentioned condition
is satisfied. '
In order to present some effective method of determining such approximation
let us consider the following “parametric’” family of optimization problems.
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Problem Py,
min J (x,, u,) subject to
Vx, (0)+1(x. (t), x. (t=h), u, (¢), 1.) =0,
x(Q)=P.¢(Q), Qel[-h0)
x. (0)=¢ (0), (4.2.4)
S(x. (1), 1) e K=K
u, € P, Q,

where K € # (K), # (K) is a family of convex closed cones belonging to K and there
exists a convex closed cone K,= R" such that: VK, e # (K), K,=K.

The Lemma analogus to Lemma 3.1 concerning some properties of optimal
solution to problem Pg_is presented below.

Lemma 4.1. Assume that hypothesis Hl and H2 are satisfied. Then

30 <d <00ty >0 VKr e F (K) VT <10 |u¥F|<6

Ix;F|<o

where u!F and xFf are optimal solutions associated with Problem Py .
The proof of the Lemma follows by using arguments similar to those given in
the proof of Lemma 3.1 (see [3]) and employing the fact that K> K, VK € # (K).
Define an operator P, ': E, [0, T; R"]-H' [0, T; R"] by the following formula:
[xr (I’-l— l)r_xr (V‘L')] [f—l’l’]

Prtxie)=x. (ro)t - (4.2.5)

for te[rr; (r+1) 7], r=0,1, .., M—1.
Another words P, ' x, is piecewise linear function constructing with the help
of x, such that

P lx, (r)=x,(7), r=0,1,..,M—1.

It is easy to verify that the following estimations take place:

%= P7 " x < [Vl (4.2.6)
v — P x| <7t |Vl (4.2.7)
P s V] 4.2.8)
Assume xLF, ui* to be the solution of problem Py associated with some cone

Kr e # (K). Denote by % AL 5 (1) the solution of equation (4.2.3) corresponding
to control uX". We are going to show that the difference (in the sense of L® norm)
between P ' (x¥F) and ¥ (uX") can be a priori estimated independly of the choice
of Kp. This result is formulated in the following:
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Lemma 4.2. Assume that:
(i) x¥r, ufr — are solutions of problem Py _; % is the solution of state equation
(4.2.3) corresponding to control uX*
(if) Hypothesis H1, H2, H4 are satisfied.
(iii) f satisfies Lipschitz condition with constant L, on the set G (¢)

G (O)“{(x (1), (1), u(t), 1) € R"x R*x R"x [0, T]; x, y, ue G}
(G defined in Lemma 3.1).
(iv) 7 is chosen such that:
o
e
2LZ
then:
% (ur")—P; " x;F|<ar
where « does not depend either on 7 or on Ke & (K,).
Proof. Note that by (4.2.7)
Pt o FR R — ™| = P P L R T b [V 4.2.9
So the term |%—xX7| mu@t be estimated. In order to do that step method is used.

K % _df
Denote X, —P E74 )»f = xr*, =

Deﬁneo (t) (V (X —)"'c) (t)y (\t_ r) (t))+(A (Yr5 yra r) ([1)"'"
— (*\r: yt’ r) (tr) (\ —.X_.) (I))
Observe that:

:uK

V |x, ()12 —1|Vx, ()2
(Vx. (1), x: ()= Rl 2T| L] (4.2.10)

(it is easily deduced from the definition of Vx,).

Denote r, =entier t/z.

After integrating o, (¢) from O to r, v (for z</) and after applying (4.2.10) and
hypothesis H4 we have:

ret T Mt

f(w)dr FO-F P~ f V(& (O-% @) di+

T

-mf 1% (=% @12 dt.  (4.2.11)

Taking advantage of the facts that X, and x are the solution of state equations
(4.2.4) and (4.2.3) respectively and that A satisfies Lipschitz condition we get:

et

j IV (%~ %) ()| di=— f (A Foy Fo ) (1, V (B — %) (1)) di+

T

d
+f (—— X(@0)-Vx (@), V(X,—%) (t)) dit f (4 #, 7, 4) ®),
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T 1/2
v (xr—ir)(t)) df<Lo[f (](xr_j‘) (t)!2+ itr"'tlz'*_{(fr—)j) (012) dt] %

1y 19 1/2
[f |V (%) (t)vdr] &

d2 % 1T 172-2)
g o (|2 5 o= 2
Tl/z 1 dr? *6[ IV (Ar xr) (t){ dt:l
where '
dz.i N—-1(r+1)z dz)?(t)z 1/2
dt? |y N dr?

(in the last inequality we used the estimation (4.1.5)).
Hence by (4.1.2)

T Y12 idz b
[f IV (% ~%) (;)|2dzJ <tYZ ||\ =7 |+
(0]
Fet 12 | d
+L, [2(}[ 4(2?1—,\*,)(1)1251’[1‘] +Lofh—d7| B +2\7t 5 T]- (4.2.12)
By substituting (4.2.12) into (4.2.11) we haxe:
f 5. (1) dt>% (%~ %) O+ (x—22L3) f (%= %) (117 di +
0 0
-1 13[5@2 +.2 ﬁ +T2]—f7* d—jiu (4.2.13)
dt |l-1 dt |0 | dt® |«
On the other hand using inequality
ab<2ea® + Zla B2, e>0 - 4.2.14)

and Lipschitz condition we obtain:

T ret

i d
f 5. (1) dt = f (—d—tx(r)—vja (1), (%, — %) (r))dz+

0 0

+ [ (A5, 8) (0= AR Joy 1) (£), (F—Z) (D)) di
0
= = [Lzlili'—i I+ 17— Fell} +lie—12 li2]+rz I+
481 07 Tl Sy t Thy 1]

+2g_[ (%~ %) (D)2 dt. (4.2.15)
0

1% %

dr?

dx ; y : bl ; : :
2) Observe that —— is piecewise absolutely continuous function (since 7 is step function),
P dt 2

|| 4% % { ) d? (x)
30 i is defined, moreover
| dr® dr?
on 7 (it results from the fact that «} is tounded independently on 7). Then
independently on z.

< C for te[rz, (r+1) t) where C does not depend

‘rt(r+ i85 2=

is bounded
£
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e A S W SN~ AE.
After combining (4.2.15) and (4.2.13) we arrive at:
1 g
5 IE=%) (O +(2—20L5=28) | (%~ %, ()1 di<
0
Iz 2(1+ )[Zidﬂz TZ]-I—22 e (1+) 4.2.16
<LZ72|— — = - (4.2
0T\ " ° 14' ot e L T Hedl)
By the analogous way we prove that for K=1, .., m—1 and Kh<t<(K+1)h
1
f 6.0 di>— 5 1@ = (5~ %) (B2 +
+(@—2t L) [ [(®—%) (O de—2eLY IR~ %o +
Kh
[L2 2( ax ) e T2) 22|d2.%2 4.2.17]
dt dtK—1+ +T’dlz *()
On the other hand
R 1 2( dx ||
J 8. (1) dt<—- IZL W= Tl o +222 L5 || =l
df 2 ) D)= 21 T
+ll—=  +72)+2¢2 +2¢ [ |(®—x) (@)? dr. (4.2.18)
ldz o P2 | 26K{ (& —%) ()| dr. (4.2.18)
Combining (4.2.16) and (4.2.17) and (4.2.18) we obtain:
T 1
(a=20L3-28) [ [(%~%) () dt+7!(fz—fr)(t)iz<
Kh
3 LY - s dx
L2L; T+Z I~ %2, +7° L2 ‘L'+ o
+2‘dj +T)2 2 X 2(1+)+1 Kh)|*. (4.2.19
= #2545 12 . @42.19)
Let ¢ be chosen such that «—27L% —2¢>0 (it is possible due to the assumption
«—2tL%>0).

Denote
oo =a—2L2~2e¢,

1
oy :Lé <T+%‘) 5

2 d ) ! 2 2
o =T" oy ‘ +T g ‘TﬁT
ax | || s
t— 2/‘ Tt +T2 + ( " )
k=t “ dr ‘K ll dt |k-1 a | dr?

for K=1, ..., M—1.
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Thus (4.2.16) and (4.2.19) we can rewrite in the following form:

T

aof (%, — %) ()] dt+~i(xr—x,) (O12<a, for t<h, (4.2.20)

e T

1
%o f |(“\-‘r'—5€’r) (t)lz dt+7 I(‘f‘t.—ft) (t)|2<GK+2OC1 “Xr—fr“?(_ 1 +
Kh
1
+E |, (Kh)— %, (Kh)|* for Kh<t<(K+1)h. (4.2.21)
From (4.2.20) and (4.2.21) it follows that

1 ) . ) T ; N ) (20,'1 >K+
S E=E) OF +20 [ IE=%) (O di<ao |~ =+ 1

Kh

204 "
+a, T.1 of el

Hence for ¢ e [Kh, (K+1) h] we have:

1 , (2al " I)K i
— 6= <|—- !
2 I(xr xr) (t)| == 7~0 i; al—’
dx
Recall that |%, (1)—3%; (t‘)‘|<-c (see (4.1.3)), so
Xt m—l dx
sup X, ()= %, (1)|<2m +1 2 Lo (I
te[0; 1] dt
’d¢ 12 +T2)+ 1(12- 2( ):r'-‘—
T +1
lar ar
N dx [ (2m1+1)ﬁ_;i[l( dz
— < 2 —
e i %o - “\|a
+|d¢ +T) |d2- (1 +ﬂ+ dx] 4222
||t -1~ a || \2e 77 | e 422
After combining (4.2.22) and (4.2.9) we get
|x— P! xFr|<ar
where
SEN LN NTI e
a=|Vx; |+ 2m rak. izl Tzl _
+ld2i’(l . >%+ dx |
ar || \2 7] Tlar|
dx
Since Vx&r (t)=—A (¥, y5*, u5%) (1) and-jt—=—A(x 7, uXr)  then after

employing the results of Lemma 3.1., equation (4.1) and differentiability of /" (hypo-
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dx| || d* %
==l and are bounded by constants

dt ar ||l a2 ||,
independent of ¢ and K. So we prove that @ does not depend on 7, K what
completes the proof of the Lemma.

thesis H1) we find that |VxX*|,

Now let us define
D;={xeH'[0,T; R"]; S(x,1),t)e K+p, te[0, T]} (4.2.23)
where p, € K is determined by the following condition:

d (p., 0)=min d (5, 0); P {. € K d (p, 0K)=La 1} 3%
PP

see Fig. (1).

b,
To<Ty

Kv*pr2

K+ pry

145

Xq

Fig. 1

It is easy to verify that p, satisfies the following conditions
(@) K+p, cK+p, <K 71,>7;,
(i) 3b>0 Lar<|p.|rx<br, (4.2.24)
(i) Yk, e K+p, Vk,: |ki—k,|gx<Lar=k, e K.
If we denote
DExe H' [0, T; R; S(x (), 1) €K, tel0,TI}
then from (4.2.24 (i)) immediately follows that:
D:CD:CDTK s )y Ty o s
3 d(a, B)=inf |a—z|; K — boundary of K.

ZE€EB

%) [ is the Lipschitz constant for S i.e.
IS (x1 (1),0) =S ((x2) (1), 1) <L |x1 (£) =22 (D]
iV X, X e G Yiel0, T
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It is easy to observe that the sets D] are convex closed and moreover

t= L.
>0
Hence
Ve>03r VxeDIx D! Ix—xt|<e [x]. (4.2.25)

In order to construct approximation of the set of admissible states we are going
to prove the following Lemma to be essential in the sequel:

Lemma 4.3. Assume that S (¢, ¢) satisfies Lipschitz condition with constant L.
Then the following implication takes place:

Yl e Dl Yxe HL[0,T; RY; % —x|gar=xeD.
Proof. By Lipschitz condition for any ¢ € [0, 7] we have
IS (] (2), ©) =S (x (), t)|e<L |x; (t)—x (t)|ge<Lar.
Since S(x} (1), #) € K+p, then from (4.2.24 (iii)) we obtain that ¢ € [0, T] S (x (), #)

€ K and thus xe D Q.E.D.

1t follows from the results of Lemmas 4.2, 4.3 that X (solution of (4.2.3)) belongs
to the set of admissible states if the cone K is chosen in such a way that P7* xX7 e D
(xXr solution of problem Py, ). So, the problem to be posed now is that of finding
K such that P7* xX7 e D¥. It is easy to prove that Ky <~ K+ p, satisfies this require-
ment. Actually K belongs to the family & (K) since K+ p, is a convex closed cone,
K+p.cK and K, K+p, with K, == K+p., (7o given in Lemma 4.11).

Furthermore the validity of the relation P;* xXF e DI for Ky=K+p, results
from the following:

Lemma 4.4. Assume that hypothesis H3 is satisfied.
Let us put

« df

P.D;—={x,€E [0,T; R"]; S(x.(¢),t) € K+p;.}. (4.2.26)

If x,e 2, D! then P7' x.e D] (see Fig. 2).

D PrD

F0E e e [0T;R"]; S (1), 1) €K }

Fig. 2
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L=ET =17
Proof. Note that = = (r+1)y+i1 — .
\

For te[rt; (r+1) 7)

t—rt A o

Pl x ()= x(<f+1)r)+(1— )x(rr).

v

t—rt

Denote o= . Then /for tefrr; (r+1) 1) by K-convexity of S we have

S(P7' x (0, 1) =8 (ax ((r+ D 1)+ (1 =) x (rD); & (r+ D) 7+
(1—0) rt) € aS (x (r0), rO) +(1— o) S (x (P + 1) 7); ¢+ 1) )+
+Kea (K+p)+(1—2) (K+p)+K=K+p;
what completes the proof of the fact that P7* x, e D.
Now we are going to show that &, D} given by (4.2.26) is “a good approxi-
mation” of D in the following sense:
VxeD Ix, e P, D, [x—x|<f1 (), (4.2.27)
Vx, e, DfdxeD, |x—xl|<f, (@), (4.2.28)
where f;: [0, o] R! are the continuous functions such that f; (7) = 0 i=ln2.
Actually, by (4.2.25) '
VxeDIx: e D} |x—x]|<e (@) |x].
Obs'ervé: that for any x' eD:, te[rt; 7+ 1) 1) and P, defined by (4.1.1) with
t.=r7 we obtain:
S (P, x; (1), t.)=S (x} (r1), rv) € K+p, (since S (x; (1), 1) € K+p, Vi €0, T).
Hence P, x> e 2, D}
Moreover by (4.1.4)
1P, X% —xT|< e [ el — x|+ [xllw [+ %] & @It @@+ 1) |
Then
VxeDIP, x;e? D! |x—P, X|<fi ()
where
Ix]-fi (©)=¢ () +7 (¢ (1) +1) tends to O with 70
what assures condition (4.2.27) to be satisfied. On other hand by Lemma 4.4 Vx, e
e D P el \

T

Recalling (4.2.7) we have

|xt—'P_1 Xq !<T [xrl'

T

Furthermore, since D.cD then V x,e?.D; we have P;'x,eD and
|x,—P-* x;|<t |x;]. So condition (4.2.28) is fulfilled with f, (1)=7 |x,|.

T T
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Summing up the results obtained in this section we recall that the approximation
of the set of admissible states defined by (4.2.26) is a “good approximation™ in the
sense given by (4.2.27), (4.2.28) and moreover X (u**) (where uX* optimal control
corresponding problem Py with Kp=K+p.) belongs to the set of admissible states
(i.e. S(x (), t)eK).

4.3. Discret optimal control problem — problem statement

We are going to formulate the finite-difference approximation of initial problem P,

Problem P,

: T
Find (x, ul) € E, [0, T+7; R x E, [0, T; R"] minimizing J (x,, u)= [ @ (x, (2),
8}

u, (1), t) dt subject to constraints:

Vx, () +f (x; (). x, (t=h), u, (1), £,) =0 4.3.1)
x(Q)=P. 9 (0), Qe[-h0] 4.3.2)
x. (0)=¢(0) (4.3.3)
Bed, D, (4.3.4)
u.€ P, Q2. 4.3.5)

It can be shown by using the standard arguments (see [4]) that hypothesis H1, H2
imply the existence of solution to problem 2.

A problem to be studied in the next section is the estimation of the error (in
the sense of L2-norm) between the solutions of problems (P,) and (P,). In order
to find this estimation the Lagrange’s multipliers approach to finite-dimensional
problem will be applied in the same way as it was done in Section 3.2. for conti-
nuous problem. At first under some additional convexity assumption the equi-
valence between the primal and dual discret problem will be established.

Define: L.:E,[—h, T+7; R"|—E. [0, T; R"]xE.[0, T; R"|x E.[0, T; R"]-R! by
the following formula:

L, (Xl., Uy, }"U ’71:) =J (xra ur)+</1r: er+Ar (xu Ves “r)> +<<§r (‘x‘[> =D ’71'>> (436)
where
. df ~ df ~ df
Ar’(xr: Yoo ur) (t) =4 (xn Ve ur) (tr); St (Xr) (t) == (xr) (tr):.r P (’) P
for te[0, T].

After applying the result of Lemma 3.2 in this case we can state that:
IV eE, [0, T; R"]; n2 € E, [0, T; R*] such that ‘

<§x Lr (x;’, HZ, ﬂ?» 77:)’ xt_x?>+<(5y Lt (xg7 L{:, Z:’ 77:)5 }"r~y:> =0

sz ek, [_ha 1) Rn]5 Xz (Q):_P‘E 1 (Q)r Q € [‘"h9 0)9 Xz (0)2(0 (0)7 (437)



68 . I. LASIECKA

8, Lo (3%, u%, 22, 1) =0, (4.3.8)
O, Ly (x2, ul, A2, 49, ,—ul»>0 Yu, e Z .2, (4.3.9)
&S (X)) —pe 12y =0. (4.3.10)

Assume the following hypothesis to be satisfied

&

Lxx (ﬁr) Lyx (dt) Lux (dr) Xe \
Lx,v (dr) Lyy (ﬁt) Luy (dt) yr > y‘r 2 ?’ ”ur”z
\ Lxu (dt) L,vu (&r) Luu (dr) Uy Uy /

H5’

where

ﬁr:(it: ﬁr» )"TJ ﬁr) € U(Xg, u;}’ ;‘g’ ?72) »

Observe that hypothesis HS5' implies the uniqueness of optimal solution

(335 ug)-

Lemma 4.5. If hypothesis HS5" is satisfied then Lagrangian L. (x, u, 2., 7.)
posses a saddle point at (x?,uf, A2, 77) i.e.

Lr (xg: uf, ;“‘D ’7‘:)<Lr (xga Uf, )’?a 7]:)<Lr (xrs u‘n ;“27 ’7;’)
vxtEEt [”ha T, ‘Rn]’ Xz (Q}zP‘c @ (Q)a Q € [_ho 0)* Xe (0):¢(O)
Yu, e ?.Q; Vi eE [0, T+71; R"]

Vy.e —K;  where K,={x,€E,[0,T; R"]; x,(t1)e K, te[0, T]}

i T
K!={n.eE [0, T; RY; [ x.(t)dy. ()>0Vx, e K}.

0

The prdof of the Lemma is analogous to that of Lemma 3.4.

5. Error estimation for optimal and discrete solutions

The problem considered below is that of finding the rate of convergence for both
the optimal state and the optimal control of finite-dimensional problem P, to the
optimal state and the optimal control of continuous problem P..

The main result of the paper is given in the following.

Theorem 5.1. Assume
@) (x° v, (x2, u?) are optimal solutions corresponding to P, and P, problems
respectively.
(i1) Hypothesis HI-HS5 and assumption of Lemma 3.3 are satisfied.
(iii) f, S, @ satisfy Lipschitz condition on the set G (¢) with constants L, L, L,
respectively.
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Then
ju® —u?)] < Ct*

where C does not depend on 7

Proof. Denote:

2 =P, x°

=P, j°
e #.Q an approximation of #° obtained on the basis of (4.1.7) condition (recall
that [u°—22)|< crh).

Let us choose 7j° e —K, such that:

’ <<x1:= 770_ﬁ:>><0 VX,EKr. (51)

We are going to show that such 72 exists. Actually, observe that by properties
of Stiljtes integral [§] we have

(r+ 1t

e 17y = Zwr) f d (1),

M-1

<<xn ’72>> o 2 X (I'Tj 5,.

where 3, ==, (+1) 7)—17, (7).
Thus, in order that (5.1) be satisfied the followi'ng conditions have to hold

M-1 (r+1)c M~-1
M x) [ dr@< D x(7) 6, Vxek, , (5.2)
r=0 rc r=0
M-1 :
2 x(r) 6,<0 Vx, eK,. (5.3)
r=0 :
If we put
i r+1
b j dn (1)

than (5.2) is obviously fulfilled.
Taking into account the fact that #°e —K* and that x, (¢) "fo—lf“xi (rv) Veel0, T

belongs to K we have:
T T
Vr=0,1, ... M=1, x.(7) [ dp*()= [ x,(t) dn° ()<O0.
b 0

Thus

M- (r+1)t

‘ M-=1
2 X, (r7) 2 x(7) [ dpP(H<0
r=0 re

what proves the validity of (5.3).
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Further denote:
L ptye,

T T

Let @ be an element of Q corresponding to u° according to condition (4.1.8)
Hence

la—u?ll< Coir2,
Recalling the result of Lemma 4.5 and using the above notations we have:

L (R, Ul Ao M L6, a2 A8 o). 5.4

On the other hand expending L (£, 4, 2°,°) into Taylor series about (x°, u°, 2%, 7°),:
employing hypothesis H5 and the results of Lemma 3.3 we get:
L%, a, 2, 9°)2L (x°, u®, 2°, n°) +<0x L (x°, u°, A%, 11°), R—=x") +
+<5)’ L(x03 uo’ )~09 770)1 J,}_yo>+<6u L(xo’ uo, ;vos ’70)’ ﬁ_uo>+
+y ll@—wllZL (x°, u°, 2%, 9°)+y lla—w’.  (5.5)
Since 7’ e —K; Lemma 4.5 implies:
L (X0, ud, 22, n) = Lo (x0, ug, 27, 772).- (5.6)
Let us add and subtract from the right-hand side of this inequality the term
L (%, 4, 2%, 7°). Taking advantage of (5.5) we obtain from (5.6)
Lo e, 8, 20, mVe L, (2, uf, A0 00— (8, 0 02, )4
+L (£, 4, X2, 0= L, (x2, u?, 12, 1) —L (£, @, 22, i)+
+L (x°, w°, A% %) +y Hu—u"HZ- (5.7
Combining (5.4) and (5.7) we arrive at:
L2, 02, 28, 10— LAk, 6, 42, 9°) -+ (xP . A2, 0%)
+y l\u_uoﬁzsl‘t (.52:, Z}f, ;";’5 77:)
Hence
Bl P CRTID AT e
$L (% d, 2, 0 =L, (a0, 00, 3, 92).  (5.8)
In order to obtain the estimation of [l —u°||* we have to compute the differences
between the discret Lagrangeans evaluated at (£, 47, A% #°) and (x°, u°, 1¢, 7j°) and
continuous Lagrangians at the points (x°, u°, A%, ") and (%, 4, 1°, #°) respectlvely.
Using definitions of L, and L and taking into account the fact that (x°, #°) sa-
tisfy the state equation (3.1.1) and state constraints we get:
Lo (82, @2, 22, 1)~ L (x°, w®, 19, n°) = (X0, @) —J (", u) +
+<Vf?+Ar (B2, 72, 2, A2+ <S8, (B — o nIY<T (82, @)+

d
= (% u“)+<Vx”—*X" )”>+</1,,A (X7, e, 1) —

A (.X ) yo’ uu)> +<<Sr (xr)‘—pr~S (xu)’ ”:>> g
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To the right hand side inequality (5.9) we added the term —{S (x°), #°) which
will be shown to be positive. So we are going to prove that: 7°e —K*, then

€S (x), n7y<0.
Actually suppose that x e K; then

M-1
Cx,nhy= > x(t) 0, where S,=n, ((+1)7)=n.(r0), t, € [rr; (r+1) ).
r=0
Let us denote x, (r7)=x (¢,). Obviously x, (¢) € K (since x (1) € K), so x,e K,
cE. [0, T; R"].
Hence
M-1

oy =D X (1) 6, =Cxe 12Y<0 (since 72 e —K”)
r=0

what completes the proof of the fact that 77 e - K*.
After applying Schwartz inequality in (5.9) and employing the part that @, J, S
satisfy Lipschitz conditions we get:

L, (%2, @2, A5, 1) —L (x° u®, 2% )<Ly [IIX7—x°l+ [l — ]+

il

+Lo (I — Xl + 11y° = 2l + [l =l + [l — . Il)]

x —'E—X
+n2ly [L 1% —=x°| 4+ [t =t +D:]]1<
| 0
21 Hdt +T%C1+nzgu[ﬁﬁd_ﬂ+,
L((Z a +'d¢‘ ) e T)] 2 [L i ——|+®+1 ]
(¢} T dt - df -1 +T ST +177le T ( + )T

In the last inequality the estimations (4.1.2), (4.1.4), (4.1.5), (4.1.7), (4.1.8) were
employed. Hence

L. (%2, 82, 22, n?)—L (x° u®, 7%, n°)<7* C, (5.10)
where :
daf Xo ! 58 T " L xo 1
Co = i (Ly 242 |22 Lo %) +’ 0 L% |9y +

dp | ‘
+ 1A _‘i Lo t*+L; C+|2 faxe 1220l Lo C+

dt —
+ 1700y B+ 1) T4 T2, (5.11)

On the other hand using definitions of L and L, as well as the fact that (x7, u7
satisfy (4.3.1) we obtain

L (%, 0, 20, n°) =L, (x°, u®, 2, 1% =J (£, @) =J (x2, u?)+

dx ~ N
© <—;[:_+A (’?’ j}’ ﬁ)’ /10> +<<S (3%), ’7o>>_<<S (x:)_pr’ ’7$>>=
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L L J(x,,u0)+<7—v\0 “">+<A(\” ¥

— A (x°, % 1), 2 +L8 ()= 8, (xD+5 1) +
+<<§r (Xg) '—ﬁv 770-’7‘;>> =

After applying Schwartz inequality, using Lipschitz conditions and (5.1) we
get:

L (%, 8, 2% n°) =L, (x3, ugy A AOSLy (1% — %2l 4+ [l —ugll] +

T2 ‘E’ 'C’
1
|

+ 12 [I

A

dz
o Vaxe

+Lo (IR —x7+ P~ yill+ I —ulll+ 1 — i) +

+7°ly [L (12— x|+ |t — £ + br]< Ly [t IV +7F €T+
i
dt |-
+ 7%y (Lt |VX2| + T+ b7).

+112°| [z* Baz +Lo (21 Vx3l+7 ) +17* C+TT>] +

dt

Hence

L, =L G0, 0l B2, B €y o (5.12)
where
C,= o = ||Vx9| [Ly t¥+2Ly 7]+ |Vx?| m"[VLr)f—f—ZH*——il Vs r%+
1)l (Bas +Lo C)+Ly C+n°ly +(b+1) T+ Lo Tt |27 (5.13)

dt

Substituting (5.10) and (5.12) .into (5.8) we arrive at:
y la—uP<C, 1 (5.14)

where C2 ------ C1+Co, Cy, Cy are given respectlvely by (5.11), (5.13).
Hence by (4.1.8) and (5.14)

1 CZ 1
llu? — wll< | — | + ld —w®l| < C7* + ” g Ot

what completes the proof of Theorem 5.1.

Corollary 5.1. If the assumptions of Theorem 5.1 are satisfied and moreover
oL

<55z then:
Ix® —x2||< Ce*
and
F i —T (37wl = O,
The proof of Corollary 5.1 immediately follows from Theorem 5.1. and from
the inequality
llx® — x3ll< C [l — ]|

which was proved in [3].
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If we assume that the set of admissible controls belongs to H*' [0, 7"; R™] then
by (4.1.2) the following estimations take place:

. du® |
lue—P, u’| <t "E\ > (5.15)
d? x°
Vx? —-E—x" < *‘d;z -1 - (5.16)

Employing the same arguments to that given in the proof of Theorem 5.1 and
taking into account (5.15) and (5.16) we obtain

Theorem 5.2. Assume taht

(i) (x° u°), (x¢,u’) are the solutions of problems P, and P, and u’eQc

T2 T

< H' [0, T; R™], where Q is a convex closed set in H' [0, T; R™].
(i1) Assumptions of Theorem 5.1. are satisfied then
llue—u||< Cr.

Theorem 5.2 implies the following

Corollary 5.2. If the assumptions of Theorem 5.2 are satisfied and moreover

T <—2}E, then
e —xll< Gt
and
J (x°, u?)—J (x2, ud)< Crt,

T2

Remark. If e PC[0, T; R"[ is assumed to satisfy Holder condition with
constant 0<a <1 in all intervals of continuity of u (¢) then as it was shown in [9],

=P < C7% O<axli

then in this case Theorem 5.1 is valid with

|

lu*—u?|<Cr* where 0<a<l.

l

6. Example

As a special case of constraints given by (3.13) the following form of state
constraints is considered

g(x(2), <0, te[0, T] (6.1)
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where g: R"x [0, T]—R', is assumed to be twice continuously differentiable
function, convex and to satisfy the following condition:

@) (47 &, 2, w0) ()-8 (x° (1), 1), 1) #0 1€ [0, T] (6.2)
where 1,,=(1, ..., 1) e R™;
(b) g (x° (0),0)<0, x°e R". (6.2)
It is easy to verify that hypothesis H3 is satisfied with
S (x(),1) ijg (x (@), t) and
KL fee Ri; E<08. , (6.3)

Observe, that K and K* take the following forms in this case:

K={yeC0,T]; y()<0, te[0, T]} (6.4)
K*={ne V[0, T, R*], n (t) nonincreasing, dy (1)=0, te[0,T]} (6.5)

We are going to show that under some observability condition we can employ
the result of Lemma 3.3. This fact is given by the following

Iemma 6.1. Assume that:
(1) (x° u°) is a solution of problem P, with state constraint of the form (6.1);
dx

(i) L G 2 1) 2T )+ (A G ), 29 K1Y
where  g(x) (¢) Lo (x(0), 1);
(i) AT (x°, 3%, u) (1) g« (¥* (1), 1) £0, O R™;
(iv) g satisfies: g (x° (0), 0)<0;
v) 0eQ -
then there exists A, € L2 [0, T; R, n° € —K* (given by (6.5)) such that:
(]) <5A L (xo, u’, ;voa 770)~ X—X0>+<5y L (xo’ u’, ;"07 ’70)’ y_yo> =0a
Vxe H' [-h,T; R"], x (Q)=¢ (0), Q€ [—h, 0],
) 9;.L (52 08, A% 7)=0,
(iii) <o, L (x°, u®, 2°, 1°), u—u’y=0, Yue Q,
(iv) €& (x%), n°»=0.
Proof. The Lemma is a special case of the Lemma 3.3. Therefore to prove it
we have to verify the fulfillment of all assumptions of Lemma 3.3. It is easy to see

that it is enough to check (ii) and (iv) observe that in our case (iii) takes on the form:
dxe H' [0, T; R"],3iae PC [0, T; R™] such that

dz (1)
dt

T A (X0, u0) (1), X (1) + A4, (%)% u0) ()7 () +

+4, (x% )%, ) (1)-a (1)=0, £(Q)=0, Qe [-h,0]  (6.6)
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and
g (x (1), D+ (g« x° (1), 1), X (1)) <0 Vi€ [0, T] 6.7)
Denote R {re [0, T]; g (x° (?), t)=0}.
Since g (x°(0),0) <0 (by assumption (6.2b) then for all 7€ [0, mint, 7€ R] i (¢) =0

x() =24 satisfy (6.6) and (6.7). Therefore in order to (6.7) be satisfied in all interval
[0, T it is sufficient to assure the first derivative at (6.7) with respect to 7 i.e.

d
7y [(g x° (@), £)+ (g« (x° (2), 1), % (1))] to be negatif.
So, after computing the first derivative of (6.7) we arrive at
(gx (x° (1), 0), % (t))mfrg, (x° (), 1) +(gax (x° (1), 1), %° () +
+ 8 (x° (1), 1)+ AT (x°, 3%, 4°) (1) 8 (x° (1), 1), X (1)) +
S (A){ (xo’ yo’ uo) (t) gx (xo (t)a t), }—, ((t))R"+
(AT (x°, 1%, 1) (8) g (x° (1), £), i1 (D)an<0.  (6.8)
If we denote '
do (1) (g (x (1), 1) 3° D)ot 80 (x° (). 1)
dy (1) g (X7 (1), £) X () + e (¥° (1), 1) + AT (x°, 1%, %) (1) g1 (X°(8), 1)
dy ()=Ay (x°, y°, u®) (1) g (x° (1), 1)
dy (=A7 (x°, y°, u°) (t) g (x° (1), 1)

then (6.8) can be rewritten in the form:

do (1) +(dy (1), X (£))ra+(d (1), F (1)) g+ (d5 (1), i (1)) gu<O (6.83)
From the smoothness properties of g it results that:
dy () e C [0, T; R']
d, (t)e C[0,T; R"]
d,(t)e C[0, T; R
d; (t)e C [0, T; R™]

Since X (¢) and @ () have to satisfy (6.6) then X (¢) can be expressed in the form
(see [10])

1o

(=X (t, to) x (1) + f X(t, o+h) A, (x°,)°,u°) (6 +h) % (0)do)+

to—h

t
+ { X (f, 5).A, (x° 3°, u°) (s) & (s) ds for t>1,

To

where

0
N X(t,o)=A.(x°% )y, u) (t) X (t,0)+A4, (x° y°,u°)(t) X (t—h, o)

fO, t<ao.

X(t’o)zll l=g,




76 I. LASIECKA

Hence (6.8a) is equivalent to

(‘G (©), [ Xt 5) 4, (x% 3, u?) (5) i (s) ds) (s (00, ()<
< —do ()= (ds (1), 5 (o= (dy (), X (8, 16) X (1)) ra+

= (a’1 (1), f X(t;0+h), A, (x° %, u®) (6+h) ,\".(-o') da’) .. (6.8b)

to—h RE

Observe that for ¢, <r<t,+h inequality (6.8b) takes a form:

((11 (t)> f X(f, S) Au (xa, yo’ uo) (S) u (S) dS) + (dS (t)a i (rj)R'n<
" < —d, (t) (since % (1)=0 for.te[—h,1,]).

So, if d; (t)#0 then the existence of i (1), t € (¢, t; +h), realizing the above
inequality it follows from the fact that Volterra equation

i ()= (dy (1), [ X (1, 5) Ay (x°, 3, 1) (5) T (5) ds)n=—dlp (1) -1
ty .
(4 (1) denotes a k-coordinate of i (r) corresponding to d (¢) which is different from
zero), has a solution for any d, (¢) (in this point we employed the continuity of dy, d,).
' T
h

Furthermore for ¢ +lh<t<t,+(/+1) A, [=I,...,_E( )—i—l, i (t) can be

determined by the following equation:

(1) — <d1 (1), f X(t,5) A4, (x_", %, u°) . (s) ds) =—dy (1) +

t,—1h i

+(dy (), X (1, t, 4 1h) % (2, +1h)) g+ (dy (1), 7 (£)) ot (dy (1),
ty+1h g
X(t,a+h) A, (x° 1°, u°) (60+h) X (0) do)gs.  (6.8¢)
t,(I1-1)h
Actually observe that all terms on the right hand side of equation (6.8c) are
known (since % (¢) for te [t;+(/—1) h, t;+/h] was determined on the preceding
step). Then due to the fact that the function on the right hand side of (6.8¢) is con-
tinuous and that Volterra equation has a solution for any continuous function on
the right hand side of equation there exists a solution of (6.8c). Therefore if even
one coordinate of ds (1)=ATF (x°, °, u°) () g« (x?(), t) is different from zero then
we can to choose # () and X (¢) in such a way that (6.8) is satisfied what establish
the validity of (iii) in Lemma 3.3.
The assumption (iv) of Lemma 3.3 takes on the form

dxe H' [0, T; R"]; ue Q such that
dx :
T + A4, (x% )% u®) X+ A, (x°, ), u)) F+ A4, (x° y°, u®) 7 =0 (6.9)
X (Q):Oﬁ Q € [_/75 O]

g (x° (1), 1)+ g, (x° (1), DX (<0, 1[0, T]. (6.10)
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If we take #-0 and @ - 0, then (6.9) and (6.10) are obviously satisfied. By
assumption (v) we known that #=0e Q2 what completes the proof of (v) in
Lemma 3.3. Q.E.D.

It is easy to observe that in the case of cone K given by (6.3) p satisfying (4.2.24)
is equal to: 5, it ‘ ©.11)

So, the discret constraints in 2, problem take the form
g (x.(2), 1)+ Lar<0 (6.12)

summing up the results obtained in this section we conclude that in our case the
estimations given by theorems (5.1) (5.2) will be valid with b 9 La if the assump-
tions of Lemma 6.1 are fulfilled (since Lemma 6.1 is equivalent to Lemma 3.3 for
considered types of constraints).

7. Conclusions and remarks

1. The error bound for continuous and discret solutions of delayed optimization
problem with state and control constraint was established. For optimal control
of the class PC [0, T; R™] the rate of convergence equal to 0 (t¥) was derived (see
Theorem 5.1). In the case where optimal control belongs to Sobolev space H* [0, T;
R™] the rate of convergence can be estimated by 0 (r*) (Theorem 5.2). The esti-
mations presented in Sec. 5 provide that the problem of the speed of convergence
is strictly closed with the smoothness properties of primal and dual variables. It is
easily seen that in order to achieve the rate of convergence better than 0(t'/2) the
appropriate regularity of Lagrange multipliers is required. Namely additionally
assuming that the rows of the matrix

FL(xe @), x(@t—h), uw @), 1) S (x° (@), 1)

are linearly independent it can be shown (based on the method proposed in [2])
that u°, 2° n°, are absolutely continuous. In this case the rate of convergence
equal to 0(7) can be established.

2. For nonlinear optimization problem for systems with delay but without
constraints the rate of convergence of order 0 (7) was proved in [3].

3. Observe that the expressions determining constraints C,, C, (see formulas
(5.11), (5.13)) depend on [3°|,, [[4°] which are unknown in general case (the other
[dxe|| de"[ . o
]‘[Fi, ’ 7 1 can be estimated a priori (see [3])).
The adjdint equation (Lemma 3.3 (i)) establishes relation between »° and 2° but it
seems to be impossible to estimate 7°, 1%, independly — in terms of initial data of
original problem. Therefore the inequalities given by Theorems (5.1), (5.2) rather can
be understood as the estimations of the speed of convergence than the error bounds.

4. The results given in the paper can be generalized to the case of systems with
any finite numbers of delays.

quantities in (5.11), (5.13) —
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Aproksymacja réZnicowa zadania sterowania optymalnego
dla vkiadu z opodznieniem przy ogramiczemiach na stan
i sterowanie

Artykut po$wigcony jest aproksymacji roznicowej problemu sterowania optymalnego z ogra-
niczeniem stanu i sterowania dia ukladu opisanego nieliniowymi réownaniami rézniczkowymi
z opOznieniem. Problem optymalizacji rozwaza si¢ stosujac teori¢ mnoznikow Lagrange’a. W pracy
podane sa oszacowania roznicy normy (w sensie przestrzeni L?) sterowania i stanu optymalnego
dla problemu dokladnego i aproksymowanego.

Pasunocraas ANNPOKCHMANNA 3a/fayn OCHTHMAJIBLHOIO YHpaB-
JIeHHA /I CHCTEMbI ¢ 3ana3abIBaHHEM HNpH OrpaHMYuCHMAX
Ha COCTOsIHHE M yHpaBJicHWe

PaccvoTpena pa3HOCTHash ANOPOKCHMALMST 3a/1aY¥ ONTUMANIBHOTO VIIPABJICHHS C OTpaHu-
YEHUEM COCTOSHUS W YIIPABIICHUS JUTsI CACTEMBI ONMChIBAEMOM HeuHeHHbIMU TuddepeHIAATTLHBIME
ypaBHEHUSIMH C 3ama3ibiBaHneM. JIIsi 3TOM LeiM UCIONB3YyeTCsi Teopust MHOXuTeneil Jlarpanxka.
Ilana OneHKa pa3HUIBI HOPMEI (B CMBbIC/Ie IPOCTPAHCTBA L?) ONTUMANBLHOTO yIPaBIIEHHs] U COCTO~
SHWS [Jisi TOYHOW M aNMpOKCHMMPYEMOHR 3amayu.
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