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A finite difference approach to the problem of minimizing a'n integral cost functional subject 
to a differential equation with delay and state and control constraints is presented in the paper. 
The problem is viewed as a variational minimization problem subject to nonholomic constraints 
.and is treated using Lagrange multipliers. Error estimate for th'e control is established under 
.appropriate smoothness and boundedness conditions. 

1. Introduction 

The convergence properties of finite-difference approximation are examined 
for state and control constrained optimal control problem with delay. An approx­
imation of constrained optimal control problem for system described by ordinary 
differential equations was considered in a number of papers. 

In [1] a finite-difference approach applied to state and control constrained 
control problem gouverned by nonlinear ordinary differential equation was analysed 
and the convergence result was obtained . 

In [2] the Ritz-Trefftz approximation for control problem with quadratic 
cost, linear dynamics and linear inequality state and control constraints was consi­
dered. The rate of convergence the solution •of finite dimensional approximation 
to the solution of continuous optimal control problem was estimated. The both 
approache·s presented in [1, 2] do not assure in general that the state of continuous 
system corresponding to discrete control determined by numerical algorithm sa­
t1sfies constraints. So it seems that a ·problem to be important for treating state 
constrained optimal control problem ,is to find an approximation of the set of 
admissible states such that the above mentioned requirement is satisfied. 

In [3] a finite-difference approximation for control constrained nonlinear opti­
mal control problem with delay was anylysed and the error bound has been estab-
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lished. The main purpose of this paper is to generalize the results presented in [3] 
to problems of delay optimal control with constraints imposed both on state and 
control. 

An approximation of state constraints set different to that given in [1, 2] is pro­
posed. The method of approximation presented in the paper assures that the tra­
jectory of continuous system corresponding to discret control belongs to the set 
of the admissible states. Moreover, the rate of convergence for the solution of 
discret problem to the solution of continuous problem is estimated. The general 
considerations are illustrated by an example. 

2. Notations and conventions 

H 1 [0, T; R"] denotes the Sobolev space defined by 

J . ~ l 
H 1 [0 T·R"]=) 1xEL2 [0 T·R"]· - EL2 [0 T·R"]J~. 

' ' l\ ' ' ' dt ' ' 

C [0, T; R"] denotes the space of all continuous on [0, T] functions 
with the values in R". 

The norm in C [0, T; R"] is given by lx l = sup lx (t) l 
r E [0, T) 

V [0, T; Rk] denotes the space of bounded variation functions defi-

(2.1) 

(2.2) 

ned on [0, T] with the values in R" induced by the norm lx lv=var x (t). (2.3) 
t E [0, TJ 

PC [0, T; R"]- a space of piece-wise continuous functions (x: [0, T]-+ 
-+R" is called piece-wise continuous function if the number of discon­
tinuouities is finite: t1 , t2 , .•. , lp and for every t E [0, T] x (t)=x (t-0)). (2.4) 

The norm in PC [0, T; R"] is given by 

df 
lx l - sup lx (t) l 

tE[O, TJ 

< ·, ·) - scalar product in £2 [0, T; R"] 

11 · 11 - a norm in L 2 [0, T; R"] 

< ·, · )K- scalar product in £2 [Kh; (K+ 1) h; R"] where h>O: 

ctr T . 
m '-= hIs assumed to be an integer. 

II · IIK-a norm in £2 [Kh;(K+l)h,R"] 

1· 1 - a norm in L "' [0, T; R"] 

(,) - scalar product in R" 

«, »- general form of functional in C [0, T; R"] i.e. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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T 

«, » = J f(t) dg (t);fE C [0, T; R"]; g E V [0, T; R"] 
0 

P' (x0
)- Frechet derivative of operator P at the point X 0 

f~ (x0
)- partial derivative off with respect to x at the point X 0 

U (x 0
) - denotes a neighbourghood of X 0

• 

p-1 

For x E PC [0, T; R"]n n H 1 [ti, ti+l; R"], t0 =0 
i=O 
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(2.12) 

(2.13) 

(2.14) 

(2.15) 

where p is the number of discontinuity points of x; ~ ~~~ ~ ~~ = J' I d:l;t) 1

2 

dt, 
t, 

ti, i=l, ... ,p a point of discontinuity of x , Ji ctr x (ti+O)-x (ti-0). 

3. Continuous optimal control problem 

Continuous optimal control problem statement and some smoothness pro­
perties of optimal solution are given in this section. Since the optimal control problem 
can be viewed as a variational problem of minimizing a cost functional on the 
Hilbert space subject to some constraints, so using Lagrange functional another 
formulation of the original problem is presented. 

The problem of existence of normal Lagrange's multipliers IS discussed and 
some sufficient conditions of existence are formulated. , · 

r .. 

3.1. Problem description 

The following optimal control problem is analysed m the paper: rmmm1ze 
T 

J (x, u) df J (jJ (x (t), u (t), t) dt subject to constraints: 
0 

where 

dx (t) · 
dt + f(x (t), x (t-h), u (t), t) =0 a.e. t E [0, T] 

X (Q)=tp (Q) Q E ( -h, 0) 

S (x (t), t) E K t E [0, T] 

x E H 1 [0, T; R 11
]; dxjdt E PC [0, T; R"'] 

f: R" X R" X R"' X [0, T]--.R" 

-------------------------------------------

(3.1.1) 

(3.1.2) 

(3.1.3) 

(3.1.4) 
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cfJ: R 11 X R 11 X [0, T]-7R1 

S: R 11 X [0, T]-7_Rk 

rp E H 1 
[- h, 0; R"] 
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Q cPC [0, T; R 111
] a given convex, 'Closed subset of all functions ~i E PC [0, T; R"'] 

such that u is absolutely continuous function on all intervals of continuity 
of u. i.e. u E H 1 [t;, ti+ 1 ; R"1] where t;, t; + 1 ; i = 1, ... , p, the' points of discon­
tinuity of u. 
K cRk- a given closed convex cone with vertex at zero. Int K ;60 
Assume that the following hypothesis are satisfied: 
Hl. f(f,, y, Yf, t), cfJ (f,, Yf, t) are continuously differentiables for every f,, y E R 11

, 

Yf ER"', t E [0, T]. 
H2. J (x, u) is radially unbounded i.e.: 

J ( x (u), u) ----+ = fu f _, cc 

where x (u) .denotes the solution of (3.1.1) corresponding to u. 

H3. (i) S (f,, t) is continuously differentiable with respect to f, and t . 

(ii) S (f,, t) is K-convex i.e. 

for any O<et.< 1, f, 1 , f, 2 ER", t 1 , t2 E [0, T], 
S ( a:f,l + (1- et.) f,2, at 1 + (1- a) t 2 )- a S (f, 1, t 1)- (1- et.) S ((2, t2 ) E K. 

H4. f is a strongly monotonne function i.e.: 

3cx>0; \ix1 , x 2 , yE PC [0, ,T; R"];u EPC [0, T; R"'], O<r<T 

j (f(x 1 (t).:y (t), u (t), t)-f ( Xz (t),y (t), u (t), t ) , XI (t)- x2 (t)) dt~ j rxl (t)- Xz (tW dt. 
0 0 

Using the standard arguments simillar to that given in [4] it is easy to show that 
Hl-H2 imply the existence of optimal solution. We shall refer to the above 
described problem as problem P0 and the optimal solution of P0 will be denoted by 
xo, uo. 

Some property of optimal solution x 0
, u0 is given by the following: 

Lemma 3.1. If hypothesis Hl and H2 are satisfied then there exists c5 < = such 
that 

x 0
, u0 E GcC [0, T ; R"] xPC [0, T; R"'] 

where 

G dr {(x, u) E C [0, T; R"] x PC [0, T; Rm]; I xi <c5 ; iul < c5} · 

Proof. By hypothesis H2 it can be· shown (see [3]) that: 

Then after applying Theorem 1.3 given in .[5] we arrive a:t the desired result. 
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3.2. Lagrange formalism - dual control problem 

Optimal control problem with constraints on control a~d state can l>e trans­
formed by duality (according to Rockefeller formalism [6]) into a dual control 
problem without constraints. Hence it is a natural idea to replace the primal { ori­
ginal) problem by the dual problem. In this section the duality formalism is intro­
duced and the connections between the both problems are investigated. 

Denote A (x, y, u) (t) _ctr_f(x (t), y (t), u (t), t) 
A: PC [0, T; R"] x PC [0, T; R"] x PC [0, T; R"']-+Ll [0, T; R"] 

S (x) (t) ctf S (x (t), t) 
S: PC [0, T; R"]-+PC [0, T; Rk]. 

Let us introduce Lagrange functional 

defined by the following formula: 

dx 
L (x, u, ),, 1J) =1 (x, u)+ <},; d t + A (x, y, u)) +«S (x) , 17» . (3.2.1) 

Since S: J-1 1 [0,-T; R"]-+C [0, T; R'' ] then the dual control problem consists 
in finding 

where 

max m in L (x, u, A, 1J) 
),E L 2 [O,T ; R"J x E H 1 [ - II,T; R"J 

>l E - K * x(Q) = <r(Q).QE[ - 11,0] 
u E fl 

KrJr {y E C [0, T; Rk]; y (t) E K, t E [0, T]} 

!(:' !.f~ {1J E V [0 T · Rk] «X 17» >- 0 V X E j(<. 
' ' ' ' :;:;--- - J 

{3.2.2) 

In order to establish the relations between the primal problem and dual problem 
we recall the following result given in (7]. 

Lemma 3.2 [7]. Let: 

(i) E, E 1 , E 2 be Banach spaces; and M cE, 
(ii) K 2 cE2 be a convex cone w:th vertex at zero, 

(iii) sl: E-+E1 ; s2: E-+£2, 
(iv) J (x0) =min J (x), where y = {x EM; si (x) =0 ; s2 (x) E Kz}, 

X E Y 

(v) S~ (x 0
) is a surjection on E1 , 

(vi) 3x E Ker S~ (x0
), S2 (x0

) + s; (x 0
) x E lnt K2 

(vii) M possess a "good conical approximation" at X 0
, i.e. the set 

. is a convex cone, 
(viii) :Jx E Ker s: (x0

) n Mxo; S2 (x0)+ s; (x0
) x E K2 , 

(ix) L(x, A, 1J) ctf J (x)+ (St (x), A-h,, E~ + ((Sz (x), 1J))E
2

, E~ 
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Then there exists },0 E E;; 1J0 E - K; such that 
(i) Jx L (x", A0

, 1J0
) (X-X0 );:?;0, Vx E Mxo, 

(ii) JJoL (X0
, A0

, r/")=0, 
(iii) ( (S2 (x0

), 1J0
)) = 0. 

To apply the result of Lemma 3.2 to Problem P0 with Lagrange's functional 
defined by (3.2.1) we put: 

E=H 1 [0, T;R"] x PC [0, T; R 111
] 

E 1 =U [0, T; R"], 

E 2 =C [0, T; R"], 

K2 =K={y E C [0, T; !(k]; y (t) E K, Vt E [0, T]} 

M= H 1 [0, T; R"] x Q 

d;c df 
S 1 (;c, u)= dt- A(;c, y, u) where y(t) = x(t-h) 

S2 (x,u)=S(x). 

(3.2.4) 

So, the optimization problem P0 is reduced to finding minJ(x, u) over YcE 
where Y={(x, u) EM; S 1 (x)=O; S2 (x) E K2 } with M, St, S 2 , K 2 defined by (3.2.4). 

Now we are going to verify assumptions (v), (vii) of Lemma 3.2. 
It is known (see [8]) that the Volterra equation 

t 

)C (t)- J [f., (x0 (t), Y0 (t), U
0 (t)) X (t)+ fy (x0 (t), Y0 (t), U

0 (t) ji (t)] dt =a1 (t) (3.2.5) 
0 

has a solution x E H 1 [0, T; R"] for any a1 E H 1 [0, T; R"]. 
Moreover for any bE L 2 [0, T; R"] there exists a E H 1 [0, T; R"] such that: 

da 
b=dt (3.2.6) 

So, by (3 .2.5) and (3.2.6) we obtain that: for any bE U [0, T; R"] there exists 
;c E H 1 [0, T; R"] such that: 

dx 
dt- Ax (xo, yo, uo) r:- Ay (xo, yo, u'!) y =b. 

It means that for any b E L 2 [0, T; R"] there exists x E H 1 [0, T; R"] such that 

s~ (x0
, U

0
) (x, 0) =b 

what completes the proof of the fact that S~ (x0
, u0

) is onto £ 1 , so assumption (v) 
is satisfied. 

(vii) By convexity of Q it follows that 

Mxo, uo= lJ A (U-U
0

) XC [0, T; R"] , U E Q (3.2.7) 

is a convex cone, so it is a "good conical approximation" of M and assumption 
(vii) is satisfied. 
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The above considerations yield: 

Lemma 3.3 Let: 

(i) X 0
, U 0 be an optimal solution of problem P0 , 

(ii) L (x, u, },, 17) be defined by (3.2.1), 
(iii) there exists (x, ~~) E H 1 [0, T; R"] x PC [0, T ; R"'] 

such that: 

dx (t) 
--;}{ + j, ( X 0 (t), y 0 (t), U 0 (f), () X (t) + j,, ( X 0 (t), )J0 (t), U

0 (t), f) y (f)+ 

+ /,, ( X 0 (t) , )J0 (t) , U 0 (t) , t) U (t) =0 (3.2.8) 

x (Q) =0, Q E [ -h, 0] 
and \ 

S (x0 (t), t)+Sx (x0 (t), t) x (t) E Int K, \it E [0, T]. 

(iv) There exist (x, ~/) E H 1 [0, T ; R"] x Q such that (x, u) satisfy (3.2.8) and 

S (x0 (t), t)+Sx (xo (t), t), x (t) E K, \:lt E [0, T] 

then there exist: A0 EL 2 [0, T; R"], 1J0 E - !(':' c V [0, T, RK] ( K':' given by (3.2.3) ), 
:;uch that ~ 

(i) <Jx L (xo, uo, },o, IJo) , X- xo> + <oy L (xo, uo, ),o, IJo), y- yo) =0 

Vx EH: [ -hT; R"]; x (Q)=tp (Q) Q E [ -h, 0], 
(ii) 0; L (X0

, U0
, A0

, 1]0
) =0, 

(iii) <o11 L(x0 ,U0
,),

0 ,1J0 ),u -u0 )?:0 V uEQ, 

(iv) «S (x 0
), 1J0 » =0. 

The proof of the Lemma follows immediately from Lemma 3.2 if we note that 
our assumptions (iii) and (iv) respectively imply (vi) and (viii) in Lemma (3.2) and 
that for Mxo ,uo given by (3.2.7) point (i) in the result of Lemma 3.2 reduces to 
(i) and (iii) in Lemma 3.3. 

If Lagranglan L (x, u, },, ry) is strictly convex then it enjoys saddle-point pro­
perties. Actually suppose that: 

/[Lxx (~) Lxy (~) Lxll (~)] [X] [X]~ 2 H5 "-.. Lyx (a) L yy (a) L 3,11 (a) y , y /;::;, y //u/J 
"-... Lux (fi) L 113, (fi) L 1111 (fi)_ u u 

where y>O; a_j_r (.X, ft , X, fj) is any point of some neighbourhood of the optimal 
point (x 0

, U 0
, ),o, 1]0

) 

Lemma 3.4. If all assumptions of Lemma 3.3 and hypothesis H5 are satisfied 
then: L (x, u, A, 17) has a saddle point at (x0

, U 0
, ) ,

0
, 1]0

) i.e.: · · 

L (x0
, U 0

, A, 1J)~L (x0
, U 0

, ) ,
0

, 1J0) ~L (x, u, ),0 , 1]0
) for any X E H 1 [ -h, T; R"]; 

X (Q) = tp (Q), Q E (- h, 0], 
}, E U [0, T ; R"] 
uEQ 

1J E -K':' . 



56 I. LASIECKA 

Proof. Expanding L (x, u, A0
, 1!0

) into Taylor series about (x 0
, U0

) we obtain: 

L (x, u, A0
, 17°) =L (x0

, u0
, A0

, 1!0
) +<Jx L (x0

, u0
, A0

, t7°), x-x0
) + 

+<Jy L (xo, uo, },o, tlo), y- yo) +<Ju L (xo, uo, },o, !Jo), u- uo) + H 

where H is the second derivative of the operator L evaluated at (.X, u, X, fj) E 

E U (X0
, U0

, A0
, 17°). 

After applying Hypothesis H5 and Lemma 3.3 we arrive at: 

L (x, u, A0
, 1!0 )?::-L (X0

, U0
, A0

, t7°) VuE Q 

what proves the right-hand side inequality. The left-hand side inequality results 
from the fact that: 

dx0 

<A, dt + A(X0
, y 0

, U
0
)) =0 

and 

Namely, 

dx0 

L (x0
, U0

, A0
, t7°) =1 (X 0

, U0 )?:;1 (x0
, U0 )+ <A, ~t +A (x", y0

, U0
)) + 

+«S (x 0
), rp>=L (x 0

, U
0

, A, 17) \117 E -K*. Q.E.D. 

Observe that hypothesis H5 implies the uniqueness of optimal solution to 
problem P0 • 

Summing up the results obtained in this section we conclude that the equi­
valence of primal and dual problem was established providing that hypothesis H5 
and assumptions of Lemma 3.3 are satisfied. 

4. Discrete optimal control problem 

The main goal of this section is to approximate continuous optimal control 
problem by finite dimensional one. To do that the finite-difference method is used. 

In order to define the discret problem an approximation of the set of admissible 
states is constructed and its properties are discussed. After formulating the finite­
dimensional control problem the Lagrange's multipliers approach is applied to it. 

4.1. An approximation of state and control space~ 

In this section we are going to introduce some definitions essential in the sequel. 

First let us define an approximation of V [ -h, T; Rn] and H 1 [ -h, T; Rn]. 

dr T dr h 
Let r be a given parameter such that r---+0. Denote: M = -; N = -. It is as-
sumed that M and N are integers. ' ' 
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Define the space E, [- h, T + r; R"] which is to be an approximation of 
L 2 [ -h, T +r; R"] and H 1 

[ -h, T +r; R"] in the following way: E, [ -h, T +r; R"] = 
M 

= {x,; x,(t)= l; x, (rr) W, (t)}, where x, (rr) ER"; W, (t) is a characteristic 
r =N 

function of the interval [rr; r+ lr). 
Let be given an operator P,: PC [ -h, T; R"]-+E, [ -h, T; R"] defined by 

M-1 

P, x (t) =}; x (t,) W, (t) where t, E [rr ; (r+ 1) r] 

It is easy to verify that the following · estimations take place: 

Vx E H 1 [ -h, T; R"] liP, x-xll + liP, x-xll -1 ~r [11 ~~ 11 + 11 ~~ 11-J, 

Vx E H
2 

[ -h, T; R"] llv, x- ~ 11 ~q/2 11 d;t; 11' 

Vx E H
1 

[ -h, T; R"] lP, x-x l + lP: x-xl-1 ~rt ll l ~; 11 + 11 :~ 11-J, 
dx 

Vx E .lfl [ -h, T; R"]; and such that dt EL00 
[ -h, T; R"], 

r1 dx I 1 dx I 1 lP, x-xl + !P,x-xl- 1 ~r Lldi + dt _1 
p 

Vx E PC [ -h, T ; R"]n (j H 1 [t;, t;+ 1, R"] 
i = 1 

where: pis a number of points of discontinuously of x on [- 0, T], 

11 

dx 11
2 

_ '' +' ldx(t)l
2 

dt i- J dt dt; 
t; 

..J 

t;- the points ~f discontinuity of x; 6/! x (tt)-x (t;""). 
f!J>, Q cE, [0, T; R'"] is called an approximation of Q if and only if: 

f!J>, Q is a convex, closed set in E, [0, T; Rm] 

VuEQ3u,E f!J>,Q , llu-u, I I~ Cr1 1 2 ll 

Vu, E f!J>, Q3u E Q, ll u-u, ll ~ Cr112 . 

(4.1.1} 

(4.12.a} 

(4.1.2.b} 

(4.1.3} 

( 4.1.4). 

(4.1.6} 

(4.1.7} 

(4.1.8) · 

In finite-difference schemes the differential is replaced by finite-difference ope-­
rator 
V,: E, [0, T+r; R"]-+E, [0, T; R"] defined by 

x, (t+r)-x, (t) 
V, x, (t) = for t E [0, T]. 

r 
(4.1.9) ' 

l) The constant C is used throughout the paper to designate a generic constant. 
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4 .2. An approximation of the set of admissible states 

A most natural approach to an approximation of the set of admissible states 
is to replace original continuous constraints (3.1.3) by discrete constraints of the 
type (see [1, 2]): 

(4.2.1) 

where 

M-1 

l, = }; l'T Wr (t), 
r::::: 0 

X, E E, [0, T; R"]. 

ln this case the finite-dimensional control problem to be an approximation of 
problem P 0 consist in finding min J (x, u) subject to: 

Y'x, (t) + f( x, (t), x, (t- h), u, (t), t,) =0, 

x, (Q)=P, rp (Q) Q E [ -h, 0) 

x, (0) = rp (0) 

S (x, (t), t,) E K 

where x, E E, [0, T + r; R"] ; u, E E, [0, T; R"']. 

(4.2.2) 

However in this case there arises the question whether the solution of conti­
nuous problem 

dx (t) 
---;;[ + f(x (t), x (t-h), u, (t), t) =0, t E [0, T], 

(4.2.3) 

X (Q) = rp (Q) ' 

corresponding to discrete optimal control u, (u, determined by (4.2.2)) satisfy con­
tinuous constraints: 

S(x(t), t) EK, tE [0, T]. r l 
Obviously, we would like to obtain the solution of (4.2.3) x (u,) which atisfies 

S (x (u,) (t), t) E K. I 
However this requirement in general is not satisfied with the approximdtion of 

constraints given by (4.2.1). \ 

Therefore in this section we are going to study the problem of finding such 
an approximation the set of admissible states that the above mentioned condition 
is satisfied. 

In order to present some effective method of determining such approximation 
let us consider the following "parametric"' family of optimization problems. 
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Problem PK .. 
min J (x" u,) subject to 

V'x, (t)+f(x, (t), x, (t-h), u, (t), t,)=O, 

x, (Q)=P, rp (Q), Q E [ -h, 0) 

x, (0) = rp (0), (4.2.4) 

S (x, (t), t,) E KFcK 

where KF E !!7 (K), !!7 (K) is a family of convex closed cones belonging to K and there 
exists a convex closed cone K 0 cR" such that: VKFE!!i'(K), K 0 cKF. 

The Lemma analogus to Lemma 3.1 concerning some properties of optimal 
solution to problem PKF is presented below. 

Lemma 4.1. Assume that hypothesis Hl and H2 are satisfied. Then 

30<c:5<cxdr0 >0 VKF E !!7 (K) Vr<r0 f u~" l ~c:5 

f x~F i ~c:5 

where u~F and x!{p are optimal solutions associated with Problem P KF· 

The proof of the Lemma follows by using arguments similar to those given in 
the proof of Lemma 3.1 (see [3]) and employing the fact that KF => K 0 V KF E !!7 (K). 

Define an operator P; 1 : E, [0, T; R"]-+ H 1 [0, T; R"] by the following formula: 

(4.2.5) 

fo r tE[rr;(r+1)r], r=O,l , ... ,M-1. 

Another words P; 1 x, is piecewise linear function constructing with the help 
of x, such that 

r; 1 
X, (rr) =X, (rr), r=O,l, ... ,M-1. 

It is easy to verify that the following estimations take place: 

llx,-P; 1 x, ll ~r II V'x, ll , 

fx,-P; 1 x, f~ r1 II V'x, ll , 

fx,-P; 1 x, f~ r IV'x, f . 

(4.2.6) 

(4.2.7) 

(4.2.8) 

Assume x~F, u~F to be the solution of problem P KF associated with some cone 

KF E !!7 (K). Denote by x ctr x (u;F) the solution of equation (4.2.3) corresponding 
to control u;F. We are going to show that the difference (in the sense of Leo norm) 
between P; 1 (x:F) and x (u:F) can be a priori estimated independly of the choice 
of KF. This result is formulated in the following : 
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Lemma 4.2. Assume that: 
(i) x~F, u~F- are solutions of problem P KF; x is the solution of state equation 

(4.2.3) corresponding to control u~'-
(ii) Hypothesis HI, H2, H4 are satisfied. 

(iii) f satisfies Lipschitz condition with constant L 0 -on the set G (t) 

G (t) df {(x (t),y (t), u(t), t) E R"xR"xR"' x [0, T]; x, y, u E G} 

(G tlefined in Lemma 3.1). 
(iv) r is chosen such that: 

then : 

where a does not depend either on r or on K E ff (KY'). 

Proof. Note that by (4.2.7) 

(4.2.9) 

So the term lx-x:F I must be estimated. In order to do that step method is used. 

Denote x =P x x -~ xK'" u .. <!!:. uKF 
r r ' r t ' t · r · 

Defipe Jr (t) ~ (V (xr- xr) (t), (.\\- xr) (t)) + (A (x" Yn iir) (tr) + 
-A (x" Yn iir) Ctr), U'\-x,) (t)). 

Observe that: 

(it is easily deduced from the definition of Vxr). 
Denote r, =entier t/r. 

(4.2.10) 

After integrating c5r (t) from 0 tor, r (for t<h) and after applying (4.2.10) and 
hypothesis H4 we have: 

rr t 1 r rr 1' 

J Jt (t) dt;=, 2 Jxr(t)-xr (t) l2 - 2 J [v (xr (t)-.Xt (t)) [2 dt+ 
0 0 

r 1 t 

+cr.J lxr(t)-xr(t) J2 dt. (4.2.11 ) 
0 

Taking advantage of the facts that xr and x are the solution of state equations 
(4.2.4) and (4.2.3) respectively and that A satisfies Lipschitz condition we get: 

rr t rr L 

J JV(xr-.Xr)(t) l2 dt=- J (A (x" ji., il,) (tr), V(xr-.Xt)(t)) dt+ 
0 0 
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where 

(in the last inequality we used the estimation (4.1.5)). 
Hence by ( 4.1.2) 

[T rv c.x,-.x,) (t)l 2 
dty

12 

~T v2\\ ~t:\ \ + 
0 

[ ''' ]1 12 

f\ldrp ll lldxll ] + L 0 2 [ l(x,-x,)(tW d~ + Lo r L\Tr _
1 

+2 ;t 
0 

+ T · 

By substituting (4.2.12) into (4.2.11) we haxe: 

_r r 't 1 , Yt r · 

J i\ (t) dc~2 1 (x,-x,) (t) l 2 +(a-2rL~) J l(x,-x,) (tW dt+ 
0 0 

On the other hand using inequality 

1 
ab=o:::2w2 +- b2 

"' 4s ' 
.and Lipschitz condition we obtain: 

r 1 t 

+ J (A (x, y, ii,) (t)- A (x, 51,, tl,)(t,), (x,-x,)(t)) dt~ 
0 

~ ~8 {L~ [11x- x, ll + il5i- 5\ 11 !. + lit- t, ll!] +r
2 11 :;,: IIJ + 

r 1 t 

61 

( 4.2.12) 

( 4.2.13) 

(4.2.14) 

+2sJ l(x,-x,) (t)l2 dt. (4.2.15) 
0" 

dx . 
2

) Observe that - is piecewise absolutely continuous function (since 11~ is step function), 

lldlx ll dt ld2 (x)/ so -- is defined , moreover -- < C for t E [rr, (r+ 1) r) where C does not depend 
dt

2 
rr(r.+tlr dr

2 

11

d 2 xll 
on r (it results from the fact that 11~ is Lounded independently on r). Then -

2
- is bounded 

independently on r. dt * 
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After combining (4.2.15) and (4.2.13) we arrive at: 

1 ,, t 
21(x, -x,) (t) I 2 +(Ct.-2rL~-2s) J l(x,-x, (t) l2 dt~ 

0 

By the analogous way we prove that for K=l, .. . ,m-1 and Kh~t~(K+1)h 

r, t 1 1 J J, (t) dt?:c
2

1(x,-x,) l2 
-

2
1(x,-x,)(Kh) l2 + 

K /1 
r 1 t 

+(Ct.-2r L~) J 1(-x,-i'r) (t)IZ dt-2rL~ llx, -.X, II~- 1 + 
Kll 

On the other hand 

''' 1 f (11 dx 11
2 

J J,(t)dt~4el2L~ llx,-x, ll~- 1 +2r2 L~ dt K + 
Kll 

+ 1 1~1[_ 1 +r2)+2r2 ~~~t:[l]+2s l' l(x,-x,)(t) l2 dt. (4.2 .18) 
Combining (4.2.16) and (4.2.17) and (4.2.18) we obtain: 

r1 t 1 
(a-2r L~-2s) J l(x,-x,) (t) l2 dt+

2
1(x,-x,) (1) 1 2 ~ 

Kh 

~ 2L~ ( r+ ;J llx,-x, ll i ~ t + '2 L~ ( r+ ;J (11 ~~ IIK-t + 

+21 1 ~ 11 K +rf +rz [[ d;t: [[(;s +r)+ ~ l(x,-x,)(Kh)J2. (4.2.19) 
Let B be chosen such that Ct.- 2rL~- 2s > 0 (it is possible due to the assumption 

Ct. -2rL~>0). 
Denote 

Ct. 0 =Ct.-2L~-2B, 

Ct. 1 =L~(r+ ;J. 

for K=l, ... ,M -1. 
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Thus (4.2.16) and (4.2.19) we can rewrite in the following form: 

r, < 1 
<X 0 J /(x,-x,) (t) /2 dt+2 /(x,-x") (t) l 2 ~a0 for t~h, 

0 

(4.2.20) 

r, r 1 
o:0 J /(xr-xr) (t) /2 dt+2 /(x"-x") (t)JZ~aK+2o:1 l!xr-Xrl/i_ 1 + 

Kh 

1 
+2 /xr(Kh)-x, (Kh) /2 for Kh~t~(K+ I) h. (4.2.21) 

Hence for t E [Kh, (K+ 1) h] we have: 

lax I 
Recall that lxr (t)-x" (t'/~ T ITt (see (4.1.3)), so 

sup / x,(t) - .\\(t) / ~2m( XC/.1 + l)m~1 r2T2<X ~ (. I I!axll2 + 
t E [0, T] <Y.o · f 

+ 11 ~~I [ 1 ~ T2) + T211 ~:;y 11 : ( ;e ~ T) r + 

~T~~~~~Tr2m( 2:~1 +l)¥[o:t( \\ ~ l\ + 
+I! dril-l ~r)+ ll a:~:l \ * (;e +rrJ~ \ ~\]· C

4-2·22) 
After combining (4.2.22) and (4.2.9) we get 

where 

dx 
Since vx:F (t,) =-A cx:F, y~F, u:F) Ctr) and dt = -A (x, y, u~F) then after 

employing the results of Lemma 3.1., equation (4.1) and differentiability of /(hypo-
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thesis Hl) we find that IV'x:F I, 11 ~ 11 and I~~ I' 11 d:t: 11* are bounded by constants 

independent of r and KF. So we prove that a does not depend on r, KF what 
-completes the proof of the Lemma. 

Now let us define 

D;={xEH1 [O,T;R"]; S(x,t),t)EK+pr tE[O,T]} 

where Pr E K is determined by the following condition: 

d (p., 0) =mind (j3., 0); P ctr {firE K d (j3., JK) =La r} 3) 4) 
~-:- E p 

:see Fig. (1). 

Fig. 1 

It is easy to verify that Pr satisfies the following conditions 

If we denote 

(i) K+Pr,c:.K+:pr
2
C:.K Tt>T2, 

(ii) 3b>0 Lm~ IPr i Rx ~ br, 

(iii) Vk1 E K+pr Vk2 : lk1 -k2 I Rx~Lar => k2 E K. 

D ~c {x E H 1 [0, T ; R"] ; S (x Ct), t) E K , t E [0, TJ} 

then from ( 4.2.24 (i)) immediately follows that: 

3ld(a,B) = inf !a- z!; bK - boundary of K. 
z E B 

4 l L is the Lipschitz constant for S i.e. 

Js (x 1 (t),.t)-S (Cx2) (1) , t)J ~L !x, (t)- x2 (t)i 

V x~> x2 E G V t E [0, T]. 

(4.2.23) 

(4.2.24) 
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It is easy to observe that the sets n; are convex closed and moreover 

Hence 

(4.2.25) 

In order to construct approximation of the set of admissible states we are going 
to prove the following Lemma to be essential in the sequel: 

Lemma 4.3. Assume that S (~ , t) satisfies Lipschitz condition with constant L. 
Then the following implication takes place: 

Proof. By Lipschitz condition for any t E [0, T] we have 

IS (x; (t), t)- s (x (t) , t) I RK~L rx; (t) -X (t) [ Rn ~ Lar . 

Since S(x:· (t), t) E K+p, then from (4.2.24 (iii)) we obtain that t E [0, T] S (x (t), t) 
E K and thus x E D Q.E.D. 

It follows from the results of Lemmas 4.2, 4.3 that .X (solution of (4.2.3)) belongs 
to the set of admissible states if the cone KF is chosen in such a way that r; 1 x~F En: 
(x;F solution of problem P KF). So, the problem to be posed now is that of finding 

KF such that P; 1 x;j, En:·. It is easy to prove that KF ctr K + p, satisfies this require­
ment. Actually KF belongs to the family ff (K) since K + p , is a convex closed cone, 
K+p,cK and K

0
cK+p, with K

0
_dr K+p,

0 
(r0 given in Lemma 4.11). 

Furthermore the validity of the relation P; 1 x;FED; for KF=K+p, results 
from the following: 

Lemma 4.4. Assume that hypothesis H3 is satisfied. 

Let us put 

fiJ>,n;· -df_{x, EE,[O,T; R"]; S(x,(t),t,)EK+p,.}. 

If x, E &, n; then P; 1 
X, En; (see Fig. 2). 

Fig. 2 

(4.2.26) 
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t-n ( t-n) 
Proof. Note that t=--(r+1)'+ 1 --- rr. 

r 1 r 

For t Efrr;(r+1)r) 

t-n ( t+rr) 
P; 1 x,(t)=-,-x((r+1) r)+ 1 --,- x(rr). 

t-rr 
Denote rx=--. Then for tE[n;(r+1)r) by K-convexity of S we have 

r ! 

S ( P; 1 x, (t), t) = S ( rxx ( (r + 1) r) + (1 - rx) x (rr); rx (r + 1) r + 

(1- rx) rr) E rxS (x (n), n) +(1- rx) S (x ((r+ 1) r); (r+ 1) r) + 
+Kcrx (K+p,)+(l-rx) (K+p,)+KcK+p, 

what completes the proof of the fact that P; 1 x, En;. 

Now we are going to show that YJ,D; given by (4.2.26) is "a good approxi­
mation" of D in the following sense: 

(4.2.28) 

where/;: [0, r 0 ]---tR1 are the continuous functions such that;; (r)~ 0, i=1, 2. 
•~o 

Actually, by (4.2.25) 

Vx E D:Jx; En; l x-x~ l ~c (r) lxl. 

Observ~ that for any x;En;, tE[rr;(r+1)r) and P, defined by (4.1.1) with 
t,=n we obtain: 

S (P, x; (t), t,) =S (x; (rr), rr) E K+p, (since S (x; (t), t) E K+p, \it E 0, T). 

Hence P, x:' E YJ, v:. 
Moreover by ( 4.1.4) 

IP,x;-x;l~r lx;l~ r[ l x;-xl+lxl]~r [lxl+lxl c(r)]~r(~:(r)+l) lxl 

Then 

where 

lxl·/1 (r)=c (r)+r (c(r)+ 1) tends to 0 with r---+0 

what a~sur~s1 conditi~n (4.2.27) to be sa]~isfied. On other hand by Lemma 4.4 Vx, E 
E YJ,D,; P, x, ED,. 

Recalling (4.2.7) we have 

lx,-P; 1 x, l~r lx,l. 

Furthermore, since n; cD then V x, E YJr n; we have P; 1 x, E D and 
lx,-P; 1 x,l~r lxrl· So condition (4.2.28) is fulfilled with / 2 (r)=r lx,l. 
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Summing up the results obtained in this section we recall that the approximation 
of the set of admissible states defined by (4.2.26) is a "good approximation" in the 
sense given by (4.2.27), (4.2.28) and moreover .X (u~F) (where u:F optimal control 
corresponding problem P Kp with KF =K + p,) belongs to the set of admissible states 
(i .e. S (x (t), t) E K). 

4.3. Discret optimal control problem - problem statement 

We are going to formulate the finite-difference approximation of initial problem P 0 

Problem P, 
T 

Find (x~, u~) E E, [0, T + r; R"] x E, [0, T; R"'] minimizing J (x., u,) = J tP (x, (!'), 

u, (t), t) dt subject to constraints: 

V'x, (t)+ f(x, (t). x, (t-h), u, (t), t,) =0 

x, (Q) =P, rp (Q), Q E [- h, 0] 

x, (0) = rp(O) 

0 

( 4.3.1) 

(4.3.2) 

(4.3.3) 

( 4.3.4) 

(4.3.5) 

It can be shown by using the standard arguments (see [4]) that hypothesis Hl, H2 
imply the existence of solution to problem P,. 

A problem to be studied in the next section is the estimation of the error (in 
the sense of L 2 -norm) between the solutions of problems (P0 ) and (P,). In order 
to find this estimation the Lagrange's multipliers approach to finite-dimensional 
problem will be applied in the same way as it was done in Section 3.2. for conti­
nuous problem. At first under some additional convexity assumption the equi­
valence between the primal and dual discret problem will be established. 

Define: L,: E, [ -h, T+r; R"]--+E, [0, T; R'"] xE, [0, T; R"] xE, [0, T; R"]--+R1 by 
the following formula: 

where 

df - df - df 
A, (x., y., u,) (t) ~ - A (x., y., u,) (t,); S, (x,) (t) ~' S (x,) (t,); p, (t) = p, 

for t E [0, T] . 

After applying the result of Lemma 3.2 in this case we can state that: 
:lA.~ E £, [0, T; R"]; 17~ E £, [0, T; RK] such that 

Vx, EE, [ -h, T+r, R"]; x, (Q)=P, rp (Q), Q E [ -h, 0); x, (O)=rp (0), (4.3.7) 
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Assume the following hypothesis to be satisfied 
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(4.3.8) 

(4.3.9) 

(4.3.10) 

where 

Observe that hypothesis HS' implies the uniqueness of optimal solution 
(x~, u~). 

Lemma 4.5. If hypothesis HS' is satisfied then Lagrangian L, (x., u., ).., 17r) 

posses a saddle point at (x~, u~, ).~, 17~) i.e. 

Vxt EEr [ -h, T; R"]; Xr (Q)=Pr rp (Q), Q E [ -h, 0); Xr (O)=rp(O) 

Vu, E Y\ Q; V},, E E, [0, T +r; R"] 

where K, = { Xr E E; [0, T; R"]; x, (t) E K, t E [0, T]} 

T 

x; = {17, E E, [0, T; R"]; f Xr(t) df!r (t)~O Vxr E Kr}· 
0 . 

The proof of the Lemma is analogous to that of Lemma 3.4. 

5. Error estimation for optimal and discrete solutions 

The problem considered below is that of finding the rate of convergence for both 
the optimal state and the optimal control of finite-dimensional problem P0 to the 
optimal state and the optimal control of continuous problem P,. 

The main result of the paper is given in the following. 

Theorem 5.1. Assume 

(i) (x0
, u0

), (x~, u~) are optimal solutions corresponding to P0 andP, problems 
respectively. 

(ii) Hypothesis Hl-HS and assumption of Lemma 3.3 are satisfied. 

(iii) f, S, iP satisfy Lipschitz condition on the set G (t) with constants L 0 , L, L 1 

respectively. 
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Then 

where C does not depe9d on r 

Proof. Denote: 

il~ E :!Jr Q an approximation of U
0 obtained on the basis of (4.1.7) condition (recall 

that lluo- il~ ll :::; er±). 

Let us choose 1]~ E - K; such that: 

(5.1) 

We are going to show that such 1]~ exists. Actually, observe that by properties 
of Stiljtes integral [8] we have 

M-1 (r+i)t 

~X., tj0
"}; = }; X, (rr) J dtj0 (t), 

r~ 0 rt 

1\{.- 1. 

~x., it~'}; .= .J; x, (rr) 15, 
r= 0 

where 15, df ftr ((r+ 1) r)-q, (rr). 

Thus, in order that (5.1) be satisfied the ,following 'conditions have to hold 

M-1 (r+l)r M-1 

}; Xr(rr) J dtj0 (t):s;:}; x,(rr)l5r Vx,EKr (5.2) 

M-1 

}; X, (rr) 15r:s; 0 V Xr E Kr. (5.3) 
r=O 

If we put 
(r+ 1) r , 

15, df I dtjo (t) 
rr 

than (5.2) is obviously fulfilled. 

Taking into account the fact that 1J0 E -R* and that x, (t) ~~ xr (rr) VtE [0, T] 
belongs ·to. R we have: 

T T 

Vr = O, 1, ... ,M- 1, x,(rr) I dtj0 (t)=Jx,(t)dtj0 (t):s;O. 
0 0 

Thus 
M-1 M-l (r+l)t 

}; Xr (rr) 15, =}; Xr (rr) . J d,/" (t)~ 0 
r=O r= 0 

what proves the validity of (5.3). 
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Further denote: 

Let it be an element of Q corresponding to u0 according to condition ( 4.1.8) 
Hence 

llu-u~ II ~Cr 112 • 

Recalling the result of Lemma 4.5 and using the above notations we have: 

(5.4) 

On the other hand expending L (x, a, A0
, 11°) into Taylor series about (x0, u", A0, 11°), · 

employing hypothesis H5 and the results of Lemma 3.3 we get: 

L (x, u, A_o, 1'/o);:::.L (xo, uo, ),o, 11o)+<oxL (xo, uo, .{o, 110), x-xo)+ 

+ <o, L(xo, uo, ;,o, 11o), y- yo)+<o" L(xo, uo, ),o, 11o) , u-uo)+ 

+ Y 1111- U0 II ?:.L (X0
, U

0
, A0

, 11°) + Y 1111- U
0 JI 2 . (5.5) 

Since Ff: E -K; Lemma 4.5 implies: 

(5.6) 

Let us add and subtract from the right-hand side of this inequality the term 
L (x, it, X:, Ft;). Taking advantage of (5.5) we obtain from (5.6) 

L, (x;, u~, A.;, 17~)?;:.L, (x;, u~ , X~, Fj~) -L (x, a, X;, Fj~)+ 
+L (x, a, X; , Ft;);;::.L, (x; , u;, X~, Ff~)-L (x, it, X;, Ft;)+ 

+ L ( X0, U0
, ),o, 11°) + Y 1111- U

0 ll 2 • (5. 7) 

Combining (5.4) and (5.7) we arrive at: 

L, (x;, u~, X~, Ft;) -L (,Y, u, A0, 11°) + L (x0, u0, },0
, 11°) + 

+y ll u - uoii 2 ~ L, (.x;, ii~, Jc~, 11~). 

Hence 

y l l u-uoii 2 ~L, (x~, u~ , },~, 11~) -L (x0, u0
, ;,o, 11°)+ 

+ L (x, it, A0
, 11°)- L, (x~, u;, X~, Fj~). (5.8) 

In order to obtain the estimation of llil- u0 ll2 we have to compute the differences 
between the discret Lagrangeans evaluated at (x~, u; , ).~, 17;) and (x~, u;, X~, ij~) and 
continuous Lagrangians at the, points (x 0

, u0
, A0

, 11°) and (x, a, A0, 11°) respectively. 
Using definitions of L, and L and taking into account the fact that (x0

, U0
) sa­

tisfy the state equation (3.1.1) and state constraints we get: 

L, (x~, u;, Jc;, 11;)-L (x 0
, u0, ),0 , 11°) =1 (x; , u;) -J (x0, u0

) + 
+(Vx; +A, c.x;, .Y~. £(), Jc;) + ~s, (x;)-p,, 11;))~J (x~, u;) + 

-J (x0
, u0 )+ < \7x:- :t x 0

, },~) + <Jc;, A, (x;, .Y:, u;)­

A (x0
, )'

0
, U

0
)) + ~S, (,Y;)-p,- S (x0

), 17~ )). 
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To the right hand side inequality (5.9) we added the term -((S (x0
), rt~'}; which 

will be shown to be positive. So we are going to prove that : 11~ E - K*, then 
((S (X0

), 11~'};~0. 

Actually suppose that x E K.; then 

M -1 

«x, 17~,'}; =}; x (tr) (jr where br=17, ((r+ 1) r)-17, (rr), tr E [rr; (r+ 1) r). 
r=O 

Let us denote x, (rr) =X (tr). Obviously x, (t) E K (since x (t) E K), so x , E K,c 
cE, [0, T; Rn]. 

Hence 
M - 1 

«x,17~'};=}; x,(rr)€5r=«x.,11~'JJ~O (since 17~E -K*) 
r=O 

what con;rletes the proof of the fact that 11~ E -K"'. 
After applying Schwartz inequality in (5.9) and employing the part that cP,_ J, S 

satisfy Lipschitz conditions we get : 

L, (.X~, i1~, ).~, 17~) -L (X
0

, U
0

, ),o, Y/0)~Ll [ II.X~- X
0 ll + lli1~- U

0 ll ] + 

+ 1 1 },~ 11 [ JJ v.x~- ; X
0

11 + Lo (l lxo - .X~ II + IIY0
- Ji~ ll + lluo- fi~ ll + li t- t,ll)] + 

+lrt~ l v [L I .X~- xo l + l t-t, l + l fttl]~ 

~Ll [ T 11 d;o 11 +r± c] + 11 },~ 11 [ Tt Pd:,· t 

Lo( T (2 11 d;o ll ~ 11 ~; J!_J +rt C+rr)]+ l rt~ l v [Lr I ~:o I+ (b+ 1)r] · 

In the last inequality the estimations (4.1.2), (4.1.4), (4.1.5), (4.1.7), (4.1.8) were 
employed. Hence 

L ( -o - o 10 o) L ( o o 1o o):O::: t C 
t Xr , Ur, Ar, 'lt - X , U , /1., , 1] -....;::;:: T 0 (5.10) 

where 

C0 df \1 d;o 11 (Ll Tt + 2 11 ),~ 11 Lo r l) +I d;o I Lrt l 11~ l v + 

+ I! A.~ llll ~ 11-
1 
L~ T} + Ll C + I I X~ II fJ d~~o + I I },~ II Lo C + 

+ 1 17~ 1 v(b+l)r-l- + II A.~ I I Trt. (5.11) 

On the other hand using definitions of L and L, as well as the fact that (x~, u~) 
satisfy (4.3.1) we obtain 

L (:X , u, ).0
, 17°)-L, (x~, u~, J:;, ij~)=J(x, u)-J(x~ , u~)+ 

+<~:+A (.R, y, u), xo) +«S (.R), 17°'JJ-«S (x~)-p., fj~'};= 
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d.f( 
=J(x, u)-J(x~, u~)+< dt-Vx~, },o)+<A(x,y, a)+ 

-A (x0
, Y0

, U
0
), A0

) + ~s (.X)- st (x~) +fir, 17°} + 

+ ~s. (x~)- fir, 17°- if~} . 

After applying Schwartz inequality, using Lipschitz conditions and (5.1) we 
get: 

L (x, u, A0
, 17°)-Lr (x~, u~; X~, ij~)~L1 [ II.X-x~ ll + llu-u~IIJ+ 

Hence 

where · 

+ IWII lll ~:- Vx~ I I+Lo ( II.X-x~ II + II.Y-y~ ll + llu-u~ l l+ llt-tr l l)+ 
+ 117° lv[L (lx-x~ l + lt-t,l +br]~Ll [r II V.X~ II +rt <!.']+ 

+ IWII [r+ fJ ~~ +L0 ( 2r ll 'lx~ ll +r 11 dr 11 -l +rt C+rT)] +. 
+ ll17° lv (Lr I Vx~ l +r+br). 

df 11 drp 11 C1 = ll 'lx~ ll [L1 r 1 +2Lo rl] + 1 Vx~ ll 17° l v Lrt +} dt _
1 

Lo , t +. 
II J,o ll (jJd; ·+Lo C)+L1 C+ l17° lv+(b+l) r1 +Lo Tr" IWII . (5.13) 

dr 

Substituting (5.10) and (5.12) .into (5.8) we arrive at : 

y llu- U
0 11 2 ~ c2 ,t 

where C2 _d t:_ C1 + C0 , C1 , C0 are given respectively by (5.11), (5.13). 
Hence by (4.1.8) and (5.14) ' 

what completes the proof of Theorem 5.1. 

(5.14) 

Corollary 5.1. If the assumptions of Theorem 5.1 are satisfied and moreover 
Cl. 

r < ?L2 then: 
~ 0 

and 

J (x 0
, U

0)-J (x~, u~)~ Crk. 

The proof of Corollary 5.1 immediately follows from Theorem 5.1. and from 
the inequality 

llxo- x~ ll ~ C lluo- u~ ll 

which was proved in [3]. 
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If we assume that the set of admissible controls belongs to H 1 [0, T; R 111
] then 

by ( 4.1.2) the following estimations take place: 
' 

(5.15) 

(5.16) 

Employing the same arguments to that given in the proof of Theorem 5.1 and 
taking into account (5.15) and (5.16) we obtain 

Theorem 5.2. Assume taht 

(i) (x0
, u0

), (x~, u~) are the solutions of problems P0 and Pr and U 0 E Qc 
c.H1 [0, T; R 111

], where Q is a convex closed set in H 1 [0, T; R111
] . 

(ii) Assumptions of Theorem 5.1. are satisfied then 

Theorem 5.2 implies the following 

Corollary 5.2. If the assumptions of Theorem 5.2 are satisfied and moreover 
(1. 

r < 
2

L 2 , then 
0 

and 

Remark. If u E PC [0, T; R 111
[ is assumed to satisfy Holder condition with 

constant 0< r:t. < 1 in all intervals of continuity of u (t) then as it was shown in [9], 

then in this case Theorem 5.1 is valid with 

6. Example 

As a special case of constraints given by (3.13) the following form of state 
constraints is considered 

g (x (t), t) ~ 0, t E [0, T] (6.1) 
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wpere g: R" x [0, T]-. R 1
, is assumed to be twice continuously differentiable 

function, convex and to satisfy the following condition: 

where 1,,=(1, .. . , 1) ER"'; 

(b) g(x0 (0),0)<0, X 0 ER". 

It is easy to verify that hypothesis H3 is satisfied with 

S(x(t),t) d!._g(x(t),t) and 

· Kctr {(ER1 ;(o:;;O}. 

Observe, that R and i(':' take the following forms in this ~ase: 

(6 .2) 

(6.2) 

(6.3) 

R ={y E c [0, T]; y (t):( 0, t E [0, T]} (6.4) 

K* = {rt E V [0, T, R 1 
], 17 (t) nonincreasing, drt (t)?:O, t E [0, T]} (6.5) 

We are going to show that under some observability condition we can employ 
· t he result of Lemma 3.3. This fact is given by the following 

I .emma 6.1. Assume that: 
(i) (x0

, u0
) is a solution of problem P0 with state constraint of the form (6.1); 

.. ctr / dx ) -
(u) L (x, u, },, rt) =-= J (x, u) + ""'dt +A (x, y, u), ). + ~g (x), IJ» 

w here g (x) (t) _c!_f_ g ( x (t), t); 

(iii) A~(X0,y0,U0)(t)gx(x0 (t),t)#O, OER"'; 

(iv) g satisfies: g ( X 0 (0), 0) < 0; 

(v) 0 E Q 

then there exists ).0 EL 2 [0, T; R"], IJ 0 E - K* (given by (6.5)) such that: 
(i) (ox L (X0

, U0
, A0

, IJ0
), x-x0

) +(o, L (x0
, u0

, }.0, IJ0
), y- y0

) =0, 
Vx E H 1 

[ -h, T; R"], x (Q)=tp (Q), Q E [ -h, 0), 
(ii) 0;. L (x 0

, U
0

, X0
, IJ0

) =0, 
(iii) (o 11 L (x0

, U
0

, } ,
0

, IJ 0
), u-u0 )?:0, VuE Q, 

( iv) ~g (x0
), Yf0» =0. 

Proof. The Lemma is a special case of the Lemma 3.3. Therefore to prove it 
we have to verify the fulfillment of all assumptions of Lemma 3.3. It is easy to see 
that it is enough to check (ii) and (iv) observe that in our case (iii) takes on the form : 
3x E H 1 [0, T; R"], 3u E PC [0, T; R"'] such that 

dx(t) 
~ + Ax (X 0

, y 0
, U

0
) (t), X (t) +A, (x0

, y 0
, u0

) (t) ·ji (t)+ 

+A 11 (x 0
, y 0

, u0 )(t)•ii (t)=O, X (Q)=O, Q E [ - h, 0] (6.6) 
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and 

g (x0 (t), t) + (gx (X0 (t), t), X (t) )Rn < 0 'v' t E [0, T] (6.7) 

Denote R df {t E [0, T]; g (x0 (t), t)=O}. 

Since g ( X 0 (0), 0) < 0 (by assumption ( 6.2b) then for all t E [0, mint, t ER] ii (t) _df_ 0; 

x (t) ~ 0 satisfy (6.6) and (6.7). Therefore in order to (6.7) be satisfied in all interval 
[0, T] it is sufficient to assure the first derivative at (6.7) with respect to t i.e. 

d 
dt[(gx0 (t),t)+(gx(x0 (t),t),x(t)j] to be negatif. 

So, after computing the first derivative of (6.7) we arrive at 

(gx (x0 (t), t), X (t))R,+g, (x0 (t), t)+(gxx (x0 (t), t), X0 (t)+ 

+ gxt (xo (t), t) +A~ (X0
, Y0

, U
0

) (t) gx (x0 (t), t), X (t)k,+ 

+(A; (x0
, y0

, U
0

) (t) gx (x0 (t), t), Y (t))Rn+ 

+(A;; (x0
, y 0

, u0
) (t) gx ( X 0 (t) ,' t ), ii (t))~.> 0. (6.8) 

If we denote 

d0 (t) df (gx ( X 0 (t), t) X0 (t))R" + g, ( X 0 (t). t) 

d1 (t) df gxx (x0 (t), t) X0 (t) + g.n (x 0 (t), t) +A; (X0
, Y0

, u") (t) gx (x 0 (t), t) 

d2 (t) =A; (X
0

, Y0
, U

0
) (t) gx ( X 0 (t), t) 

d3 (t)=A,; (X0
, Y 0

, U0
) (t)gx (x0 (t), t) 

then (6.8) can be rewritten in the form: 

From the smoothness properties of g it results that: 

d0 (t) E C [0, T; R 1
] 

d 1 (t) E C [0, T; R"] 

d2 (t) E C [0, T; R"] 

d3 (t) E C [0, T ; Ru'] 

Since x (t) and fi (t) have to satisfy (6.6) then x (t) can be expressed in the form 
(see [lO]) 

t 0 

X (t)=X(t, t0 ) X (t0 ) + J X(t, u+h) A.,(X0 ,y0
, U

0
) (u+h) .\:(u)du)+ 

to - h 

t 

+ J X (t, s) A, (X0
, yo, u0 )(s) ii (s) ds for t> t0 

t 0 

where 
0 I at X (t, u)=Ax (x0

, y 0
, U 0

) (t) X (t, u)+Ay (x0
, y 0

, U
0

) (t) X (t-h, u) 

X(t, u)= fo, t<u. 
[1, t=u. 
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Hence (6.8a) is equivalent to 

(d1 (t), j X (t, s) All (x 0
, Y0

, U.
0
)(S) ii (s) ds L. + ( d3 (t), ,u (t))R"' < 

T 0 

<-d0 (r)....:.(d2 (t), Y (t))R,-(d1 (t), X(t, t0) x (t 0 ))R,;+ 

- (d1 (t), / X(t; CJ+h), Ay (x 0
, y 0

, u?) ((J+h) X(CJ) drJ.) . (6.8b) 
fo-Il R'' 

Observe that for t 1 <t<t1 +h inequality (6.8b) takes a form: 

(d1 (t), j X(t, s) All (x0 ,y0
, U

0
) (s) ii (s) dst .. +(d3 (t), u (t))R ... < 

r, 

<-d0 (t) (s,ince ;\:(t)""O. for . tE[-h,t1 l). 
So, if d3 (t)#Q then .the existence of u (t), t E (t1 , t 1 +h), realizing the above 

inequality it follows from .the fact that. Volterra equation 

r ··· ... 

[ik (t)-(d1 (t), J X (t, s) All(X0
, y 0

, U
0

) (s) Ctk (s) ds)R,= - ld0 (t) J-1 

'• 
(uk (t) denotes a k-coordinate of u (t) corresponding to d~ CO which is different from 
zero), has a solution for any d0 (t) (in this point we employed the continuity of d0 , d1). 

Furthermore for t 1 +1h<t<t 1+(/+l)h, l=
1

l,. , ., ,E(T~t1 )+1, u(t) can be 
determined by the following equation: 

1 

' 
l J :I 

uk(t)-(d1 (t), j X(t,s)Ail(x0 ,y0
,U

0 )iik(s)ds) .. =-:-d0 (t)+ 
r

1
- 111 R 

+ ( d1 (t), X (t, t i 4- !h) x (t 1 + lh))i .. + ( di '(t); ji tt))Ji;,f'(d1 '(t), 
r 1 + lll 

J X (t, CJ+h) Ay (x 0
, y 0

, U
0

) (CJ+h) X (CJ) dCJh.. (6.8c) 
'• (l - 1) 11 

Actually observe that all terms on the right hand side of equation (6.8c) are 
known (since x (t) for t E [t 1 + (l- I) h, t 1 + lh] was determined on the preceding 
step). Then due to the fact that the function on the right hand side of (6.8c) is con­
tinuous and that Volterra equation has a solution for any continuous function on 
the right hand side of equation there exists a solution of (6.8c). Therefore if even 
one coordinate of d3 (t) =A~ (x

0
, y 0

, u0
) (t) gx (x 9 (t), t) is different from zero then 

we can to choose u (t) and x (t) in such a way that (6.8) is satisfied what establish 
the validity of (iii) in Lemma 3.3. 

The assumption (iv) ()f Lemma 3.3 takes on the form 

3i' E H 1 [0, T; R"]; u E Q such that 
dx 
- +A ( o o o)""'+A ( o o o)---L.A ( o o o)--0 dt x X I Y , U . ~\. . y X , y '· U, y , . ll X , .Y , U U- (6.9) 

X (Q)=O, Q E [ -h, 0] 

g (x 0 (t), t)+gx (X 0 (t): t)x (t)~O, t E [0, T]. (6.10) 
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df M 
If we take x = 0 and ft =-c 0, 

assumption (v) we known that 
Lemma 3.3. 

- --- ----- - -· 

then (6.9) and (6.10) are obviously satis.fied. By 
~1=0 E Q what completes the proof of (v) in 

Q.E.D. 
It is easy to observe that in the case of cone K given by (6.3) p satisfying ( 4.2 .24) 

is equal to: 
p,= -Lar. ( 6.1 1) 

So, the discret constraints in f?J>, problem take the form 

(6.12) 
. ' 

summing up the results obtained in this section we conclude that in our case the 
est!mations given by theorems (5.1) (5.2) will be valid with b df_La if the assump­
tions of Lemma 6.1 are fulfilled (since Lemma 6.1 is equivalent to Lemma 3.3 for 
considered types of constraints). 

7. Conclusions and remarks 

1. The error bound for continuous and discret so lutions of delayed optimization 
problem with state and control constraint was established. For optimal control 
of the class PC [0, T; R 111

] the rate of convergence equal to 0 (rt) was derived (see 
Theorem 5.1). In the case where optimal control belongs to Sobolev space H 1 [0, T; 
R 111

] the rate of convergence can be estimated by 0 (r"i) (Theorem 5.2) . The esti­
mations presented in Sec. 5 provide that the problem of the speed of convergence 
is strictly closed with the smoothness properties of primal and dual variables. It is 
easily seen that in order to achieve the rate of convergence better than 0 ( r 1 I 2 ) the 
appropriate regularity of Lagrange multipliers is required. Namely additionally 
assuming that the rows of the matrix 

. ' 

I;, (x0 (r) , X 0 (t-h), U0 (t), t) Sx (x0 (t), t) 

are linearly independent it can be shown (based on the method proposed in [2]) 
that u0

, ) ,
0

, 1'/0
, are absolutely continuous. In this case the rate of convergence 

equal to 0 ( r) can be established. 
2. For nonlinear optimization problem for systems with delay but without 

constraints the rate of convergence of order 0 (r) was proved in [3]. 
3. Observe that the expressions determining constraints C0 , C1 (see formulas 

(5.11), (5.13)) depend on 11'J 0 1v, !WII which are unknown in general case (the other 

quantities ,in (5.11), (5.13) -l ldd~o 11 , I ~o I can be estimated a priori (see [3])). 

The adjoint equation (Lemma 3.3. (i)) establishes relation between 1'/0 and ),0 but it 
seems to be impossible to estimate 1'J 0

, ),
0

, independly - in terms of initial data of 
original problem. Therefore the inequalities given by Theorems (5.1), (5.2) rather can 
be understood as the estimations of the speed of convergence than the error bounds. 

4. The results given in the paper can be generalized to the case of systems vvith 
any finite numbers of delays. 
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Aproksymacja roznicowa zadania sterowania optymalnego 
dla ukiadu z opoinieniem przy ograniczeniach na stan 

sterowanie 

Artyku! poswi~cony jest aproksymacji r<'l:i:nicowej problemu sterowania optymalnego z ogra­

niczeniem stanu i sterowania dla uk!adu opisanego nieliniowymi r6wnaniami r6:i:niczkowymi 
z op6:i:nieniem. Problem optymalizacji rozwa:i:a si~: stosujqc teori~ mno:i:nik6w Lagrange'a. W pracy 

podane Sq oszacowania r6:i:nicy normy (w sensie przestrzeni L 2
) sterowania i stanu optymalnego 

dla problemu dok!adnego i aproksymowanego. 

Pa3uocTuan annpoKcnMa~nll 3a,n:aqn onTnMa.llbHoro ynpaB­
Jiemm ,n:.liH cucTeMbi c 3ana3.ll:hiBauueM npR orpamt'leutmx 
Ha COCTOSIHife 11 ynpaBJieHlfe 

PaccMoTpeHa pa3HOCTHall annpoKCHMal(Hll 3a)"(aYH onTHManhHoro ynpasneHHll c orpaHH­

'feHweM COCTOllHJ.fll H ynpaanemHl )l)IH CHCTeMbl OnHChiBaeMOH HelllofHeMHbiMH )l,H<fJ<jJepeHl(l'!allhHh!MH 
ypaBHeHJ.f.f!Ml'! C 3aiJa3)l,biBaHIJeM. ;:J:nH 3TOi1 U,enH HCII011 b3yeTCH TeOpHH MHQ)I(HTeneJI JlarpaH)I(a. 

;:J:aHa Ol(eHKa pa3HJ.fll,bl HOpMhl (B CMbiCJie npOCTpaHCTBa L 2
) OTITJ.fMallbHOfO ynpasneHl'!ll H COCTO­

HHH.R )"(Till TO'fHOH 11 annpOKCHMMpyeMOM 3a)"(a'!H. 
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