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The paper outlines a formal proof of the processing equivalence of planar grammars (origi-
nated by Kirsch for picture description) and simple, fully nondeterministic picture processing
algorithms consisting of position — invariant (parallel) local picture processing operations. ‘

On the way to prove the main equivalence theorem, some other theorems on interesting pro-
perties of planar grammars are proved, namely theorems on connected — rules grammars, single —
symbol — changing grammars, and on grammars with rules applicable at most one place on any
picture.

1. Introduction

The purpose of this paper is to outline a formal proof of the processing equi-
valence of planar grammars (originated by Kirsch [3] for picture description and
used by Dacey [16, 17]) and simple, fully nondeterministic picture processing al-
gorithms (in the sense of Blikle, Mazurkiewicz [2]) consisting of position-invariant
(parallel) local picture processing operations (Narasimhan [7], Rosenfeld [8],
Kulpa [4]).

The equivalence we are to prove has been intuitively recognized by picture
processing men [10] and for string grammars there have been presented some re-
lated equivalence results (Rosenfeld [9]).

After the first, short version of this paper [5] was written, it was realized that
Rosenfeld [13] had obtained closely related results for planar grammars. Never-
theless, our work and Rosenfeld’s [13] differ in some important aspect: he had
considered a grammar as a device for defining a set of planar words (a planar
language) and had proved an equivalence of (normal) planar grammars to planar
grammars which can apply their rules in parallel (and, for avoiding paradoxes, all
their rules must rewrite only one symbol at a time), that equivalence being in the sense

*) This paper was originally published in the vol. 25, entilted “Planar Grammars”, of the
Institute for Organization, Management and Control Sciences Reports (Warsaw 1975).
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of equality of corresponding planar languages. On the contrary, we consider a gram-
mar as a device defining some picture processing rule (sequential operation on
pictures) i.e. a relation in the set of all planar words, and we show an equivalence
(in some, loosely speaking, “processing’ sense) of such understood grammars to paral-
lel (position invariant), nondeterministic algorithms in the sense of Blikle and Ma-
zurkiewicz [2]. So, the Rosenfeld’s [13] results can be considered as a special case of
ours. Moreover, our approach to the problem seems to be more formal and precise.

Analysis of some problems which had arisen in the course of proving the part
2 of Theorem 2 as in the first version [5] of this paper showed the need for some
changes in the formulations as well as produced some new problems (discussed
briefly in the Section 6).

On the way to prove the main theorem we also state two theorems (on equi-
valence properties of planar grammars) which appear to be interesting results by
themselves. : 5

The style of introducing planar grammars will be similar to Bielik’s [1], and of
the algorithms — to that of Blikle, Mazurkiewicz [2]. For brevity, the proofs wiil
not be given in details, but only sketched. :

2. Preliminaries

Let us recall briefly a notation for algebra of relations (after Blikle, Mazurkie-
wicz [2]). Let X, Y, Z, W be sets, then R X x Y, Q= Y xZ are (binary) relations;
R-Q (shortly: RQ) denotes a composition of relations; xRy means (x, y) € R; WR
denotes an image of W under R and RW is a coimage of W. Thus, RY is a domain
and XR a range of R. The same notation will also be used for functions. R* denotes
a (reflexive and transitive) closure of R; for any set X, I, denotes an identity or dia-
gonal relation in X (i.e. aly b iff a=b and a, b € X). Thus, Iy R is a left restriction
and RI, a right restriction of R to W.

We will denote by J the set of integers, call the set U=JxJ a raster and any
(i,j) e U a point. Two points (a, b), (i, j) are adjacent iff |a—i|+|b—j|=1. A subset
S of Uis connected if any two its points can be connected by a chain of consecutively
adjacent points lying entirely in S. A function d;;: U—»U such that d;;((x, »))=
(x+1, y+j) is called a displacement.

We denote by A4 a finite set called the alphabet and by T some subset of A called
the terminal alphabet. Let # ¢ 4 denotes a blank symbol, and let A, =AU {#}.

DEFINITION 1. An abstract picture (or planar word) over the alphabet 4 is any
function p: U—4 .. such that p4 is a bounded (i.e. finite in this case) set of points.
The set of all abstract pictures over A we will denote by /7 (4), (or 11, if A is known).

A picture p is called connected if pA is connected. A subpicture is a function
Iy p, where N is any bounded subset of U, and p is a picture. The set of all sub-
pictures over A will be denoted by = (4), (briefly: n). By ny (4) we denote the set
of all subpictures over 4 with the domain N.
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Let o ¢ A denotes a so-called starting symbol, and let A,=AU {c}, and 4, =
A4, u{c}.

For some pell(A) and se 4, if po{s}#& we will speak that the symbol
s occurs in the picture p.

If se A, then a function A, IT (4)—IT (AN\{s}), such that A (p) is a picture
obtained from p by replacing all occurrences of s in p by #, leaving other symbols
unchanged, will be called the s-erasing function.

A blank picture is a picture £ such that Uf = {#}, i.e. in  only blank symbols
occur.

3. Plamar grammars

DermNviTiON 2. A generalized planar grammar is a system G=(A4,, T, R), where
A, T: alphabets (as defined above), Rz (4,) x 7 (4,) a finite set of rules, such
that for every (u,v)e R, ud, . =v4,, and Uu#{#} (i.e. the rule never creates
anything on the completely empty place).

DeriNiTioN 3. For some x, y € IT (4,) we say that x immediately produces y (writ-
ten x =y or simply xGy) in G iff there exists a rule r=(u, v) € R and a displacement
G

d;; such that:

(1) I,x=d;;u and I, y=d;;v,

2) Iy ox=Ip oy, Where Q=d;;ud, ,=d;vA,.,.

That is, xGy if y can be obtained from x by replacement of some subpicture
of x which is identical to (appropriately displaced) left side of the rule r, by the
(appropriately displaced) right side of r, leaving the rest of x unchanged. A starting
picture is a picture p € IT (4,) such that card (po{o)=1, ie. in which there is
exactly one occurrence of the strating symbol o.

Let X (4) denotes the set of all starting pictures over A. Note that 4, (X @)=
II (4) and although 47" is not a function, it is a relation; 4 ' ST (4) x IT (4,).

DERINITION 4. The resulting relation of the grmmar G is a relation Rg=h'
Iy GF Iy € H(A) < II(T), ie. xRgy if there exists a picture x' e 2(4)
such that /1, (x")=x (i.e. x’ is a picture x “augmented” by some single occurrence
of the starting symbol ¢) and x’ G* y, and y is a picture over the terminal alphabet 7.

Note that the concept of the starting symbol ¢ and that of the starting picture
brings near the processing and language-defining aspects of grammars. It also assu-
res the validity of the part 2 of Theorem 2 below — without such a “single-point-
marking” facility (which is given by the very definition in the language-defining
formulation, see below and e.g. Milgram, Rosenfeld [6]) there exists no mechanism
to ensure, for arbitrary pictures, the applicability of all rules at only one place (see
also Sec. 6). But from practical point of view (simlarly as for the use of Theorem 1),
it is not a problem: any grammar in the sense of [5] can be made like that in this
paper, with the same resulting relation (in both senses!) if we augment it by the single
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g-erasing rule E—’l#l (in more formal, but somewhat cumbersome form:

({((0,0), )}, {((0, 0), #)})), provided it is the only rule involving the use of ¢ (but
see the proof of Theorem 2).

DEermITION 5. Two grammars G and H are called W-equivalent, where W — some
alphabet, iff 7wy Rg=1Inw) Ru.

DEFINITION 6. A planar language defined by G is a set Ls={f} R;, i.e. a set of
pictures produced by the grammar from the set of starting pictures having only
one occurrence of a non-blank symbol, namely o.

The planar language has therefore some similarity to an “impulse response”
of the sequential “picture filter” defined by the grammar. As an impulse serves
there the single ¢ symbol occurring on the otherwise blank background. Compare
it with analogous interpretation of position-invariant linear operations (e.g. Rosen-
feld [8], sec. 4.2—4.4).

As necessary explanation we want to point out here that although the above-
discussed “o-trick” allows us not distinguish formally between “language defining”
and “picture processing” aspects of planar grammars, in practice this distinction
has to be observed. For some ‘“processing” grammar, e.g. extracting contour
and inside points of black-white pictures, hardly defines any language. It can be
fit into our format by augmenting it by the g-erasing rule as above, but such a gram-
mar defines the language consisting of only single blank picture. Thus investigation
.of its language-defining capabilities tells nothing about its useful application as
a contour extractor. On the other side, the grammars like Kirsch’a right triangle
grammar [1, 3] defining some classes of pictures, hardly can be used directly for
some practically useful picture processing task (e.g. for recognition of triangles
in the pictures), although their “resulting relations™ and equivalent to them parallel
picture processing algorithm can be constructed (see below).

The above formulations are, in a sense, noneffective, namely there is no effec-
tive way to check if some rule is in fact applicable to some arbitraty picture (because
of infiniteness of the raster). It can be overcome if one requires the pictures to be
connected or provides some endmarkers on the raster. Let us consider the first
possibility.

Let us introduce a new, “‘visible-blank™ symbol [_], let [ 1€ 4 and denote by 7',
the new terminal alphabet 7},=T"U {[1}.

L
THEOREM 1. For every planar grammar G=(4,, T, R) there exists a grammar
G'=(A4,, T|;, R') such that:

(1) Rs=Rg h, and

2) (Y(u,v)eR')(uA,,)=vA,. is connected) and

(3) if X eIl is connected, so is every y such that xG'* y, i.e. G’ is equivalent
to G with respect to erasing of visible-blank symbol (1) and has rules connected (2)
and all pictures produced in the course of derivation in G’ are connected, provided
the starting one was (3).
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Proof. For every rule (#, v) € R change #'s occurring in o to | |’s. Then replace
it by a set of rules by changing some (or all or none) of #'s occurring in u to []’s
in all possible combinations. Then make rules connected, replacing every one by
a set of rules resulting by connecting its (possibly) disconnected parts by connected
chains with all possible assignment of symbols from A4, , U T}, in the left and, cor-
respondingly, 4,V T, in the right side (to the # symbol in the left corresponds
the [ ] symbol in the right). The set R' results. Q.E.D.

So we will restrict ourselves from now on only to connected pictures and rules,
without loss of (at least practical) generality. Although not explicitly stated, the
theorem has also been assumed by Milgram, Rosenfeld [6].

In Rosenfeld [(13), Th. 2) a similar result concerning “language defining’ aspect
of planar grammars was obtained. Namely it was proved that for any planar grammar
generating some language of (not necessarily connected) terminal pictures there
exist a planar grammar generating a language containing only connected terminal
pictures, that language constituting exactly the set of all connected components
of the pictures generated by the first grammar.

4. Parallel picture processing algerithms

A picture processing operation (p.p.o.) is a function ¢: [I-7I. A p.p.o. 5;;=
{(S, d;; S)|S € I} < IT x IT, where d;;— displacement, is called a shifting operation.

DerINITION 7. A position-invariant operation is a p.p.o. y such that for every
shifting operation s;; holds ws;;=s;; w.

DermNITION 8. A (parallel) local operation is a p.p.o. A such that there exists a
bounded subset N= U and the function:

fiimy (4)—A, such that for every Sel7:

2(S)={(, 1), £; Uy diy SHIGsj) € U}

The set of all parallel local operations will be denoted by A (/7).

It is easy to see that every local operation A is fully characterized by the func-
tion f,. Also every local operation is position-invariant (but not the converse).
Such an operation can be performed in parallel, i.e. one can perform the compu-
tation prescribed by f; for every point simultanecusly. Wothout loss of generality
we may also assume N to be connected and including the point (0, 0).

DERINITION 9. A simple, fully nondeterministic parallel picﬁu'e processing algorithm
is a finite-control Mazurkiewicz’s algorithm W=(17(A), {a}, «, L) (Blikle, Mazur-
kiewicz [2]) such that its set of instructions L looks as follows:

L={({(a, &)}, X))} € lg= AU}V {({(a, &)}, In(r)} -

Thus, instructions of the algorithm have the same initial and terminal label ¢ and
action consisting of some parallel local operation A;, except for one (terminating)
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instruction allowing the algorithm to stop “by end” if it produces some terminal
picture.

Such an algorithm is fully characterized by the set Ay of parallel local p.p.o-s
occurring in its instruction set L. Its flow of control is completely degenerated —
at every step of the algorithm any applicable instruction from L is allowed to be
performed (thus it works fully nondeterministically), and stopping is allowed at
any moment when some terminal picture is generated.

Then the control flow of U is practically the same as for the control of rule’s appli-
cation in a planar grammar.

The resulting relation of the algorithm can be obtained directly for any such
algorithm A from the formula (cf. [2]):

R‘ll :A:;[ IH(T)’ Where A\H = U}..u .

Similarly as for grammars, we introduce here a o-trick, allowing us to simplify
the proof of Theorem 3. We do it by adding to the instruction set L of % an instruc-
tion 7, =({(a, @)}, h,), the o-erasing function 4, is a local p.p.o. with £, ={({((0, 0), o)},
#)} and writing the resulting relation as:

i -1
RQ{/ :ho‘ ]E (4) Rm; s’

. where " — the algorithm A with L augmented by the o-erasing instruction. It is
evident, that Ry = Ry for any U not using the symbol ¢ in its instruction set, so that
practically this trick can be considered to be the mere technicality. Some its theoretical
consequences will be nevertheless briefly discussed in the Sec. 6 below.

5. Equivalence proof

As it is clearly seen from the above, the only important differences between the
rules of planar grammar (Sec. 3) and A-action of parallel picture processing algo-
rithm (Sec. 4) lie in the points:

(1) the rule can change several symbols at the point of its applicability, while
the f,-function — only one;

(2) the rule applies at a given moment at one place (although may be appli-
cable at several places); . changes simultaneously all points that are to be changed
(i.e. acts in parallel).

But note that any f,-function f;: 7y (4)— 4., (0,0) e N= U, can be considered,
according to its effect on the pictures, as a (finite!) set of rules:

1y =1, )u,ve ny(A) &v (0, 0)=f, () #u(0,0) &
&(V (i, /) e N) (i, /) #(0, 0)=u(, j)=v (i, 1)},

i.e. rules with left parts being all the subpictures in the domain of f, for which f;
really changes something in the picture (f;(u)#u(0,0)), and right parts being
equal to the left parts except for the symbol at the (0, 0) point, which has to be
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equal to the value of f, for the rule’s left part ( o @)=2 (0, 0)). Therefore rules
in r, all change only one symbol.

And vice versa, any rule r =(u, v), u, v € my (4), which changes only one symbol,
i.e. for which there exists a point (i, /) € N such that u (i, j)#v (i, j) and (V (m, n) e
eN ) (m, n)+#(i, j)=u (m, )=z (m, n), can be considered as a function:

f;'z{(d—i,—j u, 7)(1’.]))} Y {(d—i,—j P, p(’s]))l“#F € 7271\,(/1)},

i.e. f, domain includes all subpictures defined on the domain of the rule parts, but
shifted as to place the symbol changed by r at the point (0, 0), and its values are
respectively:

(a) the symbol changed by r for that single subpicture being the shifted rule’s
left part;

(b) the symbol occurring at the point (0, 0) of the (shifted) other subpictures
in the domain of f,. ,

That is, f, changes something in the picture only at the place where appropria-
tely shifted left part of the rule r occurs.

Therefore, the first step on our way to prove the equivalence will be:

THEOREM 2. For every planar grammar G=(4,, 7, R) there exists anA-equivalent
grammar G’:(A;, T, R') such “that, for every rule g=(u,v)e R':
(1) @!'(m,n)eQ)u(@m,n)+#v(m,n), i.e. a rule changes only one symbol;
(2) ifx=y then (3!d,;) I, x=d;; u, i.e. a rule can be applied at most one place;
where deic:- uA'#, and j! quantifier means “there exists exactly one ...”.

Proof. For (1) replace all rules changing more than one symbol by a sequence
of one-sambol-changing rules having the same domain (as their originals) and intro-
ducing a.set of new special “binding” nonterminals to assure blocking of the deri-
vation if the new rules are not applied in the proper sequence as to give the result
equivalent to an application of the single old rule. It is a technique analogical to
that developed in the proof of the “two-point-rules” theorem by Bielik [1, 12].
Use also analogical argument as in Bielik [1, 12] to show the 4-equivalence of such
transformed grammar to the original one. The Rosenfeld’s ([9,] p. 289) technique
for asserting analogical fact for string grammars is not applicable to two dimensions.

For (2), construct the new grammar adding as new nonterminals the new symbol
¢ and the “primed” original symbols (i.e. all symbols from 4 # U{¢}). Then modify
all rules to have exactly one symbol at the left and exactly one at the right hand
side replaced by its primed counterpart, and replace all occurrences of ¢ in them by
the new symbol ¢. Introduce a set of new two-point rules (not involving the o symbol)
only “moving” a prime over the picture, add a rule El—»@ and, for all 1T, a
rule E—). All the above assures that all the new rules are applicable exactly at
one place in the picture (the rule Ele@ due to the existence of only one ¢-symbol
at the start of derivation, and other rules — due to occurrence of at most one primed
symbol in the picture at any given moment of derivation). The resulting grammar
is evidently A-equivalent to the original one. The single-point-marking facility pro-
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vided by the o-trick of Definition 4 is there absolutely necessary to produce the
single ““prime” in the picture, serving to mark the place where a rule can be applied.
This method is equivalent to Rosenfeld’s ([9], Th. 5).

To combine the properties (1) and (2) in the single grammar (A4-equivalent
to G) is also evidently possible. For, in the proof of (1), newly introduced rules are
by the very construction applicable at only one place (where their predecessors
in the old-rule-modelling sequence were applied, writing down the “binding” sym-
bols). Thus, following the construction of (2) by that of (1) does not affect the only-
one-place applicability of the rules constructed for (2). Q.E.D.

THEOREM 3. (the equivalence). For any planar grammar G=(4,, T, R) there
exists a simple fully nondeterministic parallel picture algorithm U =(/7 (4°), {a}, a, L)
such that it is 4-equivalent to G, and conversely — for any such an algorithm there
exists an A’-equivalent planar grammar G.

Proof. The first part directly follows from the properties of r, and f, constructs
discussed before and by the use of Theorem 2. Indeed, to construct an algorithm
A-equivalent to the given grammar it suffices to construct firstly, using Theorem 2,
an A-equivalent (to the given one) gramrﬁar with one-symbol-changing rules appli-
cable at one place each. Such rules can be directly modelled by the f;-functions
(see the construction of f,) and, due to the one-place applicability of the rules,
parallel application of corresponding f,-functions (in appropriate A-operations)
has the same effect as the application of the rules themselves. Therefore the algorithms
with such constructed A-operations as actions of its instructions will have the same
resulting relation (with respect to pictures over the alphabet A).

The proof of the second part is less immediate. It requires one to construct
a planar grammar which in effect applies the f,-functions of 2 ““in parallel” (Rosen-
feld [9]), by modelling with appropriate rules, for every 4; of U, a “square spiral”
extending scan of the current picture, marking the places where f; changes a symbol,
and after recognizing that the whole picture has been scanned (the use of Theorem
1 is indispensable) — scanning backwards, changing symbols at marked points
and ending at the beginning of the scan with a condition (a special symbol) allowing
to start a scan for another /.

The whole scanning process starts at the beginning from the single ¢ symbol.
The rules modelling the f;-functions of the algorithm are directly obtainable by the
construction of r, above. The whole set of rules modelling the scan of the picture
constitutes a so-called “automaton imitator” introduced by Milgram, Rosenfeld
[6] and also used in Rosenfeld [13]. Q.E.D.

Note that the construction of the parallel algorithm equivalent to some planar
grammar as proposed in the proof above, goes through assuring firstly applicability
of grammar rules at one place only, so for every such a rule a simple parallel opera-
tion can be constructed, which then also changes in effect only one point in the
picture. It is counter-practical, because the most important practical advantage of
parallel algorithms over serially operating grammars lies exactly in the ability of
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the operations of the algorithms to make changes at several raster points simul-
taneously. Of course, for the theoretical purposes it is no trouble; such a construc-
tion allows to prove the theorem in a rather simple way. Some problems which
nevertheless arise from that aspiring at simplicity are discussed in the next section.

6. Some open problems

The o-trick introduced in the paper simplifies the argument, but has some not
completely trivial consequences. Indeed, note firstly that without it, the part 2 of
Theorem 2 is no longer valid — there is no possibility to produce exactly one
“primed” symbol on the picture. Nevertheless, it is possible to realize by appro-
priate grammar rules the operation /' I54); in words: “mark exactly one blank
point in the picture with the symbol ¢”. For in every (non-blank) picture several
well-defined unique points exist, e.g. the leftmost non-blank point in the upper-
most non-blank row of the non-blank component of the picture (remember that
using Theorem 1, we consider only connected pictures, i.e. having only one non-
blank component). So it is possible to model by appropriate rules the automaton
imitator [6 13] finding such a point and marking the single blank point in its neigh-
bourhood.

The above looks like a contradiction, but really it is not — for the automaton
imitator mechanism for doing the marking must use rules which cannot be guaranteed
to apply in exactly one place for an arbitrary picture. Then there exists one more
problem: there is no possibility to start exactly one automaton imitator searching
the unique point to mark. In general, several such imitators will work concurrently
on the picture. They must be so organized as to not interfere with each other (it
is generally impossible, for the arbitrary number of such automata will require
infinitely many new symbols in the alphabet) or so constructed as to destroy each
other except for the only one surviving (seems possible).

Similar remarks apply also to algorithms. The o-trick introduced for them looks,
at the first view at least, giving them an additional computing power, because
the marking operation h; ' Iy, is evidently not local. But note that the class of
operations on pictures defined by the algorithms discussed is wider than the class
of local p.p.o.-s, as it can be shown by a relatively simple example.

Then it is conjectured that there exists an U-algorithm (without o-trick intro-
duced) which realizes the single-point-marking operation A, ' I; 4. The argument
can proceed similarly as for grammars above, by construction of appropriate
automaton imitator built from algorithm instructions, and the problem of several
parallely “growing” imitators seems even easier to resolve here, due to uniform
grow of them.

The above serves to argument that the o-trick is really a technicality. But an
alternative idea comes into one’s mind, namely to prove directly the equivalence
of grammars and algorithms, both without the o-trick introduced. Such a proof
evidently cannot use the part 2 of Theorem 2 as its step, due to its invalidity in this
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case. It seems to be possible, although the proof will be more complicated and,
probably, will nevertheless have to use the above-discussed single-marking automa-
tion imitators. To end the reasoning, let us “officially” state:

Conjecture. Generalized planar grammars and simple, fully nondeterministic
parallel picture processing algorithms, both of the form not using the o-trick (or
any its equivalent), are also equivalent with respect to their picture processing
power.

Practically however, the result of Theorem 3 seems to be equally sufficient.

The distinct problem is to prove the equivalence of the above-defined fully non-
deterministic algorithms and general picture-processing ones (in the sense of [2]).
The problem seems to be solvable with no principal troubles. With the equivalence
just proved, it brings us to the area of “programmed picture grammars” investigated
by some authors, e.g. Swain, Fu [15].

7. Conclusions

The above results can encourage some adherents of linguistic msthods in pic-
ture recognition (“‘all the processing can be made grammatically!), but it also is
an argument for their opponents (“the algorithms do it better than your intricate
and unnatural grammars!”) — see [10]. The author, although promotes the lin-
guistic (or structural) trend in pattern recognition, in this case inclines to the second
opinion. If grammars can be of any use to describing or processing pictures on the
raster level, another apparatus, e.g. that by Siromoney et al. [11] looks better suited
here than the above-described Kirsch’s planar grammars are.

The author argues that also the notion of programmed grammars (like that of
[15]) can be more naturally and effectively investigated in the framework of algo-
rithms rather than grammars.

From another point of view, the results obtained can be considered as a genera-
lized version of the equivalence of sequential and parallel picture processing ope-
rations (see Rosenfeld, Pfaltz [14]).

It looks, however, that the area of essentially sequential operations on pictures
needs more practically adequate paradigm than that of planar grammars or that
proposed in [14]. An encouragement to search for such a paradigm is, may be,
the main positive result of this paper.
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Gramatyki planarne, rownolegle algorytmy przetwarzania
obrazéw i ich réwnowainosc

Naszkicowano formalny dowod réwnowaznosci (w sensie algorytmicznym) tzw. gramatyk
planarnych (wprowadzonych przez Kirscha dla opisu obrazéw wizualnych) i prostych, catko-
wicie niedeterministycznych algorytmow przetwarzania obrazow, algorytméw skiadajacych sig
z tzw. lokalnych, niezaleznych od potozenia (rownoleglych), operacji na obrazach.

W toku konstruowania dowodu gléwnego twierdzenia o réwnowaznosci udowodniono takze
kilka innych twierdzen o pewnych ciekawych wlasnosciach gramatyk planarnych, a mianowicie:
twierdzenia o gramatykach z regutami spojnymi, o gramatykach zmieniajgcych kazda regula tylko
jeden symbol obrazu i o gramatykach, ktérych reguly sa stosowalne w co najwyzej jednym miejscu
obrazu.




16 Z. KULPA

TlnanapHpie TPaMMAaTHKH. Mapajuie/bHble AJTOPHTMBI Ipeo-
OpasoBaHus H300PAXKeHHH M X DKBHBAJCHTHOCTH

B craThe npencrasieHo GopMasbHOS H0KA3aTEeNbCTBO SKBUBAICHTHOCTH (B ajTOPUTMUYECKOM
CMBICIIE) TaK Ha3bIBAEMbBIX IUIAHAPHBIX TPaMMATHK (BBeeHbIX Kupiiem Uit OmicaHus BU3YaIbHbIX
u300paxkeHuit) M TPOCTHIX BIOJIHE HEACTEPMUHHCTHYECKUX aJTOPUTMOB Mpeobpa3oBaHus H30-
OpakeHulM. DTH AJIFOPHTMBI COCTOST H3 TaK HA3bIBAEMbBIX MOKAJIBHBIX, HE3aBHCHMBIX OT IOJIO-
sxeHust (MapasutelibHbIX) ONepalid Ha W300pameHUsX.

B Xone moCTpoeHHs HOKA3aTeNhCTBA OCHOBHOW TEOpeMBbl OO0 JKBHBATEHTHOCTH IOKA3aHbI
HEKOTOpbIE [IPYrHe TEOPeMbI 00 WMHTEPECHBIX CBOWCTBAX IUIAHAPHBIX TPAMMATHK, a MMEHHO —
TEOPeMbl O rpaMMaTHUKaX CO CBSI3HBIMHU IPABHIAMHM, O TPAMMATHKAX WM3MEHSFOLMX KaXIbIM
NPABWJIOM TOJIBKO CAMH CHMBOJ H300paXeHMs W O TPaMMaTUKaxX MpaBHjia KOTOPLIX MOTYT IIpH-
MEHSTHCA He OOMblie YeM B OJAHOM MeCTe H300paXeHHs.




