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The problem of approximate controliability for general linear functional-differential systems
of retarded type is considered. It is proved that so called multipoint or weak multipoint controlla-
bility is a general necessary condition in order to the set of reachable final states be dense in a
function space satisfying some natural axioms. For systems with discrete delays algebraic criteria
for (weak) multipoint controllability are given. The dual space characterization of approximate
controllability is established for general system while the state space is one of the commonly used
C, W and M}, as a generalization of L'=M{,. These conditions are then developed into the form
of certain observability problems for dual system constructible from a given one by simple matrix
transposition. Hence easy checkable either sufficient or necessary conditions follow for general
case. Complete algebraic testable characterization is derived for the case of one or finitely many
commensurable discrete delays. In one delay case the spaces C, Wi, M7, 1<r<oo, are shown to
be equivalent with respect to approximate controllability. The general system is never L®-approxi-
mately controllable. The numerical examples are given illustrating practical applicability of the
obtained criteria. On the basis of them some conclusions on relations between approximate control-
lability and stabilizability are drawn.

0. Introduction and notation

0.1. Introduction

Although the controllability and observability problems have been extensively
examined in general setting it still lacks results expressed directly in terms of system
parameters.

For linear hereditary systems with a trajectory evolving in R" one can distin-
guish many types of controliability and observability concepts which are, in general,
unequivalent. This is due to the fact that both reaching of trajectory value x(7)
and the study of the behaviour of a full state of the system are interesting for appli-
cations. Testable algebraic conditions for reachability of trajectory value are well
known. Appropriate references are given in Section 2. However conditions for
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state exact or approximate reachability were derived for special cases only (some
authors use the term function space controllability).

In Section 1 we define R"-, (weak) multipoint -, #-, #-approximate and % -
approximate null controllability of general linear autonomous system of retarded
type

(o]
% ()= fdsA(s)x(t+s')+Bu(t)._ 0.1)
—h >

In this definitions & stands for arbitrary normed function space of states for
(0.1). It is also motivated that & -approximate controllability is the most important
for applications (e.g. stabilization problems).

Besides indicating references for R"-controllability we report in-section 2 the
previous results obtained for #- and Z-approximate controllability, most of them
concerning the system with one delay, a special case of (0.1)

() =Aq x () + Ay x(t—h)+Bu(r). 0.2)

In Section 3 we prove that weak multipoint or multipoint controllability is
a general necessary condition for Z-approximate controllability of (0.1). # is sup-
posed to satisfy some natural axioms.

Finite, matrix rank conditions for multipoint controllability of systems with
fumped delays, especially for (0.2), are presented in Section 4.

Then, in Section 5, concrete function spaces C, Wy, M/, are considered in place
of # (These spaces are characterized in paragraph 0.3 below). Approximate control-
lability is characterized by some identities involving fundamental matrix solution
to (0.1) and functionals from dual spaces C*, (W{)*, (MJ,)*. General implications
between the properties of approximate controllability in the spaces mentioned
above are established. It is proved that system (0.1) is never L™- (in general M,;-)
approximately controllable and that for the case of W [° the necessary and sufficient
condition is rank B=n.

In Section 6 for the same concrete spaces equivalent dual observability problems
are posed for a dual observed system which is simply of type (0.1) but with trans-
posed kernel A4’ (s), free-motion and with output y (f)=B' x (f). From this a con-
clusion is drawn that rank B=n implies approximate controllability of system (0.1)
in any of spaces of Section 5. Also an easily checkable necessary condition, common
for all these spaces, is derived. If specialized to system (0.2) it has the form rank
[4,; B]=n. An important, from the point of view of applications, result is that
approximate controllability in any of the spaces Wi, C, M{,, M§, implies pole
assignability (and hence stabilizability) of the system (0.1) with the aid of linear
state feedback.

A complete set of algebraic, numerically checkable, criteria for approximate
controllability of system (0.2) in the spaces C, Wi, M,, is given. The properties
of a maximal controlled invariant corresponding to some nondelayed linear system
equivalent to system (0.2) are the most essential for approximate controllability
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of system (0.2). For system (0.2) it is proved that the spaces C, W] and M}, are
equivalent with respect to approximate controllability.

For some simple cases of system (0.2) such that 4,=0, the control interval
[0, 2A], etc. the algebraic criteria are simplified (Section §).

Numerical examples are given in Section 9. They illustrate how the theory de-
veloped works in practical applications and also serve as counterexamples for that
some implications do not hold in general. It is shown, for instance, that L'~ do not
imply M/,-approximate controllability, it do not imply stabilizability either.

In concluding section the results of the paper are evaluated and applications to
optimal control and stabilization problems are indicated.

0.2. Notation

We deal with linear spaces of R"-valued functions defined on a closed interval
[a, b= R'. The general notation for such space will be # (a,b; R"). If a,b;n are un-
derstood we abbreviate to & . When considering special spaces of e.g. continuous or
square integrable functions we replace symbol & by common C or L? respectively.

For a vector (or matrix) ¢ the transposed vector is denoted by ¢’ and Euclidean
norm by |g|. im and ker stand for image and kernel of an operator (matrix). I is
the identity matrix. For nxn and nxm matrices 4 and B respectively and a sub-
space X< R" we denote by [|4]| an operator norm, [4; B] the augmented n x (n+m)
matrix, 4 the Moore—Penrose pseudoinverse, {4/ X}=X+A4X+...+4""* X the
controllable subspace, {A4|B}={A|im B}, A= X=A" (XN im 4A)+ker A the pre-
image of X under 4. Y* is the topological adjoint of space Y and for a set Zc Y
we denote Z* ={y*e Y*:3y*(Z)=0} the annihilator of Z.

0.3. Special function spaces and their topological adjoints

Recall basic topological properties of following special function spaces which
seem to be most important for applications and therefore they are extensively used
in the paper. The space C (¢, b; R") of continuous R"-valued functions defined on
[a, b= R* is known as Banach space when endowed with norm

Xl =sup; cra,mlx (2)], xe C. (0.3)

A linear bounded functional f* e C* can be characterized by Riesz reprezen-
tation theorem as follows.

f*(x)= f x' () df (1), xe C (0.4)

N )
where fis a function of bounded variation and is normalized such that it is left-
continuous on (a, b) and f(a)=0. Since f has countably many discontinuities, it
follows that (0.4) can be rewritten equivalently as

)= 2 g, x (t)+ [ x' D df@®), VxeC (@3
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where now

tela,bl, geR, D lgl<oo (0.6)
=t

i

and f is continuous of bounded variation, f(a)=0.
The space M, (a, b; R") is a generalization of common L' (a, b; R"), 1<r< 0.
Consider the following functional

b 2/r
2 =02 [x (a)/ + 2 |x<b)12+( [ x@r dr) : ©.7)

M), (a, b; R"), where o, f>0. 1<r<oco, is the quotient space of all measurable
functions x: [a, b]— R" for which (0.7) exists and is finite by the linear subspace of
elements x for which (0.7) becomes zero.

For r=o0 the similar definition is assumed with (0.7) replaced by

X[ =c? |x(@)|* + B |x (b)|* + (ess sup |x(D)])* (0.8)

tela,b]

Clearly M§,=L". If «, f>0 the space Mj,(a, b; R") is topologically isomorphic
to R*x R*x L' (a, b; R"). Similarly for «=0, >0 or «>0, =0 the isomorphic
space is R"xL" (a, b; R"). For r<oo a functional f* e (M,,)* is represented by

[*)=eq; x(@)+Bay x @)+ [ £/ () x(0) dr, Vx € M, (=

where ¢,, g, € R", fe r (a, b; RN, 1/f+1/r=1.
Finally we shall use the space W] (a, b; R") of absolutely continuous functions
x: [a, b]>R* with derivative xe L’ (a, b; R") and the norm
[IxI12 =[x (@)|* + [IX17- (0.10)
or the topologically equivalent
[IX[1 =12 (B)| + [1X]]7- - (0.11)

A functional f* e (W7)*, r<oo has the form
b b
FE@=a; x@+ [ £/ O x@) di=a, xO)+ [ f5 () %) dt (0.12)

for ali xe W]. Here q,=q, € R", f; ()=f, () +q, is of class L, 1/Fi+1/r=1.

The space M, was used extensively by Delfour and Mitter [18], Vinter [28]
and other authors in various problems of control theory for hereditary systems.
The space W] was used for examining controllability and closedness property of
the attainable set for such systems by Banks at al. [3] (r=2) and by Kurcyusz and
Olbrot [29].

Finally the notation for the space of n-vector valued functions of bounded
variation on [a, b] will be BV (a, b; R") or briefly BV.
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1. Problem statement and motivation

1.1. Problem statement

The system under consideration is of the form
o,
()= j [de A(s)] x (t+5)+Bu(t)=Lx,+Bu (¢) for a.a.t.>0 (1.1)
—h
where x(H)e R", u(t)e R", L:C(—h,0; R")->R" is a linear bounded operator
acting on the state x,, '

X, ={x(t+s): s€[—h, O]} \ (1.2)

of the system (1.1) and B is nxm real matrix.

Assumptions on the kernel follow from Riesz representation theorem applied
to operator L, i.e. elements of the matrix A (s) are functions of bounded variation.
Control u is taken from the class L] _(0, co; R™), p>=1. For any continuous initial
state x, there exists a unique absolutely continuous solution to (1.1) of the form

(1], [13], [14], :
x(1)=K(1) xo+j X (t—s) Bu(s) ds, (1.3)

where the fundamental matrix solution is, by definition, the unique solution to

(o]

X(@W= [ A X(@+s), ae. in 120, X(0)=1, X(1)=0 for 1<0  (1.4)

—~n

and the operator K () is of integral form.

ReMARK 1.1. One remark is needed of rather technical nature concerning the
understanding of differential equation (1.4). For 7>/ the integral on right-hand
side exists in Riemann—Stieltjes (RS) sense [31] and one may consider the equa-
tion satisfied for all 1>h. For </ this integral does not exists if e.g. 4 (—1)—
—A (—t—0)#0 but since 4 is of bounded variation the number of jump points
of A4 is countable on [—#, 0] so that the absolutely continuous solution to (1.4)
can be obtained uniquely [30]. The situation can be made more regular if dividing
A into two parts both of bounded variation

A()= D] Ay (s+h)+A(s), 0<h<h, (1.5)
i=0
where the sum represents jump part and A is continuous in s. Then equation (1.4)
is equivalent to

a0

X(r):Z A; X(t—h) + f [d, A(s)] X (¢+s5) for all £>0. (1.6)

i=0 ~h

Similar decomposition may be applied to system equation (1.1). This allows
to consider the initial conditions for (1.1) as functions of bounded variation and to
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understand the remaining integral with continuous kernel in (RS) sense. All these
difficulties are solved automatically when introducing Lebesgue—Stieltjes (LS)
integral [32], [33] but for our purposes this somewhat more abstract notion is not
necessary. The two following attainable sets of system (1.1) are important in control
theory. The R"-reachable set at 7>0 ;

R(T)={xe R": x=x(T) for some ue L’ and x,=0} (1.7)
and the set of reachable states on [0, T]
A (T)={x(-)e W?(—h,0; R"): x(-)=xy for some ue L? and x,=0}, (1.8)

the latter being defined for 7>4.
Basic definitions of controllability of system (1.1) are given below.

DrriNITION 1.1, System (1.1) is R"-controllable on [0, T'],iff #Z (T)=R". System
(1.1) is null function controllable on [0, ®] iff for each initial state x, there exists
ue L? (0, T; R") such that x;=0.

Introducing a topological space & of R"-valued functions defined on [T—#, T']
we define naturally #-, & -approximate and Z-approximate null controllability.

DerNiTION 1.2, System (1.1) is & -controllable on [0, T] iff the reachable states
cover the whole space & i.e. & (T)>%. System (1.1) is #-approximately control-
lable iff the closure of the set o ()N F equals & i.e. of (T) is dense in #. System
(1.1) is F-approximately null controllable on [0, 7] iff for any neighbourhood
U, of 0e# the inclusion im # (T)co/ (T)+ U, holds where (4 (T) %) (=
K (T+s) x, for any x, from a given space of initial states.

If the time interval is omitted in the definitions of this section it is understood
that there exists a time T such that appropriate controllability property holds on
[0, 7]. Our aim is to examine & -approximate controllability for various %, espe-
cially to find checkable algebraic criteria characterizing approximate controllabi-
lity in terms of system parameters.

We shall not examine conditions for approximate null controllability restrict-
ing ourselves to one useful observation following directly from Definition 1.2.

CoroLLARY 1.1. Suppose that & is such that im ¢ (T)<=Z. Then for system (1.1)
& -approximate controllability on [0, 7] implies & -approximate null controllabi-
lity on [0, T'].

We shall show that a necessary condition for approximate controllability is so
called (weak) multipoint controllability defined as follows.

DeriNiTION 1.3. System (1.1) is (weakly) r-point controllable on [0, 777 iff for any
points x', ..., x" from R" and any instants ¢!, ...,  (from (T—#%, T]) there exist an
element x; of o (T) such that x(t)=x,(-T+4+t)=x% i=1,..,r. System (l.1)
is (weakly) multipoint controllable iff it is (weakly) r-point controllable for each
integer r.
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1.2. Motivation

The following motivation indicates that approximate controllability is a neces-
sary factor when considering regulator design problem for systems with delays.
Suppose one considers stabilization problem for system (1.1), that is, starting from
nonzero initial state x, one has to control the system in order to attain x;=0 or
of much smaller norm than |[x,|| at relatively short time 7. However the exact null
function controllability conditions are too difficult to use and in fact, too strong
[2]. One may demand, of course, #-controllability, where # = W%, but this leads
to condition rank B=n (see [3]), which means that the number of controls is equal
to the number of state variables which is not the case in most real situations. So the
only practical controllability assumption is & -approximate controllability, where
the choice of & may depend on technical requirements imposed on the system. We
shall also show that approximate controliability property is generic, i.e. it is satis-
fied by all systems in the space of parameters with the exception of a set of measure
Zero.

2. Summary of previous results

The problem of R"-controllability is well examined (see [4], [5], [6], [7] for re-
sults and extensive bibliography) and for stationary case rank conditions of classi-
cal Kalman type were obtained. These are especially clear in case of multiple state
delays

%(1)= 2 A, x(t—h)+Bu(?), >0, ' @.1)

O=ho<h <..<h=h.

For this type of systems also null function controllability criteria in algebraic
testable form were obtained (Olbrot [2]).

Let us report in more details results concerning function space controllability.
First notice that if Z -controllability is considered then the space &% must be a sub-
space of WFP(T—h, T; R") since every state in & (T) is of this class. As was mentioned
above the assumption & = W7 leads to simple but very strong condition as charac-
terization for W/-controllability, namely rank B=n (Banks at al. [3]). There were
several attempts to work with spaces different from W/. Korytowski [8] takes
F =W and defines the system (2.1) with /=1 function space controllable if there
exist a time 7>/ and an integer i such that for each sufficiently small ¢>0 the set
of all attainable restrictions x (+)|;r—u+., r-. €quals ;. The results were given in
terms of some Laplace transforms and therefore are not suitable for numerical
computation. It was proved however that controllability of the pair (4, B) is suffi-
cient for function space controllability. The latter coincides with rank B=n if 4, =0
(no delays). Similar Laplace transform type results for one delay case and shortened
by ¢ final interval were obtained by Popov [9] who took & =C) and Choudhury
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[10] who examined reachability of null function on [T—/kA+¢, T]. L*-approximate
controllability was considered by Zmood [11]. However no checkable criteria were
given except for the case /=1, 4,=0. This is a rank condition

rank [B, 4, B, ..., 4" Bl=n, (2.2)

where k=Entier [7/l]. (2.2) holds if and only if the system (2.1) with /=1, 4,=0
has its attainable set o/ (T) dense in L? (T—h, T; R").

Pandolfi [12] obtained sufficient algebraic conditions for W -approximate control-
lability of system (2.1) on [0, 7] with additional requirement u(f)=0on [T—Ah,T].
Delfour and Mitter [18] showed equivalence between MZ,-approximate control-
lability and positive definiteness of some symetric operator constructed on the basis
of abstract state evolution semigroup for (1.1).

3. General necessary conditions for # -approximate
controllability

In this section it is shown that by some natural hypothesis on #, satisfied by
all commonly used spaces, & -approximate controllability implies multipoint or
weak multipoint controllability. Consider a family % (a, b; R") of linear spaces,
parametrized by (a, b, n), with elements f: [a, b/]>R" and endowed with a norm
[Illa, - Let us list some hypotheses on & (a, b; R") to which we shall refer in the
sequel.

(H1) Assume the closed intervals [«;, b;]<=]a, b] are disjoint and the functions
fi: [a;, b;]—> R™ are constant. Then there exists a function fe % (a, b; R") which
coincides with f; on [a;, b;] for prescribed finitely many indexes i.

(H2) If [a, b]c]c, d] and fe F (c, d; R*) then the restriction f|, , €7 (a, b; R")
and [|fl, »<|lfllc,s where we omitt the restriction symbol under the norm.

(H3) Let S, be the shift operator, i.e. (S, f) (s)=f(s+1). Then feZ (a, b; R
iff S;feF (a—t,b—t; R") and ||fll,»=IIS; flla=s,5—. for any real ¢.

[H4] || filla,s—0 with k—co and g € R" implies that [|§" fill, »—0, where (§" f}) ()=
¢’ f. (t) and denotes transposition.

[H5] || filla,s—0 implies f; ()—0e R* for all ¢ in [a, b].

The following theorems take place.

THEOREM 3.1. Let & (aq, b; R") satisfy (H1) through (H4). Denote & =% (I'—h, T’;
R™). If the system (1.1) is & -approximately controllable on [0, T'] then it is weakly
multipoint controllable on [0, T'].

Proof. Suppose, on the contrary, that (1.1) is not weakly multipoint control-
lable on [0, T]. Then by Definition 1.3 there exist an integer r and real numbers
£, ..., from (T—h, T] such that not all vectors x’e R" are reachable at ¢ simul-
taneously by one control. Hence the set of all reachable r-tuples of vectors form
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a proper subspace in R™. In other words, there is a nonzerc row vector ¢’ € (R™)/,
q'=(qys .-, ¢.), such that for all controls u

gy x()+...+q. x(")=0. (3.1

By stationarity the same equality holds when replacing each ' by #i-s for arbitrary
se 0, ), t°=min (¢!, ..., ). Choose s°>0 such that 1°—s°>7—/ and the inter-
vals I;=[t/—s°, ¢/}, j=1, ..., r are disjoint. By hypothesis (H1) one may construct
a function fe & such that f(f)=gq; for tel;.

Suppose now that there exists control sequence u®, k=1, 2, ... such that corres-
ponding sequence of attainable states x% tends to f in the norm topology, ||| =
|+ll7—x 7. Denote by g* a function [—s°, 0]>R' defined as

g ) =q, (F (' +9)—f +5)) oo h g, (F (T +5) = (T +5)) 32
By hypotheses (H2), (H3), (H4) and triangle inequality we get
118411 59,0 15 % = Mer—s0, 1+ +oe G, (K= FNler = s0,or

lgs O =z —n, 7+ .. + 11 OF =i, -

Since [|x%—f[i—0 we get by (H4) that the last sum tends to zero and therefore
llg¥l|_s0,0—0. On the other hand, since (3.1) holds with #* replaced by t'+s,s5€
€ [—s°, 0], and since, by construction, f(f)=g¢; on /; one obtains that the function
g* is constant, nonzero on [—s° 0]. In fact, —g*(s)=q; g, +...+q, q.=q1>>0
as it is seen from (3.1) and (3.2).Hence [|g"] -, 0+0.

The obtained contradiction proves the implication stated in Theorem 3.1.

THEOREM 3.2. Let F (a, b; R") satisfy hypotheses (H1) and (HS). If the system (1.1)
is Z-approximately controllable on [0, T'], where & =% (T'—h, T; R"), then it is
multipoint controllable on [0, T].

Proof. The proof is quite similar to the proof of Theorem 3.1 so we shall only
sketch the crucial steps. Suppose the system (1.1) is Z -approximately controllable
but not multipoint controllable on [0, T']. First notice that equation (3.1) holds for
some %, q;, i=1, ..., 1, (g1, ..., g,) #0 and all controls u. Without loss of generality
assume T—h=t'<t*<...<t"=T and choose a function f in the following way

(see (Hl)) IQL on [li—(ti—fi_l),/3, ti+(ti+x —ti),/3] N [T—/l, T]

/@ =1 arbitrary otherwise.
If X%, k=1, 2, ..., is an approximating sequence in o7 (T), i.e. |Ix%—f|—0, then
by hypothesis' (H5) the corresponding x* () satisfy
g (x* ()~ f(1))—0 with k—oo, i=1, ..., (3.3)
On the other hand, by definition of f and by (3.1)
N g (K —f () == g, 9:=—1ql<0
= |

et

i=1

and does not depend on k. This, clearly, contradicts to (3.3) and completes the proof.
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ReMARK 3.1. Note that assumptions (H1)—(H4) are not restrictive in applications.
They are satisfied by all commonly used function spaces L", CV, W%, 1<r, j< oo,
0<i<co. The most restrictive is the hypothesis (H5) (it is not satisfied by the L'-type
norm). This is also seen by comparing assumptions in Theorem 3.1 and Theorem
3.2. Assuming (H5) we were able to omitt (H2), (H3) and (H4).

GENERALIZATION 3.1. The results of Theorem 3.1 and 3.2 can be immediately
generalized, without any change in proofs, to the case of past dependence in control

action. We have in mind the nonhomogenous term in eq. (1.1) of the form.
0]

XB,u(t—h;) or [ [dyN(s)]u(t+s). The reason we restrict ourselves to the model

—h
(1.1) is that for systems with delays in control the Definition 1.2 of approximate
controllability is not adequate of stabilization problem is considered. Then the true
state of a system is a set (1.2) plus essential past values of control. Approximate

controllability of the true state is a more complex and open problem.

4. Characterization of multipoint controllability

In this section we shall completely characterize multipoint controllability of
a system with multiple lumped delays (2.1). For simplicity we shall deal with systems
with one delay /#>0,

X(t)=Ao x(t)+ A4, x(t—h)+Bu(t), =0, “4.1)

however the proofs admit immediate generalizations to systems of the form (2.1)
and this will be remarked thereafter. The basic result of this section is Theorem
4.1. below.

THEOREM 4.1.
(a). The system (4.1) is weakly multipoint controllable on [0, 7] iff it is weakly
1-point controllable on [0, 77 i.e. iff it is R*-controllable on [0, 7, ] for each T, > T—#.
(b). The system (4.1) is multipoint controllable on [0, 77 iff for each g4, g, € R"
there exists xy e/ (T) such that

xp @) =x(T)=q1, Xr (=) =x(T—-h)=4q,.

Proof.

(a). Starting the proof as in case of Theorem 3.1 we come to the conclusion
that the system (4.1) is not weakly multipoint controllable on [0, 7] iff there exist
an integer r, a nonzero vector g’ =(g,, ..., q;) and instants 4, .., e (T—h, T)
such that (3.1) holds for all controls. After substituting x (#*) from representation
formula (1.3) and taking into account that, by definition, X (¢)=0 for <0 we get
from (3.1) an equivalent relation.

¥ i
g, [ X(i—1) Bu(1)dt=0 for all u.
i=1 0
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This is equivalent to the following

2 ¢, X(f'—=f) B=0 for all 7€[0, T]. (4.2)

=1
Recall that for systems of type (2.1) the fundamental matrix solution X () is
piecewise analytic [4] and for system (4.1) it is analytic on each interval [(k—1) A, k /],
k=1, 2, .... This and the fact that X (r)=0 for <0 enables one to obtain, by unique
analytic extension of zero function, the following equivalent characterization of (4.2)

g, X(t'—1) B=0 Vte [0, '] Vi=1, .., r. (4.3)

Since g; #0 for at least one index 7, then (4.3) is equivalent, by standard argument
[4], that the system (4.3) is not R"-controllable on [0, ] for at least one !, T>¢'>
>T—h. This means, by antithesis, that weak multipoint controllability on [0, 7'] is
equivalent to R"-controllability on each [0, ], t*>T—#h (the contraint <7, in
view of stationarity, is immaterial).

(b) The proof is analogous as of part (a). We get (4.2) as a characterization of
uncontrollability in multipoint sense with only change that now one of the instants
t! may be equal to 7—A. We distinguish three cases:

(bl) #'<T for all i. One may proceed to (4.3) and conclude that the system is
not R"-controllable on [0, 7] for some T>¢>T-h.

(b2) t'>T—h for all i. The conclusion as above with T>¢>T—4.

(b3) t*=T—h and "=T. This leads to the relations

q, X(T—h—1t)B+q. X(T—t)B=0 Yte [0, T], 8]
g, X(* =) B=0Vte [0, 1], Vi=2,..,r—1.

So multipoint uncontrollability means that either the system is not R"-control-
lable on [0, #'], ##>T—h or not all pairs (x(7—h), x(1)) are reachable. Since the
latter is implied by the first property we get, by antithesis, that multipoint is equi-
valent to 2-point controllability on [0, 7'].

Theorem 4.1 enables us to proceed immediately to fully algebraic and compu-
table criteria expressed in terms of parameters A4,, 4, B.

THEOREM 4.2. Multipoint controllability of system (4.1) on [0, 7] is equivalent
to each of the following:
(1) The 2n-dimensional system

X(O)=4o x()+A4, y(O)+Bu(),

(4.5)
V@) =Aoy(O)+A4, y(t—h)+Bu(t—h),
is R*"-controllable on [0, .71].
(ii) The set of columns of the matrices
ri—j+1,j-1)Bli=0,1, .., 2n—1, “.6)
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has rank 2n i.e. spans the whole R*", where the matrices I"(i,j) are defined by
recurrence relations

@ j)=A4, I'i—1,j)+4, G j-1) 4.7)
with initial values

(0, 0)=1 (identity), I'(i, j)=0 if i<0 or j<0. (4.8)

Proof.

(i) Setting zero initial conditions u () =0, x (1) =0, y (£)=0 for #<0 it is easily
seen that and y satisfy y (f)=x (t—h) for all +>0. Then the proof follows imme-
diately by Theorem 4.1 (b).

(ii) By Theorem 4.1 (b) one may begin with (4.4), where (g5, g.) #(0,0), as char-
acterization of uncontrollability. Recall that the fundamental matrix has the form
[6], [15]

XO=Xo(O+X,t—I)+..+ X, (t=kh)+..., 4.9)

where X; (1)=0 for t<0 and

X, (0= D> @)y [G~4,J) for 120, j=0, 1, .... (4.10)

i=0

Substituting this into (4.4) yields

. [r(i—j+1,j—1)3

3 o =0 for jh<T, i=0,1, ....
[9:. 9,1 r'i—j,j) B ] J

It remains to prove that in the sequence above we may restrict ourselves to indi-
ces i=0,1,..,2n—1 but this follows from the generalized Cayley—Hamilton
theorem [4], [6] applied to the pair of matrices

Ay A, 00
[0 AO} el [0 Al}'
Hence, since (q;,¢.)#(0,0), we get that for multipoint controllability (ii) is
an equivalent characterization.

It is worth to note that (ii) follows also directly from controllability criteria,
given in [4], when applied to system (4.5).

GENERALIZATION 4.1. Proceeding to system (2.1) with multiple delays it is easily
seen that all arguments for proving Theorem 4.1 remain valid. The only difficulty
of rather technical nature is the discovering for what points ¢* the relation (4.2)
does not imply (4.3) and what we shall obtain instead of that. The detailed analysis
of this problem shows that multipoint controllability of (2.1) on [0, 7'] is equivalent
to reachability of arbitrary N-tuples of m-vectors (x', ..., xY) where xi=x (),
t'=T—h, tN=T and for 1 <i<N, T—h<t'<T and there exist nonnegative integers
Jis eesji—1=0 such that T—¢'=j; hy+...+j,_1 h;_. Clearly, these conditions define
the number N uniquely. Similar conclusion holds for weak multipoint controlla-
bility where only ! =T—h and x! are omitted. Let us summarize this in the theorem.
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THEOREM 4.3.

(a). System (2.1) is weakly multipoint controllable on [0, 7] iff it is weakly
(N —1)-point controllable where the integer N—2 is the number of different reals
si, 0<si<h, i=2, ..., N—1 for which there exist nonnegative integers jy, ..., j,_ =0
such that s*=j, &y +...+j,_1 h,_,. Moreover it suffices to examine weak (& — 1)-point
controllability just for the instants ##=7—s% i=2,..., N—1 and t"=T.

(b). System (2.1) is multipoint controllable on [0, 7] iff it is N-point control-
lable at fixed instants r'=7—h, ¢ specified above for i=2, ..., N—1 and "=T,

The explicite characterization in the form of Theorem 4.2 is also feasible for
system (2.1). We shall not write down appriopriate generalizations of system (4.5)
and formula (4.6). However, if needed, it can be easily done by the reader after using
shifted by T— ¢* system equations (2.1), where ¢ are determined as in Theorem 4.3.
Thus one gets a generalization of (4.5). To obtain a formula analogous, to (4.6)
one may utilize appropriate criteria of [4] applied to generalization of (4.5).

5. Adjoint space characterization of approxi matecontrollability

This section is devoted to characterizing & -approximate controllability with
& being one of the spaces described in paragraph 0.3, that is C, M, W{. The
characterization will be given in terms of adjoint topological spaces. This enables
us to formulate, in subsequent section, equivalent observability problems.

First we state the following general lemma.

LEMMA 5.1. Let & be a linear normed space of n-vector valued functions defined
on [T—h, T]. The system (1.1) is #-approximately controllable on [0, T'] iff for any
f*e ZF the equality f* (x;)=0 holding identically for all x, e # N/ (T) implies
f*=0, in other words, iff the annihilator of &# N/ (T) is trivial.

Proof. Suppose f*(x7)=0 on F N/ (T) for some nonzero f*e . Hence

F Nof (T)cker f*. Since ker /* is a closed proper subspace in & the closure of
F N/ (T) is in ker f* and is not all of &. This was for necessity. For sufficiency,

suppose the closure # N/ (T)=4 is a proper (closed) subspace of & . Then by one
of the well known corollaries to Hahn-Banach theorem (see e.g. Rudin [24], Theorem
3.5) there exists a functional /* € # such that /*(#)=0 and f*(3) =1 for a prescri-
bed vector ye #F\Z. Thus the proof is complete.

Let us specialize Lemma 5.1 to individual cases of C, My, and W] spaces where
1<r<oo.

TueoreMm 5.1. Given a real r, I<r<oo let 7 satisfy 1(r+1)r=1 and let fe
e L' (T—h, T; RY). Assume g: [T—h, T]— R" is left-continuous on (0, /), of bounded
variation, g{(7T—h)=0 and let g, g, € R". The F-approximate controllability of
system (1.1) on [0, T'] is characterized by the following statements corresponding
to individual cases.
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(i) # =C. The equality

14
[ [dg’ ()] X (t—s5) B=0 for a ase[0, T] (5.1)

o

T—h
implies g=0. Here X (7) satisfies (1.4).
(il) # =M,;. The equality

-~

T
[ f'(®) X (t—5) B dt+aq; X(T—h—s) B+ fqy X(T—s5) B=0
7 for a.ase[0,T]  (5.2)
implies f=0 and ¢, =g, =0.
(iii)) # =W{. The equality
T
g, X(T—h—5)B+f () B+ JF [ () X (t-—5)Bdt=0 for a.a.se[0, T] (53)
T—h
or

i
g, X(T—s) B+f (s) B+ f 1) X (t—s)Bdt=0 for a.asel0,T] (5.4)
T—h

implies ¢; =0 and f=0 where we have put by definition f(s)=0 for se [0, T—h)
and f(s)=f(s) for se [T—h, T].

Proof.

(i) Note that &/ (T)=C(T—h, T; R"). Given f*e C* the equation f*(x;)=0
Vxpe o (T) of Lemma 5.1 may be written, with the aid of representation (0.4) and
formulas (1.3), (1.6), as

f [de’ (1)] f X (t—s) Bu(s) ds=0 YueL? (5.5)

T=ih

where g satisfies all assumptions required in the theorem. Since, by definition,
X (t)=0 for <0 we may put T as upper bound for both integrals in (5.5). By Fu-
bini theorem [33] the order of integration can be changed provided that the suitable
integral is understood in Lebesgue—Stieltjes sense or else a decomposition of the
function g (¢) similar as for 4 (s) in Remark 1.1 should be done to assure the
existence of Riemann—Stieltjes integral. After these manipulation sit obtains.

Ty T
J( f[dg’(r)] Y(t—s) B) u(s) ds=0 YuelLP. (5.6)
0 \T—n .
Since X (#) is absolutely continuous in ¢ except the jump X (0)—X(0—-)=71
at r=0 it follows that the map
T v -
[0, 7] s— f[dg () X(t—s)BeL*cL?

T=h
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where 1/p+1/p=1, 1<p<oo. This is easily seen after writing separately the terms
corresponding to jump part of g and then integrating by parts the remaining integral
in order to obtain usual Riemann integral.

Now we can interpret (5.6) as though a linear bounded functional from (L?)* =

L? takes zero value on the whole domain L?=L? (0, T; R™). Hence this functional
must be trivial i.e. (5.1) holds. Applying Lemma 5.1 we complete the proof.
(if) Taking representation (0.9) one may utilize the same argument as for part (i).
(iii) It can be assumed without loss of generality that p>=r since otherwise the
set o/ (T)N W] consists of all final states x, attainable with L" controls. So it can
be assumed o/ (T)yN W]. With the use of Lemma 5.1 and representation (0.12)
the following equation, analogical to (5.5), is obtained.

T—h 0 ' t
f g1 X(T—h—s5)Bu(s) ds+ f Fa ) (d/a’t [ X(t—s) Bu(s) ds) dt=0Vuel?,
4] T—h (o]

where fe L. After differentation in the second integralpusing Fubini theorem and
other manipulations we arrive at

/

T T . v
f (q; X(T=h—s)+f (s)+ J f(OX(t—s) dt) Bu(s)ds=0 YuelL? (5.7)
0 T—h

where fis an extension of f defined by setting f(s)=0 for se [0, T—4) and X (0)=
X (0+) is put. Hence and from assumption above that p>r it follows that p<7
where 1/i+1/r=1,1/p+1/p=1and fe L O, T; R")Y<L? (0, T; R"). Since X (T—h—s)
is absolutely continuous in s except at s=T—h and X (t—s) is at least bounded
measurable in s the identity (5.7), similarly as for (5.6), is understood as a linear
bounded functional vanishing on L? (0, 7; R™). This is clearly equivalent to (5.3).
To obtain (5.4) start with the second form of representation (0.12).

All arguments preserve for the case p=co since L”—=LIC(L°°)*.

COROLLARY 5.1. (L"-approximate controllability). System (1.1) is L'—approximately
controllable on [0, 77 iff the equality

T
[0 X(@—s)Bdt=0 Vse[0,T] (5.8)
T—h
for some fe L (T—h,T; R, 1/F+1/r=1, 1<r<oco implies f=0.
Proof. By substituting «=f=0 in Theorem 5.1 (ii).
CoroLLARY 5.2. System (1.1) is M -approximately controllable on [0, T], I<r<oo,

iff it is M;-approximately controllable on [0, 7] where y=sgn &, d=sgn f and
sgn a=of|a| for «#0, sgn 0=0.

Proof. Follows trivially from Theorem 5.1 (ii).
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On the basis of Lemma 5.1 further conclusions concerning interrelations between
C-, M,- and W{-approximate controllability can be drawn. We consider them in
t he form of the following diagram of implications.

CoRrOLLARY 5.3. The following implications are valid

M,

fi

Mi,
C z N ;
Wi=Wi=C=M7, L7

y X &

Mz, Mo

Ur

Mg,

for any 1<r'<r<oo and «>0, =0. The symbols of spaces represent here appro-
priate notions of approximate controllability of system (1.1) on a fixed interval
[0, T].

Proof.

W = C. We, equivalently, prove that of system (1.1) is not approximately
controllable on [0, 7'] in the space C then it is not in #! either. In fact, uncontrol-
lability in C implies by Lemma 5.1 and representation (0.4) that there exists a non-
zero n-vector valued function f of bounded variation, left-continuous on (7—#A, T),
f(T'—h)=0 and such that

T

[[x"(t) df(t)=0 for all x; € (T).

T—h

This integral can be represented, after integration by parts, as

T T
@ x@=f T xT-h— [ @dx@)=fT)x @)~ [f @O x@)de
T—h T~h
where either f(7)#0 or f(¢) is nonzero on some subinterval of (7—#, T). Com-
paring this with representation (0.12) nad by Lemma 5.1 we get a conclusion that
the system (1.1) is not W!-approximately controllable (recall that every function
of bounded variation is of class L* < (L7)*.
C= M7,. the proof follows by similar argument as above and is based on the
following manipulation

o T
¢, x(T-h+q, x(D+ [ fOx0= [x@)dg®
T—h T—h v

for any ¢y, q,€ R", feL'(T—h, T; R") and g which is absolutely continuous on
each closed subinterval of (T—h, T) with g (1)=f(t) on (T—h,T),g(T—h+)—
—g(T—h)=¢q, and g(T)—g(T—)=4q,.

M{ = (M, and M{,), M =L" and Mg, = L follow trivially from Theorem
5.1 (ii). :
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W= W and other implications with r'<r involved follow from the fact
that every function of class L" is also of class L", where 7 <7’ satisfy 1/f+1/r=1,
1//"+1/r'=1. Formal argument as for W= C.

Now proceed to the case r=oo, that is, M,z- and W {*-controllability. It is at the
first sight an unexpected result that in one of these function spaces the system (1.1)
is never approximately controllable. It is so for the space M,;.

THeOREM 5.2, System (1.1) is never M_3-approximately controllable.

Proof. Try to approximate by x; the following function

0, te[T—h, T—h/2],

g, te(T—h2, T}, (59)

f(t)={

with ¢ being arbitrary nonzero n-vector. Let x; € o/ (T). Since t—x ()=x;(t—T)
is continuous there exists s>0 such that |x (£)—x (T'—£4/2)|<|q|/3 for T—h/2—
—s<t<T—h/2+s. Hence for t e (T—h/2—s, T—h/2]

lx()—f@O)|=|x O—x(T—h/2)+x(T—-h2)|Z|x(T—-h/2)|—1q|/3,
and similarly for t e (T—h/2, T—h/2+5)

Ix(@O)—fO1=x(T—h2)—q|—1q]/3.

Therefore for the case of M,; norm we have
ez —flizmax (Ix(T—4/2)|, 1x(T—h/2)—ql)—1q!/3>q!/2—14/3=]q/6.

This shows that whatever the state x; (the control u) is one cannot reach arbi-
trarily small neighbourhood of fin M, topology.

In case of W space we do not have such completely negative result although
the theorem below shows that one can reach a state x, arbitrarily close to a given
arbitrary function in W° only if all functions in W{° can be reached exactly. This
is also less than one might have expected.

THEOREM 5.3. System (1.1) is W °-approximately controllable on [0, 7] iff it is
W -controllable on [0, 7], that is, iff rank B=n.

Proof. Choose for approximation a function ge W{° whis is the unique solu-

tion to
g(T—h)=0,g(O)=f(®),te(T—h,T) (5.10)

where f is given by (5.9). Let x' (¢), i=1, 2, ..., be an approximating sequence in
W topology, that is

ess sup |x'(¥)—g ()| =>0 with i—oco, (5.11)

te[T—h,T]

Suppose rank B<n. Then there exists a nonzero vector y € R such that y’B=0.
This implies that for any solution x (7)

y' x()=y' Lx,+y Bu(t)=y' Lx,. (5.12)
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Substitution of this and (5.10) into (5.11) (premultiplied by y’) gives

ess sup |y’ Lxi—y' f(£)|-=0. (5.13)
te[(T-h,T]

Observe now that y’ Lx, is continuous in ¢ € [T—h, T'], T>h. In fact it is easy
to show that for xe C(—#h, T; R") the map t—»x, e C(—h,0; R") is continuous
in sup norm topology for 7€ [0, T'] (see also Hale [1], Lemma 3.1). Hence, since
L is bounded and therefore |y’ Lx,—y’ Lx,|<|[y’' Ll |lx,—x,| we get continuity
of y' Lx, in ¢. This and the additional assumption that the vector ¢ in (5.9) is chosen
such that y’ g0 enables one to follow the proof of the preceding theorem thus
to obtain the final inequality

ess sup |y’ Lxi=y' f(D)] =1y’ q/6

te[T—h,T]
contradicting to (5.13). This proves the necessity of condition rank B=n for W -
approximate controllability (and clearly for W/°-controllability too). For suffi-
ciency restrict ourselves, without loss of generality, to case m=n (square matrix B).
If rank B=n then one can reach exactly any function ge W?(T—h, T; R")>
S W (T—h, T; R") with the aid of a control u € L”. It is true because one can reach
any function xe W7 (0, T; R") such x (0)=0 by setting u (f)=B~! (% (f)—Lx,) and
because T—h>0.

REMARK 5.1. We have shown, by the way, the sufficiency of the condition rank
B=n for W{-controllability of system (1.1) on [0, T] provided r>p. It is easy to
prove that ‘this condition is also necessary; it follows from the proof of Theorem
5.3 (see also [3], Theorem 3.1). Actually, if rank B<n then (5.12) is valid for some
norzero vector y. Since, as it was shown in the proof above, y' Lx, is continuous
in ¢ (5.12) implies that for any reachable trajectory of (1.1) the projection of the
derivative x (¢) onto the line through y is always continuous in ¢ while in case of
W {-controllability the set of attainable derivatives should contain the class L.

Since the case r=oc has been discussed completely we shall assume in sub-
sequent considerations that 1<r<oo. ;

6. Dual observability problems

6.1. Main result

It is a well known relation between controllability of linear system without
delay and observability of its dual. For instance the system (4.1) with 4,=0 is
R"-controllable if and only if the free-force system X (f)=A, x () with output
v (t)=B' x (¢) is observable. For systems with delays a very little has been done
to clarify the relations between various notions of controllability and observability.
Delfour and Mitter [18] stated duality result between R"-controllability of a system
similar to (1.1) and observability of dual system. It has to be pointed out that in
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[18] the system is defined to be observable if all initial functions of type x (0)#0,
x (1)=0, <0, can be determined from output measurement. The same definition
was used by Gabasov at al. [21] and the observability results obtained for systems
with one delay are of the form of rank conditions for a sequence of matrices. It
was not stated by the authors but (by matrix transposition) the results of [21] are
dual to R"-controllability criteria of [7]. To the authors knowledge no other duality
results using observability definition more suitable for applications were published.
Fortunately we are able to extend the results mentioned above and establish duality
between approximate controllability of (1.1) and observability of the following dual

(transposed) system
(o]

(= [[d A ] x(t+s), 10, (6.1)

~h

y() =B x(1). (6.2)
We shall use the following definition of observability.

DermviTION 6.1. Let & be a given class of initial functions x4: [—/4, 0]— R” for system
(6.1). The observed system (6.1), (6.2) is said to be %-observable on [0, T] iff for each
nonzero initial function xy € ¢ the output y(¢) does not vanish identically on [0, T'].

It should be pointed out that the Definition 6.1 might be inadequate to real
problems. For instance, in the system x (f)=A4, x (t—h), ker A, #0, the initial con-
dition x, (¢) € ker 4,, t € [—h, 0], xo, (0)=0, is equivalent to zero function is a sense
that both yield x (£)=0, t>0. Therefore the notion of “‘state ¥-observability”” should
be understood as the existence of a map y (+)—x (+) provided that initial conditions
are in 4 and y(+) and x (-) are defined on [0, T'] (see [22]).

Testable algebraic criteria of state L'- and C-observability for systems with one
delay were derived by Olbrot [22] (for extension to the case of output delay see
Lee 1231).

Before proving duality result we state:

LemmA 6.1. The fundamental matrix solution X (#) of the free-force (x=0) system
(1.1) satisfies the following commutation property

0 [¢]
f[dsA(s)]X(t—H): [ X(t+5)d, A(s) for a.a. £=0. 6.3)

—~h —h
Proof. The proof is based on two fundamental results which can be found in
books of Hale [1] or Halanay [30]. First is the equation for fundamental matrix

solution to adjoint system
(o]

Y@ =I— f Y(s) A(t—s) ds, t<0 and Y ()=0, t>0 (6.4)

2

where the kernel A4 (s) has been normalized such that

A(s)=0 for 520 and A(s)=A4(—h) for s<—h. 6.5)




36 A. W. OLBROT

Second is the property that
X@®)=Y(—1) for all r. (6.6)

Substituting (6.6) into (6.4) and shifting by ¢ the bounds of integration one
X(t):l—fX(t—s)A(——s) ds, t=20.
* Hence by differentation -
X ()= —A(—t)—fX(t~s) A(=s)ds ae. in 1.
0
Applying now integration by parts
—fX(z—s) A(—s) ds=f[ds X(t—5)] A(—s)=X(0) A(—1)—
0 0

—X(t)A(O)—fX(t—s) d.A(—s)

obtains and substituting (6.5) yields

h o]

X(f)=—fX(z—s) d, A(—s)= f X(t+s)d, A(s).

Comparing this with (1.4) we get (6.3).

CoROLLARY 6.1.The transpose X’ (7) of the fundamental matrix solution to homo-
genous (u=0) part of (1.1) is itself a fundamental matrix solution to the following
homogeneous system

(M= [[d A" )] x(t+s) ae. in 120, 6.7)
—h :

Proof. Follows trivially by transposing (1.4) and applying Lemma 6.1.

COROLLARY 6.2. The equation (1.4) for X (f) can be rewritten in the form

X®)= f X(t+5)d, A(s) ae. for 20, X(0)=1, (6.8)

—h
X (1)=0 for t<0.

Proof. Obvious from Lemma 6.1.

REMARK 6.1. Lemima 6.1 is a generalization of a similar result (Bellman and Cooke
[34], Lemma 10.1) given for systems of type (2.1).

Now we are in a position to prove the duality theorem characterizing approxi-
mate controllability in function spaces C, M, and W]. All the results of Theorem
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6.1 below are formulated in terms of dual observed system (6.1), (6.2) or, alterna-
tively, in terms of the following dual controlled-observed system

0

% ()= f [d, A’ (s) x(t+5)+w(r), te[0,T], (6.9)
x(t)=0 for t<0, w(t)=0 for te(h, T], (6.10)
y(O)=B x(1), tel0,T] (6.11)

where the class to which w belongs depends on what space is considered.

THEOREM 6.1. The following statements are valid.

(i) C-approximate controllability of system (1.1) on [0, 7] is equivalent to %-
observability of system (6.1), (6.2) on [0, T—/] where % is the space of all functions
of bounded variation and with values in ker B'.

(if) M J-approximate controllability of system (1.1) on [0,7] is equivalent
to each of the following

(i1)". For system (6.9), (6.10), (6.11) with

Ww (&) =0g, (t—h)+Pg> (O +v (£) (6.12)

where J (7) is Dirac’s distribution and » is of class L™ on [0, 4], 1/f+1/r=1, the con-
dition y (r)=0 identically on [0, 7] implies «g,=fq,=0, v()=0 a.e. on [0, A].
Here the effect of ag, 6 (t—h), fg, J (¢) on system behaviour is understood as jumps
of the trajectory x (0)—x (0—)=pqg,, x (h)—x (h—)=0q, )

(i)"’. System (6.1), (6.2) is G-observable on [0, T—#4] where ¥ ={xe W] (—h, 0;
kerB"): x (—h)=pfq,}+{x: x (0)=uq, € ker B’, x (t)=0, te [—h, 0)}.

(iif). W/ -approximate controllability of system (1.1) on [0, T'] is equivalent to
each of the following "

(iii)" For system (6.9), (6.10). (6.11) with w e L, 7 as above, the equality

v(q,0)(0)+d/dt y(0, w) (1)=0 for a.a. te[0,T] (6.13)
implies ¢=0, w (1)=0 a.e. where it is denoted by y (gq.w) () the output (6.11)

provided that initial condition is x (0)=gq.
(iii)’" The equality

(g, 0) (t—h)+d/dt y (0, w) (£)=0 for a.a. 1€ [0, T] (6.14)
satisfied in system (6.9), (6.10), (6.11) with welLr implies ¢g=0 and w (¢)=0 a.e.
(iii)’"" %-observability on [0, T—h] of the following dual system

0

0= [dA@]x @+9),

—h

%2 () = f [d, A’ (s)] X2 (t+5), (6.15)

—h

y@)=B'(3' () +x*()),
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where 9 ={(xg, x3): x5 € Wi (—h, 0; ker B'), x; (—h)=0, x3 (0)e R", x7(s)=0 for
se[—h,0)}.

Proof.

(i). For the proof of this and next parts we use Theorem 5.1 as a starting point.
Let rewrite equation (5.1) in the following form (after transposition and change
of integration variable)

h

B’fX'(:—s) do(s)=0 for a.a. re[0, T]. (6.16)
(¢}

where v (s)=g (T—s). From representation formula (1.3) and Corollary (6.1) it
is seen that if v is absolutely continuous (dv (f)=w () dt, w e L) then left hand of
(6.16) is equal to output y (#) of the system (6.9), (6.10), (6.11) with initial condition
x (0)=0. In general, however, v is of bounded variation and therefore the function
t—x (t) where

x()= f X' (t—s) dv(s), 1€ [0, T] (6.17)

is only of bounded variation on [0, A]. Strictly speaking the integral (6.17) is well
defined in RS sense for all 7€ [0, 7] but at most countably many points of [0, 4]
(compare Remark 1.1), namely, the jump points of ». With the exception of these
points (6.17) is equivalent on (0, /) to

x(H)= f X' (t—s)du(s), 1 (0, h). (6.18)

Now observe that proving the following steps yields the complete proof for part (i).
(A). The operator defined by (6.18) and by equality
x(0)=2(0) (6.19)
takes BV (0, i; R") onto itself.

(B). The identity (6.16) taken for ¢ e [0, 4] implies that x (¢) defined by (6.18)
equals a.e. on [0, /] to a function from BV (0, i; ker B').

(C). Formula (6.17), taken for te [A, T], defines a solution to (6.1) on [h, T']
with initial condition x (?), ¢ € [0, /], given by (6.18) and (6.19).

Proof of (A): It is seen that operator (6.18), (6.19) takes BV (0, h; R") into itself.
Actually, it is more evident after integration by parts of (6.18)
t
x@O=0()~X (v ©O)+ [ X' (t=5)v(s) ds.
(¢]

Suppose now that x is an arbitrary function of bounded variation and define

v(B)=x(O)+(1—0o) x(©)— [ L' x, ds (6.20)
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where d,,=1 for t=s, 0,=0 otherwise and

0

L' x;= [ [dy A" ()] x(s+6). (6.21)

J
~ i

Here in (6.21) and in subsequent formulas it is assumed that x(¢)=0 for 7<0.
The integral (6.21) is understood in LS sense or else Remark 1.1 applies in order
to assure that o (¢) is well defined for all 7 € [0, 4].

We want to show that substitution of (6.20) to (6.18) and (6.19) yields an iden-
tity. In fact, (6.20) implies (6.19) and substituting

dv(s)=dx (s)—ddys x(0)—L" x, ds
into right-hand side of (6.18) we get for 7€ (0, /)

[ X' (t=5)dx @)+ X' (@) x )= [ X' (t—s5) L' x,ds.

o

After integration by parts of the first term this is equivalent to x (¢)+ R (¢) where
t i
R(z):fX'(f~s)x(s) a’s—fX’(t—s)L’xS ds. (6.22)
0 0

It remains to prove that R (z)=0 for all ¢ € [0, 4] and all x e BV (0, #; R") which
is itself an interesting property of fundamental matrix solution. Perhaps the simplest
proof of this identity is via Laplace transform method. Extending meanwhile the
definition of x (s) onto the whole real axis by setting x (s)=0 for s ¢ [0, 4] we get
for Laplace transform R (z), X (2), £ (z) of appropriate functions the relation.

R@Q=(zX'@-1)£@—X'(@) [ dy 4’ (0)] e %(2) (6.23)

" The existence of the above transforms is guaranteed by exponential boundedness
and local integrability of X’ (¢) in £>0. The columns of X’ () for t>#h are solutions
to (6.1) with continuous initial function on [0, ) and therefore general estimates
for such solutions are applicable (Myshkis ([13], Chapter III, Theorem 11). The
form of the Laplace transform of the map #—Lx; follows by order interchanging in
appropriate integrals (see also [13], Chapter III). From transposed version of (6.8)

or (1.4) it follows that
[}

-1
¥ (z):(zl—— f "% dy A'(a)) x (6.24)
Lo l

Substitution of (6.24) into (6.23) yields R (z) =0 which means that R (f)=0 a.e. in
t. By continuity (see (6.22)) we get R (£)=0 for all 7>0 which completes the proof
of (A).

Proof of (B): Follows trivially from (A).
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Proof of (C): Evaluate the derivative of x (f) defined by (6.17).

0

x(r)=fX' (t—s)dv(s)=f[ fdgA'((?)]X’(t—erc’?)]dv(s),t>h. (6.25)

—h
On the other hand after substituting (6.17) into right-hand side of (6.1) we get

for t>=h i

x(f)= fd,,A’(O)fX'(t—s-}—H) do (s)

—h 0

which is equal to right-hand side of (6.25) by Fubini theorem. This proves that
(6.17) verifies (6.1) on [h, T'] with initial conditions (6.18), (6.19) on [0, A].

(i1). We proceed with the same argument as for part (i), that is, in lieu of (6.16),
with the following identity 4

B’le’(t—s)v(s) ds+oX' (t—h) g, + X" () g, =0 : (6.26)

a.e. in ¢ € [0, T'] which is an equivalent version of (5.2) with o (s)=f(T—s). Consi-
dering the function

h
x(@)= f X (t—s5)v(s)+oaX (t—h) g + X () ¢, 6.27)

we check easily that it satisfies (6.1) on [A, T'] with initial conditions also defined
by (6.27) for ¢ € [0, h]. The set of these initial conditions

{x: x satisfies (6.27) on [0, A], eEF, gy, g5 & R';}
is equal to

{x: X=F+0, aqy, % € WO, h, RY), % (0)=Pq2; 4, g € R™} . (6.28)

To prove this it suffices to show that the map
h
v x ()= f X' (t—s5)v(s)ds, te [0, A], (6.29)
(V]

takes L' onto {xe Wf :x (0)=0} and t—fX" (¢) g, is of class W c Wf . The latter
is obvious from (1.4)

[0]
IX(1)|< f [d, A (s)l] \X(t+s)!<Var[_,,,0]|A O] (SUP[O,h] X () <oo
—h
for all but countably many points ¢ [0, #]. The first is verified by direct substi-
tution of

2()=%(t)—L’ x,, x € W (0, h; R"), x (0)=0

where it is understood that x (z)=0, #<0 in order that Lx, have sense. After similar
manipulations as in part (i) we get that (6.29) takes the value x (#)+ R (¢), where
R (¢) is defined by the expression (6.22) and, as it was proved, vanishes identically.
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Now, taking (6.26) for t € [0, i +¢], ¢>0 arbitrarily small, yields that x (¢) € ker B’
for x defined by (6.27) and hence X () € ker B’, ug, € ker B" in (6.28). Ba Theorem
5.1, with (6.26) in lieu of (5.2), we obtain part (ii)"’. The part (ii)" follows easily
from the fact that (6.27) can be considered as a solution to (6.9) (6.10) with w de-
fined by (6.12).

(iii). Utilizing the identity (5.4) of Theorem 5.1 we shall prove the statements
(iti)’" and (iii)""’. The proof of (iii)’, when starting from (5.3), is similar to that of
(iii)"".

As in preceding cases rewrite first the basic relation (5.4) in the equivalent
form.

B’(X’(t-h) q+d/dth’(t—s) w(s) ds) =0 a.e. in te[0, T] (6.30)

whee g=¢, e R" and w (t)=f(T—1t) for te[0,h] and w(1)=0 for re(h, T)].
Since X' (t—h)q, t€][0, h] represents the solution x (r—/4) to (6.9) with w=0
and initial conditions x(0)=g, x(¢)=0, t<0, (actually, compare (6.1) and trans-
posed (6.8)) and the second term of (6.30) is equal to y () where y is defined by
(6.9), (6.10), (6.11) with x (0)=0 (compare (1.3)) we conclude that (6.30) and (6.14)
are equivalent. By Theorem 5.1 the proof of (iii)’’ is complete.

In order to prove (iii)’’’ note that the set of all solutions to (6.9), (6.10) on
[0, 4] provided that x (0)=0, weL", equals to {xe Wf (0, A5 R™): x (0)=0} (the
proof by direct substitution of suitable chosen w) and that (6.14) taken for 7 € [0, /)
is equivalent to the property that the values of x (¢) above are in ker B’ a.e. Shifting
the time we may consider (6.14) on [—/A, T—#h) and translate easily (iii)’" into equi-
valent form (iii)""".

From part (ii) of Theorem 6.1 it follows trivially the dual observability charac-
terization of Lr-approximate controllability (L"=M(,).

CorOLLARY 6.3. System (1.1) is L™-approximately controllable on [0, T'], 1<r<oo,
iff (a) or equivalently (b) holds.

(a). For system (6.9), (6.10), (6.11) with w of class L~’, 1 (7F+1/r=1, and x(0)=0
the condition y (£)=0 identically on [0, 7] implies w (r)=0 a.e. on [0, A].

(b). System (6.1), (6.2) is -observable on [0, T—h] where ¥={x¢€ Wl;(—h, 0;
ker B'): x (—h)=0}.

REMARK 6.2. In Theorem 6.1 the part (i) corresponds (in style) to part (ii)’’ or
(iii)"’’. The reason we cannot establish an equivalent form of (i) corresponding to,
say, (ii)" is that we are not able to perform (6.18) as a solution to (6.9) even if admitting
distributions for w. It is possible only in case the continuous part of v in (6.18) is
absolutely continuous. In general, however, v may contain nonzero singular part,
that is, a nonzero continuous function the derivative of which is zero a.e.
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REMARK 6.3. It is possible to formulate the statement (iii)'Y as a conclusion from
(iii)". Its form is a slight modification of (iii)"’* with a modified initial function x2 (¢) =
X (t+h) q. We do not include this here as it would make the formulation of The-
orem 6.1. unnecessarily too long.

Now let us examine briefly the case rank B=n or, equivalently, ker B'=0. As
it was shown in Theorem (5.3) this condition is necessary and sufficient for W°-
approximate controllability. From Theorem 6.1 it is seen that this is also sufficient
for C-, Mj, and Wj-approximate controllability.

COROLLARY 6.4. Assume rank B=n. Then system (1.1) is approximately control-

lable on [0, 7] in each of the spaces C, My, W/, 1<r<oco.

Proof. For the spaces C and M, the proof is immediate from (i) and (ii)’" of
Theorem 6.1. In case of W] observe that if ker B’=0 then the space ¢ in (iii)""’
of Theorem 6.1 reduces to the set {(x}, x3): xt =0, x (0) e R", x2 (£)=0, te [, 0)}.
With such initial conditions the solution to (6.15) is

x1(1)=0, x2 () =X'(f) x2(0), t € [0, T—h].

Therefore the condition y (£)=0, te€[0, T—A] in (6.15) implies that y(0)=
B’ x% (0)=0 and hence x2 (0)=0. From Theorem 6.1 (iii) we obtain WI-approx-
imate controllability.

In applications we merely deal with systems for which the condition rank B=n
holds. However it is extremely difficult to give less restrictive sufficient condition
suitable for checking numerically approximate controllability of general system (1.1).
This will be possible for systems with discrete delays (in section 7). We are able to
formulate instead a simple necessary condition.

COROLLARY 6.5. Suppose that there exists a nonzero n-vector ¢ such that ¢’ B=0
and ¢’ A4 (s)=constant for all s [—4, §] where —A<35<0. Then system (1.1) is not
approximately controllable on [0, T'] in each of the spaces C, M, and W7,

Proof. The equations ¢’ B=0 and ¢ 4 (s)=constant are, respectively, equi-
valent to ge ker B’ and A4’ (s)g=constant. Construct and absolutely continuous
nonzero scalar-valued function a: [—A, 0]-R' such that a(s)=0 for s>5§ and
s=—h. Choose an initial function for system (6.1) of the form

x(t)=a(t) g, te[—h,0]. (6.31)

From the properties of ¢ it follows that the solution to (6.1) with initial condi-
tion (6.31) is x(#)=0 and hence y(#)=B" x(t)=0 for all #>0. Comparing this with
Theorem 6.1 (i), (i)’ and (iii)’"" it is seen that system (1.1) is not approximately
controllable on [0, 77 (in case (iii)’"’ we set x!=x and xZ (0)=0).

Taking the assumptions contrary to those of Corollary 6.5 we get a necessary
condition for approximate controllability.
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6.2. A sufficient condition for stabilizability

One of the most important implications of the main Theorem 6.1 is the result
that M,-approximate controllability of system (1.1) on some interval [0, 7] is
sufficient for its pole assignability and stabilizability.

Let us recal the definitions of these notions.

DEerINITION 6.2. System (1.1) is called stabilizable iff there exists mxn matrix
F (s) with elements of bounded variation in se [—4, 0] such that after applyin‘g
a feedback '

[¢]
u(t)= j [d, F(s)] x(t+5) (6.32)
—h
the closed loop system
0

()= f [d, (A (5)+BF())] x (t+5) (6.33)
—h
is asymptotically stable. System (1.1) is pole assignable iff for any real ¢ there exist
a feedback (6.32) such that the closed loop system (6.33) has no eigenvalues in the
closed right half-plane Rei>c.
Clearly, pole assignability implies stabilizability.
Recall also the following result due to Pandolfi [35] and for systems with one
delay also discovered by Bhat and Koivo [36].

LemMA 6.2. (Pandolfi [35]). System (1.1) is stabilizable iff
(]

rank [)J— f e dsA(s);B]:n (6.34)

—h

-

-

for all complex A such that Re 2>0. System (1.1) is pole assignable iff (6.34) holds
for all complex A.
Now we are in a position to prove

TueoreM 6.2. If system (1.1) is M -approximately controllable on some interval
[0, T'] for some 1<r<co then it is pole assignable and hence stabilizablie.

Proof. Observe that it is sufficient to check (6.34) for 1 being an eigenvalue
since otherwise the characteristic matrix of (1.1) (the first n columns of (6.34)) is
nonsingular. Suppose that system (1.1) is not pole assignable. Then, by Lemma 6.2,
there exist nonzero n-vector g such that B’ ¢g=0 and for some eigenvalue A, of
(1.1) we have

[;.01- fe"OstA’(s)]qu : (6.35)

—h

This implies that x(f)=e*’ ¢ is a solution to dual system (6.1) corresponding
to nonzero initial function x (f)=e’**¢q, te[—h, 0] such that the output (6.2)
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vanishes identically for #>0. By Theorem 6.1 (ii)"’ system (1.1) is not M}, -approxi-
mately controllable. This complets the proof.

Clearly, approximate controllability in any of spaces Wj, C and M|, is, by
Corollary 5.3, also a sufficient condition for pole assignability.

7. Testable algebraic criteria

Although the dual adjoint space or observability characterization can be applied
for checking approximate controllability in some simple cases it is extremely diffi-
cult to construct on the basis of them a numerical algorithm. In this section we show
however that for the class of systems with discrete delays of type (2.1) the Theorem
6.1 can be further developed into a fully geometric-algebraic form where all condi-
tions are numerically checkable in finite dimension. The only additional hypothesis
is that the lags A;, i=1, ...,] are commensurable, the condition which is always
satisfied for real mathematical models of type (2.1). All the proofs are given, for
simplicity, for one-delay system

x()=Ao x(t)+ A4, x(t—h)+Bu(r) 7.1

and the straightforward generalization to more general systems of type (2.1) are
indicated.

The dual system corresponding to (7.1) is
x(M)=Agx(O)+A; x(t—h), 1=0 (7.2)
y(@O)=B"x() (7.3)

as a specialization of (6.1), (6.2). The similar specialization of (6.9), (6.10). (6.11)
yields

2(O=A;x@O)+ A4, x@t-h)+w(@), te[0, T], (7.4)
x(£)=0 for <0 and w(f)=0 for t>h, (1.5)
y(t)=B' x(1), te [0, T]. (7.6)

. By transforming these dual systems into nondelayed form (using the method of
Olbrot [2], [15]) and then utilizing the concept of controlled invariant of Basile
and Marro [25] (see also Wonham and Morse [27] and Wonham [26]) we shall
obtain the criteria mentioned above. For that purpose we specialize the Corollary
6.5 to system (7.1) and then quote some preliminary results.

CoroLLARY 7.1. If the system (7.1) is approximately controllable on [0, 7] in the
space C (or M;, or WY) then
rank [4,; B]=n. (7.7)

Proof. Follows from Corollary 6.5 by the observation that the condition rank
[4,; Bl=n is equivalent to the existence of nonzero vector g e ker B’ Nker A4;.
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7.1. A nondelayed equivalent system

Consider the system equation (7.4) and conditions (7.5). Let (k—1) h<T<kh,
k an integer. If T<kh then assume (7.4) holds [0, k#]. The system behaviour for
T<t<kh is immaterial to our problems: we include this interval for symmetry.
Define the following transformation.

x(th+s)=z;..(s), i=0,1, .., k—1, se[0, A], (7.3)
Z' (8)=[z; (5), .-, z,i, (s)].

It is checked easily that (7.4) holds on [0, k4] with initial conditions and w sa-
- tisfying (7.5) if and only if z satisfies

2(s)=Az(s)+E, w(s), s € [0, hl, (7.9)
z(0)=z°+Jz(h), : (7.10)

where A, E, and J are respectively nk x nk, nk xn, and nk x nk matrices; z° is an
nk-vector as below

A, 0 .0 I 00..0
A= ’fﬁ Aé"'(? E=|"| = {0"‘(.) (7.11)
B o A o] |o .m0 '
()" =[x"(0),0, ..., 0]. (7.12)

With the same transformation (7.8) the equation (7.2) with some initial condi-
tions can be represented in the form

2()=Az(s)+ A, xo(s—h),se[0, h], (7.13)
2(0)=z°+Jz (h) ' (7.14)

where x, (t)=x (¢), te[—h, 0] is the initial function and
A =[4,,0,..,0] (7.15)

is nxnk matrix.

7.2. Controlled inyariants

Let us introduce the concept of controlled invariant due to Basile and Marro
[25] and also met in Wonham and Morse [27].

DEeriniTION 7.1. Given a subspace ScR” and nxn matrix 4 the subspace V< R"

is called (controlled, generalized) (A, S)-invariant if AV <V+S. The maximal

(4, S)-invariant contained in a given subspace W is denoted by Mic(4, S; W).
The following algorithms are known to determine Mic (4, S; W).
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ALGORITM 7.1. (Wonham and Morse [27], [26]). Denote W,=W and
Wi:Wi—l nA_l(Wi_l“*‘S), i:l, 2, eite

Then Mic (4, S; W)=W, where j=dim W or take W, if W, ,=W,.

ALGORITM 7.2. (Basile and Marro [25]). Denote Vy=W+* and
VisVod A (Vg 0 8Y), i=1,2, 0.,

Then Mic (4, S; W)=V} where j=dim W or take V; if V,,, =V,
We shall need in the sequal a characterization of (4, im E,)-invariant in terms
of feedback properties of the system (7.9). The results of this type are summarized

in the following lemma.

LemMmA 7.1..
(i). A subspace V<R™ is an (4, im E,)-invariant iff there exist a constant
feedback matrix F such that

(A+E, F)VcV. (7.16)

(ii). Given for system (7.9) an initial state z (0) belonging to a subspace W there
exists an integrable function 7—w (7)) such that z(¢) e W for all te [0, 4] iff z(0) e
e V=Mic (4, im E, ; W). Moreover, if z(0)e V then there exists an analytic, as a
function of time, trajectory z(f)=(expt(A+E, F))z(0)e VeW ‘corresponding
to analytic “control” w (t)=Fz (f) where F and V satisfy (7.16).

(iii). The set of all reachable z (%) by a trajectory starting from z (0) =0 and such
that z () eV, te [0, h], V-being (A4, im E,)-invariant, is equal to the controllable
subspace {A+E, F|VNnim E,} where F is arbitrary satisfying (7.16). If 0#z (0) e V'
then z(h)=(exp h(A+E, F)) z(0)+Z for some Z from controllable subspace.

The part (i) and (iii) of this lemma were proven in [27], the part (ii) in [25] and
the case z (0)#0 of (iii) in [2].

We shall also need in the sequel another simple result on controllability of non-
delayed systems.

LeMMA 7.2. For system (7.9) there exists an absolutely continuous (of class Wl;)
control w satisfying w (0)=w (k) =0 and such that the corresponding trajectory is
nonzero and satisfies z (0)=z (h)=0.

Proof. Assume w () =v () where v is of class L. Consider this differential equa-
tion together with (7.9) as a system controlled by v and with initial conditions
w (0)=0, z (0)=0. Take arbitrary, nonzero on [0, /2], control  such that the re-
sulting z (h/2)#0. Since the pair z (h/2), w (h/2) belongs to controllable subspace
it is possible to choose an integrable function v € L (4/2, h; R™) such that z (0)=0,
w (0) =0.
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7.3. Algebraic criteria

The equivalence between (7.4), (7.5) and (7.10) and also between (7.2) and (7.13),
(7.14) enables one to obtain, with the help of Lemma 7.1, the algebraic results de-
scribed in the sequel.

An interesting feature of systems with discrete delays is that C-, M[,- and
Wi-approximate controllability are equivalent (M), can be as well substituted by
My, o.>0, f>0 which was shown in Corollary 5.2). We prove appropriate algebraic

a,

criterion for the spaces C and M/, first.

THEOREM 7.1. Assume kh<7T<(k+1)h, k a positive integer. Denote by .4 and
. the following subspaces

A =ker B' x ... x ker B’ (k-times) (7.17)
M =Mic (4,im A, N; &) (7.18)

where the matrices 4, 4, are defined by (7.11) and (7.15) respectlve]y and the co-
lumns of N; form a basis in ker B’.

(1). If T=(k+1) h the necessary and sufficierit condition for C- (and equivalently
for M7,-) approximate controllability of system (7.1) on [0, 7] is that (7.7) and the
following conditions hold

AN A, ker B'=0, (7.19)
rank J' [[—Jexp (h(A+ A, N, F))] M=rank M (7.20)

where we set M =0 if .# =0 and otherwise the solumns of M form a basis in .# and
F is an arbitrary matrix satisfying

(A+A, N, F) M M. (7.21)
Moreover, under conditions (7.7) and (7.19) the restriction of F to .# in unique.

(ii). If kh<T<(k+1) h then system (7.1) is C- (or equivalently M/,-) approxi-
mately controllable on [0, 7] iff the conditions (7.7), (7.20) and

M4, ker B'=0 (7.22)
hold where
M =Mic (A, im A, Ny ; N) (7.23)
and
N =ker Bx... xker B x R"c R™ (7.24)
Proof.

(i). By theorem 6.1 (i) and (ii)’" of preceding section we have to characterize
observability of system (7.2), (7.3) on [0, kA] the initial conditions for which are
supposed to be of bounded variation in case of C space or of class Wl; on (—h, 0]
except at =0 in case M, and, moreover, the values of x (f) are in ker B’ for all
t e [—h, 0]. Passing to equivalent system (7.13), (7.14) we thay eliminate the latter
constraint by substituting x, (s —#/)=N; v (s) where v (-) is now arbitrary of bounded
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variation or absolutely continuous with a possible jump at s=/ respectively. There-
fore (7.13) we rewrite as

2(s)=Az(s)+ A, Ny v(5), s € [0, h]. (7.25)

Now, assuming that necessary condition (7.7) holds, the condition for unobser-
vability in the sense of Theorem 6.1 (i) or (ii)" expressed in terms of system (7.25),
(7.14) sounds as .

(A). There exist a function N, v: [0, hi]—ker B’ (of class W] or of bounded
variation respectively) and vectors z (0) and z° in (7.14) such that trajectory of
(7.25) is nonzero, satisfies (7.14) and the condition z (s) e 4" for all se [0, #]. By
Lemma 7.1 (ii) a nonzero trajectory z (s) of (7.25) completely belonging to A" exists
if and only if .# #0. Thus the conditions (7.7) and .# =0 are sufficient for (C-) M],-
approximate controllability. It can also be shown that the condtion .# N A, ker B'=0
is a necessary one. In fact, if we suppose the contraty, that is, .# N A4, (Ker B')#0
then by Lemma 7.1 (iii) the set 2 of all vectors z (/) € .# <./, >0, reachable from
z (0) by trajectory in ./ is a nonzero controllable subspace Z={A+ A4, N, F|.# N
NA kerBYcMcAN. Set v(f)=Fz(f)+N,v,(t) where N, is such that im
A, N, Ny=4N A4, ker B'. The system (7.25) takes now the form

2()=(A+ A, N, F) t(t)+ A, N, N, v, ().

Applying to this system Lemma 7.2 we conclude that there exists an absolutely
continuous (of class W) function v, such that the nonzero trajectory of the above
system completely belongs to 2 <.4" and satisfies z (0)=z (4)=0. Clearly v is also
of class Wl;. Hence, by statement (A) above, the observability in the sense of
Theorem 6.1 (both (i) and (ii’") does not hold. This proves necessity of (7.19).

Finally, to complete the proof, suppose that .# #0, (7.7) and (7.19) hold and
there exists a nonzero solution z(¢) € & to (7.25), (7.14). Since we have £ =0 the
only possibility for that is, by Lemma 7.1 (iii), that z(0)e .# and that z (h)%
exp (h(A+A4, N, F)) z(0) satisfies (7.14) for some z°. This can be fulfilled iff
J' [I-Jexph(A+ A, N, F)] z(0)=0 for some nonzero z (0)e .#, which is seen
from the fact that a vector z € R is of type (7.12) iff J* z=0. Taking the contrary
case one obtains (7.20).

The uniqueness of F under conditions (7.7) and (7.19) follows from the fact that
if F, and F, are any two matrices satisfying (7.21) then this and (7.19) implies that

AM=MQ—A, N, F, M and AM=MQ—A, N, F, M

where Q is unique. Hence 4, N, (F,—F,) M=0. Since ker 4, =ker A; and from
(7.7) ker A; N"ker B =0 and im N, =ker B’ this implies N, (F;—F,) M=0. By
definition, the columns of N, are linearly independent. Therefore F; M=F, M.

(ii) Similarly as above the necessary and sufficient condition for that system

(7.1) not to be approximately controllable on [0, 7] can be expressed in terms of
system (7.25), (7.14) and has the form (provided (7.7) holds).
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(B). There exist a function v in (7.25) of suitable class and vectors z (0) and
z° such that the trajectory of (7.25) is nonzero, satisfies (7.14) and the conditions
z(s)e N for s€[0,5] and z (s)e A for se[s, h] where (k+1) h—T=5.

Assuming (7.7) similarly as in part (i) we show that .Z =0 is sufficient and
(7.22) is a necessary condition. Note that />4 and therefore .# >.#. Thus
(7.22) implies (7.19). Suppose now that .#Z#0 and that (7.22) (and (7.19)) holds.
If so one may construct a matrix F such that both (7.21) and

(A+A, N, F) Ml <M (7.26)
are satisfied. In fact, by Definition 7.1. of controlled invariant
Al =M +im A, N, and Al =4 +im A, N, (7.27)

where the right-hand sides are, by (7.19) and (7.22), the direct sums. Choose a basis
.5 ey T2 TOE M such that m, ..., m,, p<p is a basis for .#. The unique decomposi-
tion of Am, gives

Am,=Mc,+d;, i=1, ..,p and Am=Mc;+d,, i=p+1, .., p

where M and .7 are nk x p and nk x j matrices for which m; constitutes i-th column
and d;, € im 4, N,. A matrix F satisfies (7.27) is and only if for i=1, ..., p

Fm;=v,; for some v; such that 4, N, v, =—d,. (7.28)~

Since the vectors m; are linearly independent these equations define a matrix
F with properties required. As before, it can be shown that FAM is unique if (7.7)
and (7.22) hold. Furthermore, we conclude as in part (i) that a trajectory z ()
lying in .# for t€ [0, 5] and in . for te [s, h] is nonzero if and only if z(f)=
exp (t (A+4, N, F)) z (0) for some nonzero z (0) € .# and (7.14) holds for some
z°. In fact, for the interval [0, s] it is the same argument as before and for [5, 4]
the trajectory, by Lemma 7.1 (iii), has to have the form z(#)=exp ((t~5) A+
+A, N, F)) z(§) where F satisfies the relation (7.26) and, as was shown above,
it may satisfy (7.21). Thus given z (0) € # we have unique trajectory z (f) comple-
tely belonging to 4. Substituting the final state z (4) into (7.14) we get again (7.20)
as a necessary and sufficient condition of approximate controllability provided that
(7.7) and (7.22) hold. Thus the proof of Theorem 7.1 is complete.

For the case of M|, space the conditions for approximate controllability are
weaker than those of Theorem 7.1. This is due to the fact that in the M, topology
the sequence of final states x%, i=1, 2, ..., approximating a given function x on
[T—h, T] may have the property that |x!(T)—x(T)| is not necessarily convergent
to zero.

THEOREM 7.2. Assume kh<T<(k+1)h and denote
My =MOA M (7.29)
where .# is defined by (7.18) and (7.17).

4
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(i) T=(k+1) h. System (7.1) is M [ ,-approximately controllable on [0, (k+1) /]
iff the conditions (7.7). (7.19) and

rank J' [I—J exp (h(A+ A, N, F))] My =rank M3 (7.30)

hold where columns of My are basis vectors for .47 (Mz=0 if .#5=0).
(i) kh<T<(k+1)h. System (7.1) is M{,-approximately controllable on [0, T']
iff the conditions (7.7), (7.22) and (7.30) hold.

Proof. The proof of necessity of (7.19) in part (i) and of (7.22) in part (ii) is
identical as in Theorem 7.1. Assuming (7.7) and, respectively, (7.19) or (7.22),
hold we show as before that the trajectory of (7.25) completely belonging to .4 has
to have the form

z(f)=exp (1(A+A4, N, F)) z(0), z(0) e .4 . (7.31)

Hence the only case that system (7.2), (7.3) is not %-observable in sense of The-
orem 6.1 (ii)"’ is that the trajectory (7.31) satisfies (7.14) for some z° and also (since
£=0 and elements of ¥ satisfy x (—/4)=0) that the “control” v in (7.25) vanishes
at s=0 i.e. v (0)=0. Since v is of feedback form v (s)=Fz(s) (compare (7.31) and
(7.25)) condition v (0)=0 is equivalent to

Fz(0)=0, z(0)e .# . (7.32)

From the relations (7.21) and (7.26) satisfied by F it is easily seen that (7.32)
implies

z(0)e 4 4 (7.33)

where .#7 is defined by (7.29). Since FM is unique (7.33) is the only additional
restriction for z (0) when comparing with the proof of Theorem 7.1. Hence suffi-
ciency of conditions (7.7) and .# ;=0 is clear. It is also clear by the same argument
as in suitable part of the proof of Theroem 7.1 that (7.30) is equivalent to approxi-
mate controllability provided the other conditions of Theorem 7.2 hold.

We complete the considerations of this paragraph with two theorems which
represent necessary and sufficient conditions for the attainable subspace <7 (7)
to be dense in M[; and L"=M], respectively.

THEOREM 7.3.
(i) T=(k+1) h. System (7.1) is M}, -approximately controllable on [0, (k+1) /]
iff the conditions (7.7), (7.19) and

rank [/—(J+Eg) exp (h(A+ A4, N, F))] M=rank M (7.34)
hold where the nk x nk matrix Ep is of the form
Eo= N 0, e 0] (7.35)

and the other terms are as in Theorem 7.1.

(ii) kh<T<(k+1) h. System (7.1) is M, -approximately controllable on [0, T]
iff (7.7), (7.22) and (7.34) are satisfied.
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Proof. For necessity of (7.19) or (7.22) the argument of Theorem 7.1 applies.
Assuming (7.7) and respectively, (7.19) or (7.22) we prove that (7.34) is equivalent
to the condition that null function is the only trajectory of (7.25) satisfying (7.14),
the condition N;v (h)=x(0)=z,(0) and z(®) e A& on [0,k] (or z(t)e A on
[0,(k+1)h—T] and z (t)e 4 on [(k+1) h—T, h]) and this, in view of transforma-
tion (7.8) and Theorem 6.1 (ii)"’, is equivalent to M{,-approximate controllability.
In fact the contrary case to (7.34) is equivalent to the condition that there exists
a nonzero vector z (0) € .# such that

[[—(J+Eg) exp (h(A+ A4, Ny))] z(0)=0.
This means that condition (7.14) is satisfied with
z(hy=exp (h(A+ A4, N, F)) z(0)
and
2°=Ey z(h) (7.36)

corresponding to a nonzero trajectory of type (7.31) generating by a feedback
v (t)=Fz (t). The condition (7.36) is equivalent to equality x (0)=z; (0)=N, v (h).

THEOREM 7.4.
(i) T=(k+1) h. System (7.1) is L -approximately controllable on [0, (k+1) /]
iff the condition (7.7), (7.19) and

rank [/—(J+Eg) exp (h(A+ A, N, F))] M;j=rank M3 (7.37)

are satisfied. ‘

(ii) kh<T<(k+1)h. System (7.1) is L™-approximately controllable on [0, T']
iff (7.7), (7.22) and (7.37) are satisfied. 3

All the terms in the appropriate formulas are as defined before.

Proof. Follows immediately by combining the proofs of Theorem 7.2 and
Theorem 7.3.

We complete the considerations of this paragraph proving the equivalence between

Wi-, M{,- and C-approximate controllability. We shall use Theorem (iii)”"’ (6.1)
to which there corresponds a dual system

X () =Ag X' () +A; x* (t—1h),
%2 ()=Ay x> ()+A4; x> (t—h), (7.38)
y()=B'(Ag x' ()+A4; x* (t—h)+x>(D)).

The Wi-approximate controllability of system (7.1) on [0, T'] is equivalent, by
Theorem 6.1 (iii)""’, to the following property of system (7.38):

(C,). The condition y (1)=0 for all te€ [0, T—h] provided that initial condi-
tions satisfy X! (£)=N, v (t), te [—h, 0], x* (—h)=0, x? (r)=0 on [—4, 0), x> (0)=¢q
where v € L™ and the columns of N, are basis vectors in ker B’, implies that v=0
and g=0.
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In order to obtain algebraic criteria in terms of maximal controlled invariants
it is helpful to introduce a new equivalent system without delay corresponding to
system (7.38), Firstly, by defining the following matrices

[4, 0 _[4:0 [
Go—[o A(',]’ Gl—[o Ai]’ Hl—[o , (7.39)

Co=[B' 4y; B'], C,=[B’' A;;0], (7.40)
the system (7.38) can be written as

X(0)=Go x()+ G x(t—h), (7.41)

y(O)=Cox()+C, x(t=h), (7.42)

where x’ (7) stands for (x!'’(7), x>’ (¢)) and, in connection with statement (C,) above,
the initial conditions for (7.41) are

x()=H v(t) on [—h,0), x(—h)=0, x(0)—x(0—-)=(0, ¢")’ (7.43)

Consider now (7.41) on [0, T—h], (k—1) h<T<kh, where k is a positive integer.
Setting x ((h+5)=z42 (), =—1,0,1, ..., k—=2,2' (s)=[z{ (5), ..., z, ()] we write
(7.41) with continuity conditions x (ih+)=x (ih—), i=1,2, ..., k—2 and initial

conditions (7.43) as
2(s)=Gz(s)+ Hv(s), s e [0, ], (7.44)

z(0)=Jz(W)+E, q, (7.45)

where G, H and E, are 2nk x 2nk, 2nk x rank N; and 2nk xn respectively and of
the form =L

0 0 .0 ~ “H,” 8
G, G,...0 0 #

G=| 0 0 |, H={0 |, E,=|, (7.46)
LN IS o

and J is now 2nk x2nk but still of structure (7.11).
The condition y (£)=0, € [0, T—h] in terms of system (7.44) takes the form

z(s)eker C,s€ [0, h] if T=kh, (7.47)
z(s)eker C,se[0, 5[ and z(s) e ker C, s € [5, h]
for
T=(k—-1)h+s (7.48)
where both C and € are mk x2nk as below
0 0 ..0 G 4 D
c=| . , C=| : : . (7.49)
0 ...C.Cy 0.0 00
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With this new notation the statement (C,) can be reformulated as

(C,). The system (7.1) is W{-approximately controllable on [0, 7] iff for system
(7.44), (7.46) with some N;velL" (0, h; ker B'),qe R* the condition~(7.47) for
T=kh (or (7.48) for T<kh) implies z (s)=0 for all se [0, 4] (which is equivalent
to =0 and ¢=0). This formulation is fully analogical to the contrary case of sta-
tement (A) in the proof of Theorem 7.1 (i). By utilizing the concept of maximal
controlled invariant and the arguments similar as for Theorem 7.1 we arrive at

THEOREM 7.5. The W{-, M[,- and C-approximate controllability of system (7.1)
on [0, T'] are equivalent.

Proof. In view of Theorem 7.1 and Corollary 5.3 it is sufficient to show that
if system (7.1) is not W!- then it is not M -controllable. In order to obtain this
result we prove firstly the following

LeMmA 7.3. If system (7.1) is not W -approximately controllable on [0, 77], that is,
if there exist a nonzero pair (g,%) € R"x L’ such that the solution z (1) to (7.44),
(7.45) is nonzero and satisfies (7.47) (or (7.48) respectively) then there exist a func-
tion v, € Wl; such that the pair (g, v,) posses the same properties.

Proof of Lemma 7.3. For the trivial case ¢#0, v=0 the lemma is evidently
valid so assume v #0. Denote Ay =ker C, /'y =ker C, My =Mic(G, im H; /),
Mw=Mic (G, im H; Ay). Let F be arbitrary matrix satisfying

(G+HF) My My and (G+HF) My My. (7.50)

If .4 =0 for T=kh or respectively .47y =0 for T#kh (clearly the latter implies
the first since ./ =.4y) then the only trajectory satisfying (7.44) and (7.47) (resp.
(7.48)) is z (1)=0 corresponding to v=0. Therefore suppose now .#, #0 (resp
My #0).

If #y Oim H#0 (resp. .4y Nim H#0) then apply Lemma 7.2 to the follow-
ing system .

z(t)=(G+ HF) z(t)+ HDV (¢) (7.51)

which is a result of substitution of @ (¢)=Fz (1)+ D7 (¢) into (7.44) where im HD =

My Nim H (resp. .y Nim H) and F satisfy (7.50). The existence of F is proved

analogically as for inclusions (7.27). As a conclusion from Lemma 7.2 we get the

existence of a nonzero function ¥#; € W] such that the corresponding nonzero so-

lution to (7.51) satisfies z (0) =z (h) =0 (resp. z (£)=0 for 7 € [0, §] and #=/). Hence

the corresponding v, (f)=Fz (£)+D7¥, (¢) is nonzero and of class W] and the corres-
ponding trajectory z (¢) satisfies (7.44), (7.45) and (7.47) (resp. (7.48)). If 4, Nim H="
=0 (resp. .4y Nim H=0) then we are able to prove, as in appropriate part of the

proof of Theorem 7.1, that the only trajectory satisfying conditions required in

Lemma 7.3 has to have the form

z(t)=exp (1(G+ HF)) z(0)
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for some nonzero z (0) e .#, and is attainable with the control v (¢)=Fz (¢) ana-
lytic as a function of ¢ and therefore of class Wf. Thus in any case Lemma 7.3 is
valid.

Now, continuig the proof of Theorem 7.5, recall what was the meaning of
function N, v in preceding sections. It corresponds, in case of uncontrollability,
to a functional (g, f)eR"xL; (T—h, T; R")=(Wf)* being an annihilator of the
attainable subspace o/ (T), namely N, v ()=f(T—1), te[0,h]. So Lemma 7.3
claims that if there exists an annihilator (0,0)#(g, f)e R*x L then there exists
fi€ Wf such that (g, f,) is a nonzero annihilator of o/ (T) as well. Then the fact
that system (7.1) is not W/ -approximately controllable on [0, T'] implies, by Lemma
5.1 and the above conclusion, that for some nonzero (g, f), fe Wf, 1/Fi+1/r=1,
and for all attainable trajectories of (7.1)

g x(T)+ ff'(r)x(z)dt:O.

Integrating by parts yields

T
(4'+/ (D) x(D)~f (T-h) x(T-h)— | f' () () dt=0
T-y
for all x; €./ (T). This means that a nonzero functional from (M],)* takes zero
value on ./ (T) or, equivalently, by Lemma 5.1 system (7.1) is not M,-approxi-
mately controllable on [0, T]. This completes the proof.

7.4. Remarks, corollaries and interrelations

ReEMARK 7.1. In the considerations of this section the dual system (7.2), (7.3) for
C and M, spaces has been basically exploited. An alternative way is to utilize (7.4),
(7.5), (7.6) and respectively, the specialization of (6.17). This leads to equivalent
formulations for all theorems of this section the only disadvantage of which is
that the larger dimension n (k+1) in lieu of nk would appear for appropriate
vectors and matrices.

ReEMARK 7.2. It is seen easily that all the criteria developed in this section are
checkable numerically. First, the maximal invariants .#, # can be répresented by
their basis matrices which can be completed by a matrix version of Algorithm
7.1 or 7.2. The rule for converting these algorithms into matrix form is the follo-
wing: Given two subspaces %, %, < R" and their respective basis matrices Uy, U,
the basis matrix for theirs intersection is constructed accordingly to the expression
U, NUy=(Ut+UE)*; that is by constructing bases for orthogonal complements
e.g. with the help of pseudoinverse [19] or by computing the bases for ker U; and ker
U, [37], then eliminating some columns to form a basis for %, +%, and then again
via orthogonal complement. Second, the conditions which were not stated in
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matrix rank form (for compactness of notation) can be, into such form, converted.
E.g. for (7.19) we have

MY +(A] ker BY: =R" or rank [M*; (4, N)*]=n

as equivalent characterizations where by M* we mean the basis matrix for ..
Third, the matrix F need not be computed in applications although it appears
explicitly in the criteria. This is due to the fact that, for instance, in the Theorem
7.1 the conditions (7.19) and (7.21) imply that (A+A4, N, F) M=MQ where Q is
uniquely determined and to be computed. Hence

exp (h(A+A4, Ny F)) M=M exp (hQ). (7.54)

Despite testability the computations of maximal controlled invariants might
sometimes by cumbersome especially for large n and large ratio T/A. Therefore the
simplification of the criteria presented here becomes an important problem from
the point of view of applications. We are able to simplify them only by sacrificing
the completeness of characterization.

COROLLARY 7.2. Write the following conditions:

(a) rank B=n;

(b) AN (N + 4, ker B)=0, (1.7) and A Nker A=0;

(¢) A =0 and (7.7);

(d) system (7.1) is approximately controllable on [0, T'], T>(k+1) A, for each of
the spaces W7, C, M;;;

where all the terms are as in Theorem 7.1. Then (a)=-(b)=-(c)=-(d).

Proof. It follows from (a) that 4 =0 so (a) implies (b). The second implica-
tion is proved to be valid by observing that .# —.4" and, furthermore, the only
subspace satisfying (b) and the defining inclusion (7.27) is zero subspace. Condition
(d) follows from (c) in view of Theorems 7.1 through 7.5.

It is seen from the results of preceding section that for system (7.1) the property
of being approximately controllable in some function space is to some extent of
- algebraic character; it equalizes many topologies. For instance all the criteria given
above does not depend on the number r, 1<r<oco, so that it suffices to consider
the spaces M,;, W/ in lieu of general case of M_,, W}. Furthermore, by Theorems
7.1 and 7.5 also the spaces C, M|, and W] are equivalent in that sense. It is conjec-
tured that similar equivalences hold for general system (1.1) but we are able to prove
only those implications which are indicated in Corollary 5.3 and the proof of appro-
priate converses would probably require more technical details.

Let us supplement the diagram of Corollary 5.3.

CoroLrrLARY 7.3. The following implications are valid

ﬂMfo‘DMllo N
Wi WieCe M M, % p L', M}, =M
M51©M110




56 A. W. OLBROT

for any 1<r<oo. The symbols of spaces represent here appropriate notions of
approximate controllability of system (7.1) on a fixed interval [0, T'].

Proof. All implications which do not follow from Corollary 5.3 can be imme-
diately obtained from Theorem 7.1 through 7.5.

GENERALIZATION 7.1. Consider the system with finitely many discrete delays of
type (2.1). Assuming the lags are commensurable, i.e.

=k b, i=1, ..,

for some ~1>0 and some integers k;. Applying transformation (7.8) with 4 replaced
with /1 one can construct immediately nondelayed systems of type (7.9), (7.10) and
(7.13), (7.14) which correspond to appropriate specializations of (6.9), (6.10), (6.11)
and (6.1), (6.2) respectively. Algebraic criteria analogical to Theorems 7.1 through
7.4 can be derived in similar manner as in paragraph 7.3. Theirs main disadvantage
is that the dimensions of matrices, proportional to Entier [7/k,], might become
too large if arge T is to be considered. :

8. Further special cases

8.1. Systems without delays

After setting 4, =0 in (7.1) the speaking on 4 as on system delay makes no sense.
Therefore we interpret the trajectory x(z), t € [T—h, T], of the system

% (D=4 x (t)+Bu (f), 1>0 8.1)

as a result of tracking of a given function f: [T—h, T]— R" while the tracking error
is measured by a norm |x—f/lz_, r in a dunction space . With this interpretation
of F-approximate trajectory controllability the following result is obtained as an
immediate conclusion from Corollaries 6.4 and 7.1.

CoroLLARY 8.1. The system without delay (8.1) is C- (W7{-, Mj;-) approximately
trajectory controllable iff rank B=n. '
Z -approximate trajectory controllability in system (8.1) can also be interpreted
as the ability to compensate any integrable additive disturbance (which is known
(measured)) with arbitrarily small (in topology of &) error. Thus it is rather strong
property and it is known from multivariable control theory that for this as many
controls as independent disturbances is needed. In many practical problems the num-
ber of independent disturbances is rather less than the dimension n of state vector.

8.2. The case of 4,=0

The system (7.1) with 4,=0 is extremely simple. The maximal invariant .4 =
Mic (4, im A, N,; A#") can be computed analytically. Indeed, the application of
Algorithm 7.2 yields
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(a). For the maximal invariant .# of Theorem 7.1 (i) (the case T=(k+1) h)
Vo=(im B)*, the product of k subspaces. Furthermore,

Vici=Vio1.i=(mB+A4,;imB+...+ 4" 'imB)x...x(imB+A4,imB)ximB (8.2)
for i=1, 2, .... Hence .#*=V,_,. The condition (7.19) holds iff
Vi_1+(A4; ker B')! = R#n

or equivalently
im [B; A, B; ...; AA=* B]+ (A ker B')* =R".
This can be>easily shown to be equivalent to
rank [B; A, B; ...; A% Bl=n. (8.3)
From the form of 4 and 4, (see (7.11), (7.15)) it follows that the defining condi-
tion for maximal invariant .# is equivalent to 4.4 =./. This gives F=0 in (7.21)
and, as a consequence, a simplification of (7.20). In fact, the matrix /—J exp (h4)
is of block lower triangle form with identity matrices on the main diagonal; there-

fore its kernal is zero subspace. Furtherfore, from this triangle form and from the
form of

M=VE =l X My% ... x M,

implied by (8.2) it follows that (/—J exp (hA)) .4 NkerJ' =0 iff .#,=0 which,
by the form of ¥V,_,, is equivalent to

rank [B; A, B; ...; A" Bl=n. . : (8.4)
(b). For the maximal invariant ./ of Theorem 7.1 (ii) (kh<T<(k+1) h)
Vo=(im B)*~1 x {0} = R*™ and for i=1, 2, ...
Vies=Viezpi=(mB+AimB+..+ A2 imB)x ... x (imB+ A, im B) x im B x {0} .

Similarly as above the condition (7.22) is equivalent to (8.4).

Summarizing (a) and (b) and observing that (8.4) implies (7.7) we see that ne-
cessary and sufficient conditions of Theorem 7.1 are equivalent to (8.4). Furthermore,
the fact that A.# < .# implies that .# ;=.4 and that condition (7.30) is equivalent
to (7.20). Therefore, taking into account this and also Theorem 7.5 we have

CoroLLARY 8.2. System (7.1) with 4,=0 is approximately controllable on [0, T7,
kh<T<(k+1) h, in any of function spaces C, M|, M{,, W] iff (8.4) holds.

Considering the spaces M, and L" we have, as previously, the necessary condi-
tions (8.3)\and (8.4) corresonding to (7.19) (T=(k+1) k) and to (7.22) (kh<T<
<(k+1) h) respectively. Since F=0 and therefore Er=0 we see as previously
that ker (I—J exp (h/f)) =0 so that (7.34) and (7.37) hold automatically. Thus
we get
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CoROLLARY 8.3. System (7.1) with 4,=0 is approximately controllable on [0, (k+
+1) #] in any of spaces Mg,, L" iff (8.3) holds. For the case kh<T<(k+1) h the
appropriate necessary and sufficient condition is (8.4). :

Since (8.4) is also a necessary and sufficient condition for R"-controllability of
the system considered on [0, 7], (k—1) h<T,;<kh it can be said that this system
is approximately controllable in spaces C, M{, M{,, W[ on [0, T] iff it is R"-
controllable on [0, 7— /4] and for the cases of M;l,L’ the characterization is by
R-controllability on each [0,7,],7,>7T—#h or, equivalently, by weak I1-point
controllability on [0, 7] (compare Theorem 4.1). '

RemARrRk 8.1. The conditions above are the weakest in a sense that, by Theorems
3.1. and 3.2 weak l-point controllability and, respectively, R"-controllability on
[0, T are necessary for approximate controllability in a general function space
satisfying suitable hypothesis of section 3.

ReMARK 8.2. Corollary 8.3 overlaps with Zmood’s [11] result for L?-approximate
controllability. For this type of systems (4,=0) a criterion for function space
controllability in the sense of Korytowski [8].is of the form (8.4) with k=n.

* 8.3. The case of imB>im 4; and h<T<2h

If im Boim A4, then one may choose u=u,;+u, where u, is arbitrary and u,
compensates the term A, x (—4) in (7.1) .Therefore « (T') consist of pieces of tra-
jectories attainable for system (8.1) and the conclusion is as in Corollary 8.1,
that is, rank B=n is a necessary and sufficient condition for approximate control-
lability in any of the spaces considered in section 7. The same conclusion we get
immediately for general system (1.1) satisfying im B>im d; 4 (s) for all se [—4, 0)
or, after normalization 4 (0—)=0, the condition im B>im 4 (s), s#0.

For the case h<T<2h apply Theorem 6.1. Take an initial condition for system

(6.1) as an absolutely continuous function (of class W7) satisfying x (#)=0 for
te[—h, T—2h] and =0 and 0 #x (¢) € ker B" on (T—2h, 0) where ker B’ is supposed
"to be nonzero. This yields x (1)=0 and y (#)=0 for te [0, 7—F/] in (6.1), (6.2).
From Theorem 6.1 (i) and (ii))’" we conclude that system (1.1) is nor C-neither
M j;-controllable on [0, 7']. Similar conclusion holds for the space W] after taking
suitable initial conditions for x! in (6.15) and xZ =0. Thus the condition rank B=n
is necessary, and also by Corollary 6.4, sufficient for approximate controllability.
Therefore we can state

COROLLARY 8.4. Assume that, in system (1.1), 4 (0—)=0 and either im Bo>im A4 (s)
for s#0 or h<T<2h. Then system (1.1) is approximately controllable on [0, 7]
in any of spaces C, M, W/ iff rank B=n.
Suppose finally that 7=2A. Following the notation of section 7 we have k=1,
A=A4,, A,=A4;,J=0and
M =Mic (4,, A; ker B'; ker B'). (8.5
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Condition (7.19) takes the form
MO A; ker B'=0. (8.6)
Condition (7.20) holds iff .# =0 which clearly implies (8.6). In Theorem 7.2,
(7.30) is equivalent to .#3=0 or, equivalently,
MN(Ag) ! M=0. 8.7

The conditions (7.34) and (7.37) are simplified slightly by substitution Ez =N, F
and other matrices simplified above. F is any matrix satisfying

(Ag+ AN, F) M M. (8.8)
Summarizing, we get

CoroLLARY 8.5. System (7.1) is approximately controllable on [0, 2/4] iff rank
[A,; Bl]=n and additionally:

(a) M4 =0 for the spaces C, M|, and W],

(b) conditions (8.6) and (8.7) hold for the space M|,

(c) conditions (8.6) and

“rank [[—N, Fexp (h(4y+A; N, F))]=rank M (8.9)

hold for the case of M{, space,
(d) conditions (8.6) and

rank [/[—N, Fexp (h(Ao+A; N, F))] Mz=rank M (8.10)

hold in case of L" space.

The columns of N,, M and M, are, by definition, basis vectors for ker B’, .# and
My= M N (A,)~" A respectively and any of these matrices is set to be zero if
corresponding subspace equals zero. F is any matrix satisfying (8.8) and if M is
chosen the matrix FM is unique provided rank [4,; B]=n and (8.6) holds.

9. Examples and counterexamples

The examples presented below show how the theory developed in this paper
works and also show that some implications between approximate controllability
in various spaces and stabilizability does not hold.

ExampLE 9.1. The evolution of a system is described by egs. [16]
X (O=x,(D)+x3(—h),
Xy (D) =x,(0)+x5(0),
X3 =u(r).

By constructing the corresponding matrices A,, 4;, B we check that the pair
(Ao, B) is not controllable but rank (B, 4, B, A4, B)=3 so that the system is R3-
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controllable on [0, T'] for T> 4 (see [4], [7]). However this system is not multipoint
controllable on [0, 7], T> A, since it is not 2-point controllable (see Theorem 4.2).
The maximal dimension of the subspace spanned by the columns of (4.6) equals
4<6. From Theorem 3.2 and the diagram of Corollary 7.3 the system is not appro-
ximately controllable on any interval [0, 7] in any of the spaces W], C, M,. This
is also immediately visible from the fact that necessary condition (7.7) is not satis-
fied. The last conclusion extends therefore on any space M.

RemARK 9.1. It is interesting to note that in the original version of this example
[16] it was shown for the formal controllability matrix [B; A (1) B; ...; (4(2))"~! B],
(A4 (A)=A4,+AA,, A-delay operator) that its R [A]-linear span (R [A]- the ring of real
polynomials over A) neither equals the free module (R [A])* (R [4]-controllability)
nor is isomorphic to (R [A])* (weak R (A)-controllability). The main result of [16]
is that R [A]-controllable systems are pole assignable (and vice versa) with feedback
u (t)=K (4) x () where the elements of matrix K (1) belong to R [1]. The system
of Example 9.1 is not stabilizable since x; () —x, (t—h) =(x; (h)—x, (0)) exp (—h)
for t=h. It was suggested by Morse that weak R [A]-controllability may be essential
in stabilizability problem. The result established above that the system is not appro-
ximately controllable clarifies better the situation. It is intuitively clear that for
pole assignability a type of approximate null controllability is needed. This is also
supported by a result of Theorem 6.2 that M -approximate controllability implies
" pole assignability. So multipoint controllability as necessary for approximate
controllability might appear necessary for assignability problem but it requires more
investigations to obtain rigorous results.

ExaMPLE 9.2. Another interesting example is the following
X (=u@),
X () =x1 () —x, () —x; (1=h).

This system and the corresponding matrices 4,, 4{, B have the following easy
to check properties. :

(i). Each of the pairs (4,, B), (4, B) is controllable.

(ii). The system is R?-controllable on [0, 7], 7>0 and hence, by Theorem
4.1 (a), weakly multipoint controllable on [0, T'], 7> A.

(iii). By Theorem 4.2 the system is multipoint controllable on [0, 7], T>4A.

(iv). The condition (7.7), necessary for approximate controllability, is satis-
fied.

(v). Checking the approximate controllability on [0, 2/] according to Corollary
(8.5) we get M+ =A ker B'=im B#0 and hence .# =ker B’'#0. Therefore the
system is not approximately controllable in spaces C, M|, W|. For other spaces
we check that the necessary condition (8.6) holds. Furthermore we have (4,)~! /4 =
0 so that (8.7) is valid. By Corollary 8.5 (b) and by Corollary 7.3 the system is
M ,- and L'-approximately controllable on [0, 2/]. Finally, to check (8.9) we com-
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pute Ay M=M=N,=—A; N,=—A, N, FM where N;=[0,1] and F=[0,1].
This gives
00

v F=|

- 1],A;+A;N1 F=0.

It is seen now that the 2 x 1 matrix on the left side of (8.9) has zero rank and
(8.9) is not valid. Therefore the system is not Mg, -approximately controllable
on [0, 2A4].

(vi). Take T=(k+1) h and check approximate controllability. With the use of
Algorithm 7.2 we compute easily that V,=V, =4 1 where the basis matrix M for
M is knx1 of the form M=[0,1,0,1,..,0,1]. With N, as above we get F=
[0,1,0,0,...,0] and (4+A4, N, F) M=0. This enables one to check immediately
that neither (7.20) nor (7.34) holds. The system is not approximately controllable
in any of spaces C, M{,, M§,, W] on any interval [0, T].

(vii). The system is not asymptoticaly stabilizable with even general type of

0
feedback u (1)= f dy K (s) x (t+s), h arbitrary positive, since the eigenvalue 1=0
—h
remains insensitive (see [30] and [34] for eigenvalues and stability).
(viii). It follows from (vii) and Morse’s theorem [16] on pole assignment that
the system is not R [A]-controllable, which can be also easily verified by definition.
(ix). The system is weakly R [A]-controllable in the sense of Morse.
The importance of this example is evident; it allows to claim that the diagram
of Corollary 7.3 is complete. In fact, it shows that, in general, neither L"- nor M-
implies M- or MJ,-approximate controllability. That the implications L'= M,
M§ =M, and M =M/, are not valid it follows from Corollaries 8.3 and 8.2
(the case T=(k+1) h). Therefore we have

COROLLARY 9.1. The diagram of Corollary 7.3 is complete, that is, none of the
implications L'=-M§, L'=M{,, M{,=Mg,, M{,=>M{, M§ =M{, and M =M,
is valid in general for system (7.1).

The next important conclusion which is evident in view of properties (v) and
(vii) is the following

CorOLLARY 9.2. Neither L™~ nor M -approximate controllability is sufficient in
general for pole assignability of system (7.1).

ReMARK 9.2. The property (vi) that the system is not approximately controllable
on any interval in any of the spaces W/, C, M|, and M/, follows immediately
from property (vii), Theorem 6.2 and Corollary 7.3. But it is not a typical situation
that condition (6.34) serve as a necessary checkable condition for approximate
controllability. We have not appropriate numerical algorithm. Fortunately it is
rather on the contrary; the theorems of section 7 and its specializations given in
Corollaries 8.2, 8.3 and 8.5 serve as constructible sufficient conditions for stabili-
zability (pole assignability) problem. Fortunately, because stabilizability problem
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appears to be more important in real problems than approximate controllability
itself and because constructibility can be motivated in the following way. There
are many real problems in which a multivariable plant containing internal and
input delays has to be stabilized but not all inputs are fixed. There is a freedom in
choosing some of them and the problem is how to choose inputs so that the system
obtained be stabilizable. With the use of Theorems 6.2 and 7.3 or Corollary 8.5
any choice of inputs can be tested with respect to system stabilizability.

ExampPLE 9.3. Let the system equation be
X (D=x,(),
X, (t)=x,(—h)+u(t).

This system has the property of R,-controllability on [0, T'], 7>0, since the
corresponding pair (A4,, B) is controllable. It is also multipoint controllable on
[0, T, T>h which can be easily checked by Theorem 4.2. Furthermore, the system
is not approximately controllable on any [0, 7], T> /A, in any of the spaces of section
7 since the necessary condition (7.7) is not valid. Finally, we check that the system
is pole assignable since the condition (6.34) holds for all complex A. In fact, if it
were not there exists a nonzero vector g orthogonal to all columns of (6.34) for some
/. The equation ¢’ B=0 implies ¢’ =[a, 0], a#0 and hence ¢’ 4, =0 and the ortho-
gonality condition takes the form [al, —a]=0 for some A which is, clearly,
not satisfied. The above properties enables one to draw the following general
conclusion.

CoROLLARY 9.3. Neither multipoint controllability nor pole assignability implies
in general approximate controllability in any of the spaces W7j, C, M.

Now we consider the question whether controllability of the pair (4,, B) can be
a sufficient (or a necessary) condition of approximate controllability for systems of
somewhat more general form than the case 4,=0 in section 8. We are led by the
fact that, by Corollaries 8.2 and 8.3, the controllability of the pair (4,, B) is both
necessary and sufficient for approximate controllability of system (7.1) with 4,=0
on any interval [0, T], 7>nh and in any of spaces W{, C, M,,. However, in general
case of 4,#0 we get the following negative result.

COROLLARY 9.4.

(i). The controllability of the pair (4,, B) is not necessary, in general, for
Wi-approximate controllability of system (7.1) on some interval [0, T°].

(ii). The condition
rank [B; A, B; ...; A% Bl=n 9.1
is, in general, not sufficient for L"-approximate controllability of system (7.1) on
[0, (k+1) A].
The proof is by counterexamples.
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ExampLE 9.4. Consider the system
% () =u(),
X,(O)=x()+x,(—h).

We check easily that the condition rank [4,; B]=nr and condition (a) of Corol-
lary 8.5 are satisfied and hence the system is W/ -approximately controllable on
[0, 2A] although the condition 4; B=0, holds implying uncontrollability of the pair
(Ay, B). This proves part (i) of Corollary 9.4.

ExamPLE 9.5. Let us write the following equations
X () =1/h) x,()—x5 (t—h),
Xz (O)=x3(D+x4(t—h),
X3 () =u (1),
X (D) =u,(1).
Take T =2h‘. We check that
rank [B; A, B]=4, 9.2)

that is condition (9.1) holds with k=1. Condition (9.2) implies that rank [B; 4,]=4
and that (8.6) holds. In order to prove part (ii) of Corollary 9.4 we shall show that
condition (8.10) of Corollary 8.5 is not valid. Indeed, we check by substitution/to
defining relation (8.5) that .# =A4"=ker B’. Hence

0100 0000

0 0
Q:[l/h 0}'

Substituting this and M%=[1,0,0,0,]=[1,0] M’ into (8.10) yields

/
N;=M'=[1 o0 O],leo L7 ()],(/TJF/’I1 N, M=MQ,

where

rank [[—N, Fexp (h(A+A, N, F))] M3z=0<1=rank M5.

Therefore the system is not L-approximately controllable on [0, 2/].
Remark 9.3. The conclusions of Corollary 9.4 can be completed by taking into
consideration the implications of Corollary 7.3.

10. Applications and conciuding remarks S
10.1 Applications
The results of this paper concerning approximate controllability of linear here-

ditary systems and dual observability problems are important from the point of
view of general theory of such systems. The more important for applications are,
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however, the concrete checkable criteria for approximate controllability of sections
7 and 8 and the sufficient condition for stabilizability and pole assignability (Theorem
6.2). Let us indicate some of possible applications.

Optimal control to a target set. It is known that rather strong conditions are
required in order to establish a nontrivial maximum principle for optimal control
of time lag systems with target set given by equality constraints. For instance, Banks
and Kent [38] derived a type of maximum principle for nonlinear problems with
delays and fixed final state x;. They could not, however, prove the nontriviality
of adjoint variables. Jacobs and Kao [39] obtained nontrivial necessary conditions
for optimality but under sever assumption that the controls are unconstrained
and the system is W] -controllable. In case of linear systems the latter is equiva-
lent to the condition rank B=n (see Remark 5.1). Kurcyusz [40] investigated equa-
lity constraints on final state and proved nontriviality of his maximum privnciple
while assuming that the subspace of attainable values for linearized constraint
function is not a prover subspace dense in constraint space and if additionally this
subspace was assumed to be closed normality (y,#0) was established. However,
the conditions for closedness of the attainable subspace are also restrictive. Accor=-
ding to Kurcyusz and Olbrot [29] the attainable subspace 7 (T") for system (7.1),
provided that we assume L” controls, is never closed in any of spaces Wj, C, L*
except for the space W7. In this exceptional case the necessary and sufficient condi-
tion for closedness is that

A, {Ao|B}=im B. (10.1)

One unpleasent feature of condition (10.1) is that it is absolutely sensitive (not
generic) unless rank B=n. This means that if im B#R" then for any pair of matrices
(A4y, A;) one may find arbitrarily small variations of their elements such that (10.1)
is not valid for perturbed system.

From the other hand, in light of the above mentioned references [39] and [40],
the density property of «/ (7") looks like the worst case for control problems with
function space equality constraints. But this is not the whole truth if practical aspect
is taking into consideration. As it was pointed out by Olbrot [20] even for problems
with fixed final state x; =¢ we do not reach in practice the function exactly. There-
fore it is strongly motivated that the final constraints should be substituted by

Ixr—€li<e (10.2)

where the normed function space for final states and the accuracy ¢ are chosen by
the user. It is now evident that approximate controllability is necessary in order
that an admissible solution satisfying (10.2) exists for all ¢ from a given function
space and all ¢>0. It was also shown in [41] that necessary nontrivial optimality
conditions can be easily derived for problems with discrete delays both in state and
in control variables under assumptions which are typical for nondelayed problems
with finite-dimensional constraints while for state space any of spaces C, W{, M,
is chosen. The most regular results were shown for W7 and M.

Optimal and suboptimal stabilization. Consider a special kind of optimal control
problems considered above, namely, the problem of steering the system (1.1) from
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a given nonzero initial state x, to a neighbourhood of zero state at time 7, i.e. to

a state xp satisfying _ T
. Ierll< ol (10.3)

(where ¢ is sufficiently small positive) such that a given performance index (e.g.
of quadratic type) attains minimum. This will be called optimal stabilization problem.
One may also consider optimal stabilization as minimizing the norm {/x4| under
some constraints on control values. It is seen that approximate null controllability
is the property needed for such problems to be solvable for any ¢>0. Since, practi-
cally, we are looking for sufficient conditions for solvability the conditions for appro-
ximate controllability may be useful in view of Corollary 1.1. However, not all
commonly used norms are suitable when the control has to be generated by state
feedback and asymptotic stability of closed loop system is required (compare Ex-
ample 9.2). In view of Theorem 6.2 it seems that the norms of type M, and M2,
when applied to (10.3) may lead to a stable optimal controller or its suboptimal
approximation. Clearly, after taking C or W} norm in (10.3) and applying the
resulting controller sequentially on [0, 7], [7, 2T], etc. we get x (£)—=0 as t—oo
provided that O<e<1. This follows from the fact that the convergence in these
spaces is unoform. '

Algebraic methods for linear feedback stabilization. There was recently a consi-
derable progress in applications of algebraic methods to feedback stabilization of
linear systems with delays (Pandolfi [35], Bhat and Koivo [36], Morse [16], Kamen
[41], Sontag [42]). However, appropriate stabilizability and pole assignability
criteria are merely computable although there exist general procedures for compu-
ting feedback gains. After we have established Theorem 6.2 our criteria for approxi-
mate controllability of sections 7 and 8 may serve as a preliminary test to assure
the designer that pole placement can be achieved by general linear state feedback.
An open probleth is how approximate controllability problems are related to problems
of pole assignability with the use of proportional and unit delay elements in feedback
gain [16] and additionally with the use of feedback from previous control values [42].

10.2. Concluding remarks

Approximate contfollability of general linear autonomous hereditary systems has
been widely examined. It has been shown for general function spaces that approxi-
mate controllability implies weak multipoint controllability and also multipoint
controllability if the convergence in function space norm implies uniform conver-
gence, Algebraic criteria for’ weak multipoint and multipoint controllability has
been derived. The function spaces C, W{ and M, has been corisidered in details.
Adjoint space characterization for approximate controllability in these spaces has
been given and, on the basis of them, dual observability problems has been formu-
lated for a dual system obtained from a given one in a simple way by matrix transpo-
sition. The interrelations for approximate controllability in the.spaces C, W7, M,
I<r, ' <oo, 220, f>0 has been indicated on the diagram. This diagram of impli-
cations, in case of system with one delay, has been extended and proven to be
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complete. It has been shown thatthe general system considered is never M,;- (in
particular L*-) approximately controllable and that for W ® space the necessary and
sufficient condition is rank B=n (the number of independent controls is equal to
the number of state variables). This condition has been proven to be sufficient for
approximate controllability in any of spaces C, W{, M,,, 1<r<co. An equally
simple checkable general necessary condition has been proven (Corollaries 6.5 and
7.1). The important result that approximate controllability in any of spaces W7, C,
Mj,, M, implies pole assignability by general linear state feedback has been
established. For system with one, delay algebraic numerically checkable criteria for
approximate controllability in - each of spaces C, W], M,, has been derived. The
criteria. extend ,ir_nm_e’dia’gely to systems with finitely many commensurable delays
and, on the other hand, for some special cases they have been much simplified.
Numerical examples has been given showing how the criteria obatained can be practi-
cally applied and also being counterexamples for that some implications between
approximate controllability, stabilizability and other properties of a system do not
hold in general. Applications to optimal control, optimal stabilization and feedback
pole assignment has been indicated. Let us complete the considerations of this
paper with the following conclusion of practical interest.

The property of system:(1.1) being approximately controllable is generic. What
we mean is that under arbitrary but sufficiently small variations of parameters the
system remains approximately controllable. We have to admit openly that such
statement as above requires usually a rigorous proof. Actually we are not able to
prove this for W/ state space. However, for the spaces C, M, the conclusion is
immediate from existing theorems, on continuous dependence of solutions with
respect to parameters. In fact if a final state x; of system (1.1) is sufficiently close
to a given function f in the space C (resp. M,,) then it is known [1], [13] that the
state X; of a perturbed system corresponding to. the same control .is sufficiently
close to x; in sup norm topology if the perturbation is sufficiently small in the space
of parameters. From triangle inequality, the sup norm |X;—f]|| can be made arbi-
trary small by minimizing [[x;—f]| and |[¥r —x7|. Since the uniform convergence
implies convergence in M, the argument is valid also in this space. The exten-
sion to W/ can be made in view of Corollary 7.3 but only for systems of type (7.1).

An additional bibliographical note. After completing this work it was pointed
out to this author by Professor E. B. Lee to whom the author wishes to express
his appreciation that the following work is devoted to study of Mg -approximate
controllability of system (7.1) A. Manitius, R. Triggiani, Function Space Control-
lability of Linear Retarded Systems: A Derivation from Abstract Operator Condi-
tions; Tech. Report. CRM-605, Université de Montréal. The approach of this re-
ference is different from ours and'the results are also of different nature except
for the simplest cases such as in our paragraph 8.2 when they overlap. In contra-
distinction to our paper the authors above do not obtain duality results; they work
with abstract nondelayed system equivalent to (7.1) and use the technique of fi-
nite Laplace transform. The results are obtained in terms of matrices depending on
complex parameter A and are, in fact, similar in construction to those of Popov [9].
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Sterowanie ukladéw z opéZnieniami przy ograniczeniach
w przestrzeni funkcyjnej. Cze$¢ 2. Sterowalno$é aproksyma-
cvijna

Rozwazany jest problem aproksymacyjnej sterowalnosci dla liniowych uktadow opisywan ych
réwnaniem- roézniczkowo-funcjonalnym ‘w R" z opodznionymi argumentami. Rezultaty niniejszej
pracy stanowia konkretne warunki istnienia sterowania dopuszczalnego dla niektorych problemow
poruszonych w-czeéci pierwszej pracy (Control and Cybernetics, No 3, 1976).. Z drugiej strony sta-
nowia rowniez pewien wkiad do ogodlnej teorii liniowych stacjonarnych ukladéw z opdznieniami.
Wsrod najwazniejszych wynikow znajduje sie warunek konieczny aproksymacyjnej sterowalnosci
w ogoblnych przestrzeniach funkcyjnych w postaci tzw. wielopunktowej Iub stabej wielopunktowej
sterowalnos$ci. Warunek ten, w przypadku dyskretnych opdznien, scharakteryzowano algebraicznie, .
poprzez kryterium rzedu dla macierzy zbudowanej w oparciu o wspdlczynniki ukladu. Dalsze
wyniki uzyskano po przyjeciu jednej z przestrzeni C, Wi, M, jako przestrzeni standw (M, jest
uogolnieniem L= M,). Uzyskano charakteryzacje sterowalno$ci aproksymacyjngj poprzez funkcjo-
naly z przestrzeni dualnej-do przestrzeni stanu a stad wyprowadzono dualne problemy obserwo-
walnosci, gdzie ukiad dualny buduje si¢ w prosty sposob przez transpozycje macierzy ukladu pier-
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wotnego. Podano proste, albo wystarczajace, albo konieczne warunki sterowalnosci aproksyma-
cyjnej dla bgélnego uktadu z epdznieniami skupionymi i roztozonymi, natomiast dla przypadku
wspotmiernych opéznien skupionych: podano pelna charakteryzacje poprzez sprawdzalne wa-
runki algebraiczne. W przypadku jednego opoznienia przestrzenie C, Wy, My, 1<r< oo, okazuja
si¢ rownowazne ze wzgledu na wiasnos¢ aproksymacyjnej sterowalnosci. Pokazano, ze ogélny
uktad nie jest L*®-aproksymacyjnie sterowalny. Najwazniejszym z punktu widzenia zastosowan
wynikiem jest to, ze aproksymacyjna sterowalno$é¢ ogélnego ukladu w jednej z przestrzeni C, Wi,
M7, Mg, implikuje przesuwalno$¢ wartosci wlasnych przy pomocy sprzezenia zwrotnego od stanu
a wigc réwniez stabilizowalno$¢. Podane przyklady numeryczne ilustruja wyniki teoretyczne i po-
kazuja, ze pewne wspolzaleznosci miedzy stabilizowalnoscia a aproksymacyjna sterowalnoscig
nie zachodza w ogdélnym przypadku.

YnpaBienne cHCTeM ¢ 3ana3/piBaHieM IIPH OrpaHHyeHUN
B (YHKIHOHAJIBHOM NPOCTPaHCTBE

PaccmarpuBaercs BOOPOC anmpOKCMMAILMOHHOM YIPABIISIEMOCTH JIMHEHHBIX CHCTEM OIACHI-
BaeMbIxX IubdepeHIaIbHO-(QyHKINOHAIBHIM ypaBHEHHEM B R” C 3aMa3[bIBAIOMIMMM apryMeH-
Tamu, WTOroM 3T0M DabOTHl SBISIFOTCST KOHKPETHBIE YCIOBUS CyLIECTBOBAHHS TONYCKAEMOLO
YIpaBJIeHHsl Uil HEKOTOPBIX 3alay pacCMOTPEeHbIX B IepBoit yactu paborel (Control and Cy-
bernetics No 3, 1976). Pabora sBistetcss Takke ONPELENCHHBIM BHOCOM B OOIIYIO TEOPHIO JTHHEH-
HBIX CTallHOHAPHBIX CUCTEM C 3ama3ibiBaHueM. K OCHOBHBIM pE3yJbTaTaM CIENyeT OTHECTHA
HEOOXOUMOE YCIIOBHE ANIPOKCUMAIMOHHON YNPaBJsIeMOCTH B OOIIMX (GYHKIMOHAJIBLHLIX ITPO-
CTPaHCTBAX B BHIE TAK HA3bIBAEMOW MHOTOTOYEYHON MU CIaO0OMHOIOTOYEYHOU YNpPaBIISIEMOCTH.
3T10 ycoBue Uil Ciiydas OUCKPETHLIX 3ama3fbIBaHuil BBIpAXaeTCd alredpamyecku MpOCPeaCcTBOM
KpPHUTEPUS PaHTa MaTPHUIBI IIOCTPOEHHOW Ha OCHOBAHHM TAPAMETPOB CHCTEMBI. ;

JanpHeiiiune pe3yabTaThl MOJYYEHBI UIss OOHOTO M3 NPOCTpaHcTB C, W,r, M;B KaxK mpo-
CTPAHCTBA COCTOSHUMI (Ma'ﬁ sBiAerca 0606menueM L™= Mo,). TlonyyeHo ompenencHue aHHpOKCI/I-‘
MAaIMOHHOM YmpaBisieMOCTH 4epe3 (GYHKIMOHATBI B MPOCTPAHCTBE [yallbHOM X IPOCTPAHCTBY
cocrostHuit, VICX0/s U3 3TOro MOJTy4aroTCs dyasibHble 3amavyn HaOIIoJaeMOCTH npy YeM AyaibHast
CHCTEMa TOCTPOEHa MPOCTHIM 00pa30M IyTeM TPAHCIOHUPOBAHMSA MATPHULBI IEPBUYHON CUCTEMBL..

ITpuBeneHpI MPOCThIE NOCTATOYHBIE MJIM HEOOXOIMMbIE YCIIOBHS aNMPOKCHMAIMOHHOM yrpas-
JISIEMOCTH /12 OOIIEro Ciyyast CHCTeMbI C COCPENOTOYCHHBIMHU M DACIpPEICTCHHBIMU 3aMa31bIBa~
HusMu. g ciiyvasi COM3MEPHUMBIX COCPENOTOYCHHBIX 3aMa3ablBaHUi JAHO MOJHOE OMpelesieHAe
yepe3 IIPOBEPsIMBIC areOpanvyecKHe yCIIOBUSI. '

JIotst ctyyasi OHOTO 3anasnblBanms mpoctparcrsa C, Wi, M1 (1 <r< 00) 0Ka3bBAIOTCS IKBU-
BAJICHTHHIMU 110 OTHOIICHMIO K YCJIOBHIO AMIPOKCHMALAOHHOW YIPABIISIEMOCTH.

C TOYKH. 3pEHUS MPHUMEHCHHIA CaMBIM TJIABHBIM HTOTOM SIBISICTCsT (DAKT, YTO anmpOKCHMAMOH-
Has yIPaBIsieMOCTH OOMIeH CHCTEMBL B OLHOM M3 NpocTpancTB C, Wi, M1, Mg, Breuer 3a coboit
NIEPEIBIKAMOCTE COOCTBEHHBIX 3HAYEHUI C MOMOIUBIO OOPATHON CBSI3M OT COCTOSIHUS YTO O3HA-
YaeT BO3MOXHOCTh crabmnm3anuu. IIpuBeIeHHBIC YHUCIIEHHBIC IIPUMEPHI UILUIEOCTPUPYIOT TEOPETH-
YECKHE PE3yNbTATHI U TIOKA3BIBAIOT YTO B OOMIEM Cilyyae He COOTFOMAETCA ONpENeNieHHas 3aBHCH-
MOCTb MeXIy BO3MOXKHOCTHIO CTAGHMIM3ALMM W ANNPOKCHMALAOHHON YIPABISEMOCTHEO.




Erratum and Comment to

Control of reterded systems w1th function space constraints
Part I. Necessary optimality conditions

Erratum

The last term in eq. (7.12) should read: +c (ch (a)—cha (r—=1))].
In the eq. (7.14) some symbols were missing by the author. The correct form is
as follows

) [(14+x () asha+c(ch a_,l)]+

a? ¢
+—1§2— [a(l +(x(2)? (2a+sh 2a)+7 (—2a+sh 2a)+

+2c(1+x (2)) (ch (Za)— 1)} (7.14)' :

Therefore the numerical solution to parameters a, p,, ¢, x (2) is somewhat
different than stated in the paper, namely

a=0.924, 2p, = —5.8388, x (2)=0.2314, ¢=—1.0709
and the optimal control is
u (t): —1.0709 ch (0.924 t)+1.1378 sh (0.924 r)—1, te [0, 1]
u (1)=—1.0221 ch (0.924 - 1)) +0.9896 sh (0.924 {1— I)), te(l.2].

A comment

The author wishes to thank Doc. K. Malanowski for shoWihg an exampie sug-
gesting that Theorem 4.1 of this.work.can: be 1mproved that 1s, it can be proven
that the adjoint variable p (t) is continuous in #.

In fact, Theorem 4.1 may preserve its structure but fhe following modifications
are possible‘: ' . k

(1) #(+) is nonincreasing and right-continuous on [0, T+4A,), equals zero on
[T, T+h,] and constant on [0, T—A,) and on subintervals on which [x° (#)—& (¢)| <e.

(i) The adjoint variable p is absolutely continuous on [0, T+ A].

The remaining conditions including the equation and boundary conditions
for p and maximum conditions for hamiltonian are as previously.

Sketch of the proof: It can be verified by direct substitution that the following
modification of Theorem 2.1 holds.
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Modification of Theorem 1: If a nontrivial quantuple (e, @, o5, 4, ¥) satisfies
necessary optimality conditions of Theorem 2.1 for the solution (u°, x°). then the
quantuple (oo, oy, %5, 4, ¥), Where A (t)=A(t)+c, ¢ arbitrary vector from R!,
P (t)=y (1)+g« (x° (1), 1) c satisfies similar but slightly modified conditions, namely

(a;) The value of 4(f;)=c is arbitrary.

(by) In the nontr1v1ahty condition |4 (¢;)—A (t,)| is substltuted in lien of
), (t,Z)' v '

(c,) Both hamiltonian and adjoint equation for ¥ are of the same erm as
for .

(d,)-Boundary condition for ¥ (t ) analog1cal but we add to ¥ (r,) a term
&x (X (12)7 tz) A (ZZ) =8&x ( ) C.
(e1) Maximum condition for hamiltonian of the same form.

This modification enables one for changing boundary conditions for subvectors
w; (0), w; (h) in Lemma 4:1. By introducing an artificial constraints|x (¢)—& (T—
—h)?’<KVtel0, T—h] where K> sup {|x° ()~ & (T—hy)|*: te [0, T—h,}, we
obtain the existence of multipliers 2; (-), i=1, ..., k, for which the values A; (h) =c¢;
can be arbitrarily chosen and such that 4;(:) is a constant for i=1, ..., k—k,.
Setting ¢, =0, ¢;_;=4; (0), i=2, ..., k, yields y, (1) =0, w;_, (h)=w; (0), i=2, ..., k.
Defining p and u as previously p ((i—1)h+1)=w, (1), p((i—1) h+1)=2 (1),
te[0, ], i=1, ..., k, we check that p (r) is absolutely continuous on [0, T+ A,]
and g is right continuous and nonincreasing on this interval, constant on [0, 7—A,]
and on subintervals of [T—h,, T] for which |x° (£)—&(z)|<e, and zero function on
[T, T+h].
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