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A multi-facility, multi-product production scheduling problem with random times of supplies
of raw materials and purchased parts is considered over a finite planning horizon. The supplies
occur at random time points but for each raw material and purchased part the supply which replenish
its beginning shortage occurs not later than at a given time point. The horizon consists of a discre-
te production periods during each of which at most one product can be assigned to each facility.
Product cumulative demands for the entire planning horizon are known in advance. All demands
must be met without allowing backorders. The problem objective is to determine an assignment
of products to facilities over the horizon which maximizes the facilities utilization, in particular
minimizes the expected completion time. The problem is formulated as a stochastic control problem
for which efficient solution algorithm produced by combination of heuristic and dynamic program-
ming strategies is given.

1. Introduction

The problem of determining a minimum-cost schedule of production has been
studied extensively in the management sciences literature over the past two decades.
The terminology production scheduling or planning is often employed when the
cost structure of the model includes only direct production and inventory cost
elements, e.g. [3, 6]. If the model further includes costs associated with changes
in either production levels or the rate of production, the analysis is usually refered to
as a production ‘“smoothing” problem, e.g. [18]. When smoothing costs are tied
to employment levels of direct labour the model is sometimes called “work force
balancing” or “employment smoothing”, e.g. [7].

Most of the reported research has been critically reviewed by Baker [2, 3], Con-
way et al. [5], Elmaghraby [6], Holt et al. {7], Potrzebowski [13]. Almost all of these
studies are devoted for deterministic production scheduling problems and the
computational algorithms are based on discrete programming methods.

Probabilistic production planning models with exogenous stochastic inputs
(demand, prices), convex performance criteria and compact, convex feasible control
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regions were developed by Kleindorfer and Glover [8], Pekelman [12], Sobel [18, 19].
Results based on dynamic programming [1] and the stochastic maximum principle
[10] are the only approach to date.

Kleindorfer et al. [9] have shown that many of the previous models which had
appeared in the literature on production planning (scheduling, smoothing, and work
force balancing) could be characterized as special cases of the control theory problem
formulation. This more general model relaxed a number of assumptions required
by other formulations in capturing a wide spectrum of production planning poli-
cies. Moreover, optimal control approach to production planning problems provi-
des the new and efficient algorithms, eg. {4], [15]. Finally, recent advances in sto-
chastic optimal control theory offer important avenue of application to probabi-
listic production planning problems.

The purpose of this paper is to present an optimal control approach to the pro-
babilistic problem, of determining a production schedule which maximizes the
facilities utilization, in particular minimizes the completion time of production
(otherwise known as total processing time, make-span, elapsed time, maximum
flow time, total duration etc.) under random supply times of raw materials and pur-
chased parts. A computational procedure based on the composite algorithm pro-
duced by combination of heuristic and dynamic programming strategies is also
provided and the solution results are indicated for numerical example.

2. Problem Development of Formulation

Consider an industrial process made up of m facilities in network where there
are n different products (fabricated parts, subassemblies and finished products)
to be produced over a finite planning horizon H (week, month, year for example).

The horizon is made up of N production periods which in general have unequal
N
duration /1, k=1, ..., N, where > h,<H. During any production period the assign-

k=1
ment of products to the facilities is considered fixed, and at most one product can
be scheduled on each facility. Set-ups are assumed to occur between production
periods. The cumulative forecasted demand for all products for the entire planning
horizon is perfectly known in advance and equals xJ units of each product i. The
beginning inventory (z°) of raw materials and purchased parts is assumed to be
lower than total requirement generated by the demand for all products, and the
supplies occur at random time points of the planning horizon. For each raw mate-
rial or purchased part the beginning shortage is completely replenished by one
supply which occurs not later than at a given time point. For the reason of uncer-
tain supplies and varying rate of production the inventory level of raw materials
and purchased parts fluctuates. The lack of synchronization between the raw ma-
terials supplier and the production process schedule may cause the raw materials
inventory to become lower than planned. The effect of the stock-out of raw mate-
rials or purchased parts is the out-of-stock lost of production time resulting from:
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— the additional set-ups when it is necessary to change the production process
over to another products until the needed material arrives, and then change back;

— the process interruption when we run out of critical material without which
our production process must cease.

The purpose of the production scheduling is to determine the total number
N of production periods, they time duration /4, (k=1, ..., N), and the assignment
of specific operations to specific facilities in each period so as to meet all product
cumulative demands and maximize the expected utilization of facilities.

The industrial process is assumed to be a complex of n different operations
O, (I=1, ...,n), each in the form of mapping:

O i Ll (=1 .o (D)

where: L={L,, ..., L,}, L,— a set of raw materials, purchased parts and products
processed directly into the product /.

The total number n of different operations O, is equal to the total number of
different products so that only one operation corresponds to each product. The
relationships between operations are characterized by the (n, n) consumption matrix
D representing simple (direct) requirements for the fabricated parts and subassem-
blies:

D=ldyl, G=1, ..y ny =], n) 2)

=0, i=1, .,n—p; =1, ... 1
. =0 d=n—p-+tl, =1 ... 7%

where the nonzero element d;; [unit of product i/unit of product /] is defined as the
number of units of product i required to produce one unit of product /; p denotes
the total number of different finished products, (n—p) — the total number of diffe-
rent fabricated parts or subassemblies. &

Raw materials and purchased parts direct requirement is represented by (s, n)
matrix G:

G =g, (r=15 x5 [=1; o 1) 3
where: g,; is the amount of raw material or purchased part r used directly to make
one unit of product /; s denotes the total number of different kinds of raw mate-
rials and purchased parts.

Successive supplies of raw materials and purchased parts are considered as
random input variables

wh=[wk, ., W Iwfe R, k=1,..,N 4)

where W¥is the amount of raw material or purchased part r supplied in period k.
The m facilities are characterized by the (#, m) matrix P of production rates:

P=[p,;l, G=1,..,mn; j=1,..,m) ®)

where the element p;; [units of product i/unit time]>0 denotes number of units
of product i produced by facility j per unit time.
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In a similar way we can represent by zero-one matrix Q, the technological re-
strictions of the m facilities:

Q:[qi.iL (l=1, () n[ .]:19 ravy I’}l) (6)
where the element g;; is defined as follows:

1 if facility j can be used to produce product i
(i 0 otherwise

From the technological restrictions described by the above matrix Q results

that at most m
Z qij=m; ‘ @)
=1

facilities can be used to produce product i simultaneously, and at most

2 max (q;;) =my,, ke{l, - 2 (n)l ®)
;e =1 €k =2\ I
facilities can be used to produce simultaneously all products ie I, =/, where I,
denotes the nonempty subset of at most m products, I — the finite set of the first
n integers.

The assignment of products to facilities in each period k is described by the
(n, m) matrix Qy:

Oi=lq};], €)
where .
k k k .
g% €40, 1}, ¢5<qu, D) d5<1, Vi ji k. (10)
i=1

Thé matrix Q is known as the incidence matrix for the covering problem.
Each assignment matrix Q, defines a column vector u* of production capacity

allotaar: W=, oy ], e R k=1, . N 1)

where

=D ¢4 py (12)
Jj=1

is the total production rate of the facilities assigned to product i in period k.

3. State Variable Description of Production-Inventory System
The discussion of the production scheduling control problem can be notatio-

nally and conceptually simplified by adopting a vector space notation.
The state of the production process at time

k
= 3 (13)
=
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is defined as the column vector x* of the staté variables:
W=l w3 e B kel v N (14)

where x¥ is the cumulative production of prbduct [ up to time f,. The variables
x%, ..., xk_, represent the cumulative production of the fabricated parts and sub-
assemblies, and the variables x¥_ ., .., x; represent the cumulative production
of finished products.

The state of in-process inventory (fabricated parts and subassemblies) and fi-

nished products inventory is described by the output vector y* (Fig. 1):
e R B (SR (15)

where % is the ending inventory of product i for period k.

Production

m facilities

[ o= e o

| Row materials Fabricated parts | . . . |
ria abricated parts | Eigishon

|

a

g 5 il | products
|
J

, purchased parts subassemblies |
Supplies

T 2=zl

{4

Sales

¥ [k P & P
4= [91; «o3Yp-p» Yn-prty-, yn] [ f f
LXn-pttseees Xn]

Inventory

Fig. 1. Production-inventory system

Similarly, the state of the inventory of raw materials and purchased parts at
time #, is defined as the column vector

gh=[zt, ..., 2, 7" e R, k=01, .., N~1 (16)

eey L

where z¥ is the beginning inventory of raw material or purchased part » for period
ket .
The control variables of the problem are the total production rates u¥ of the
facilities assigned to each product i in each period k.

The state and output equations of the production-inventory system (Fig. 2)
can be written as follows:

=gt al kol o N (17)
gi=g" G (i Dt k=1, e, IV (18)
and
Pl= %" (19)
where

x():{o5 28y 0) € Rn; ZO:{Z(i, ZO]
e, e R0 e UcRr
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U — a finite set of facilities capacity admissible allocations, X — a set of admissible
states of the production process, determined by the precedence relationships between
the operations, and the raw materials inventory constraints;

X g Y=o e RY Dol L G G Y2 1 =0 (20)

C — the output matrix defined as

C=J-D 2D
where J — the identity matrix.
iy T
L e Row materials inventory system
| of row materials |
l
|y ; ook : I
{w } supplies o cumulative E row materials g |lee i
e ] PRSI I IO
of row materials k supply «s—C —consumption i
| : i
; row materials inventory i
EJOR S et e St e W N O VR § 2 e el 5 M o) BT RS J
i S b |
! {Zk} - 7 i " % i
1 Production | {mu*} r {x*} o ()i
x | scheduling | production k cumulative roducts
- p L p
cumulative schedule production inventory
demand T
for products

Production system

SPpRE———

l
L i i e g S a e G L e

Fig. 2. Flow-diagram: production-inventory system

As we start production at time 0 and want during the planning horizon A to
have produced x7 units of each product i, the following conditions (22) must be
satisfied with probability one:

N
XV =x; (1) =x7 for 1= Z he<H. (22)
k=1

For the reason of random times of supplies w*, the quantities z¥

are random variables of a discrete s-dimensional Markov process {z"(w), k=1, ...
..., N} with the range 7. The elementary sample w is the sequence {w', w?, ..., w"}.

At each time #,_, the state x*~! must lie in the set X,_,. In order that x* e X,
the control u* (x*~1, z¥=1 (w)) and duration %, of period k must be chosen so that

ALl at (0, A ) @ K (5L, 2 M) (23)

Lr=ils s,

The condition (23) implies the following constraints on the value of variables
.
weU={ue R ue U, u;=0Vie L, u=0VielL,} 24)




Stochastic optimal control 27

where: I, ={i:z5"'=0, g,,>0} — set of products which cannot be produced in
period % because of raw materials or purchased parts stock-out; Ly ={/: y¥~'=0,
d;;>0} — set of products which cannot be produced in period k, because of fabri-
cated parts or subassemblies stock-out.

hy<min (A, hy) (25)
where: -1 -
by =min | —— for Z g Uy #£0, (26)
r N Mf i=1
i=1
yllc— 1 n
hy=min] ———— for dyut 0] . 27
Y Y dy it 1=1
=1

We call admissible any schedule given by the sequence of pairs (v, A,), k=1, ...
..., N, in which the controls u* (x*=!, z¥=! (w)) are defined on the Cartesian product
of the set X, and the range Z of Markov process z* (w), and which satisfy (22),
(24), (25).

In the sequel our formulation will deal with the production scheduling problem
under the following additional assumptions:

— the my; facilities are identical in that the product i can be produced by any
of m, facilities at a fixed production rate of p; units per unit time, i.e.

Pij=9:; pi Vi; (28)

— the delay times due to dependent operations are negligible so that it is pos-
sible to consider that all operations can be made simultaneously.

The first assumption makes it possible to consider the facilities allocation vector
with integer components as the control variable u. Each component u; of vector
u € R" denotes the number of facilities assigned to product i. The finite set Uc R"
of admissible allocations is given by:

U={ueR:u,e{0,1, . ,m},i=1,..n;

Z

iely

%) u;<my, [kcl}. 29)

The second assumption allows to approximate the minimum completion time
t; (in the deterministic problem) by the following formula, which gives the exact
value of t}k only in the case of independent operations:

> X

iely

%
t i max
Ty m I

(30)
The objective functional representing the utilization of facilities is given by:

E {FN e+ DA, uk)} | 31)
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where the expectation in (31) is with respect to the joint distribution of {w*, k =
1oy N
Here are four examples of possible measures of the utilization of facilities, and
respectively the functions f;, Fy:
— the completion time:
[l —x* ]| Ix" — x|

fk=hk=—w‘, FN_T’ (32)

— the facilities total production time:
Je=h k]| =l = x|, Fy=[lx¥ —x7|; (33)
— the total lost of facilities production time (facilities total idle time):

m —_—
]

fk=/7k(m—Hu"H)=Hx"—X""1H( 1), Fy=m ||x" —x|;; (34

— the facilities total set-up time associated with changes of products to faci-
lities assignment [26]:

1 1
ﬁc=—2—0' {Huk—uk—ln_ ||IukH_ Huk—lm}
! (35)
F, =io’ !uN_ﬂ_ m"‘_inl__ )luVMl i xetyl Fusl if x¥=x"
N O T ey ™ T #xl, Fy= iy

where o — average one facility set-up time.
Vector norm |-]| on R" in (32), (33), (34), (35) denotes the /; norm and represents
the rectangular distance in R":

k= Y xl, xe R". (36)
i=1

The optimal control for the above stochastic control problem is a function of
the present state (x, z) of the production-inventory system. Therefore, the problem
to be considered is the minimization of (31) over all state-control trajectories
{(x°, 2% uY), ..., (XN=1, 2N =1, M), (xY, zN)} for any given (x°, z°) satisfying (17), (18).

4. Comments on the Optimization Problem

Notice that if at each period k=1, ..., N there were a positive probability that

k n

> wl equaled 0 for re{r: > g, x{—z>0}, it would not be possible to satisfy

"
Ji= 1! i=1

(22) with probability one. Motivated by this let us assume that the beginning shor-
tage of raw materials and purchased parts

b, =max (Z g x—22, O),r=1, S 37
1="1




Stochastic optimal control 29

is replenished with probability one up to time 7, (the end of some period k,):

kr

Ky
prob (2 Wiz b,, t, = Z thTr) =1 (38)
. ,

k=1. k=

where 7, denotes the latest time to replenish the shortage of raw material or pur-
chased part r (e.g. the longest lead time from the vendor). From the time 7, the in-
ventory level z, of the raw material r is with probability one not lower than the actual
requirement generated by the actual cumulative demand for all products.

It may not be possible to satisfy conditions (22) if the beginning inventory z°
of raw materials and purchased parts is too low. There are worst conditions that :

— supplies of each raw material or purchased part r occur at the latest time

7, (we assume that 7,=0 if 5,=0):
E
kr—1

D) wk=0,Vre {r: b,>0}; (39)

k=1

— the beginning inventory z° is used up at maximum usage rate, so that the
inventory level goes to zero in the shortest time 7, and at the same time the cumu-
lative production goes to the state X given by the solution of the following minimax
problem:

o
min \max % |Gx=2z°, x>0, [,<1] . (40)
~ B fnlk

In order to complete the planned production x/ before time H with probability
one, one would have to be able to do this under the worst conditions. This is possible
only if

2> o =x)

iel, 3
=" g o .
v, Hc, <min (m,’, m 2 vJ) 41)
JjeJ,
and
S (=
i Elf
ax— o e (42)
] my
where
s . T"
xir=x,; (v.)=%; min 7 1),Viel,={ig.,>0} (43)
f=max ““°— __the earliest time to use up the beginning inventory z° of raw
= Mo

materials and purchased parts,
I*c]— the nonempty subset of at most m products ie I={i: x,>0},
I?< I, — the nonempty subset of at most m products i€,
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m
mg= > max (g;;) —maximum number of facilities simultaneously available for
j=1 ieB
products i€ f3,
o=l

Let us say that the production schedule is feasible if conditions (41), (42) hold.
We shall finish our comments on the optimization problem by showing that the
terminal conditions (22) imply constraints on the values of variables at intermediate
times.
i
The state of production at time #, =7, is x"'=2 A, u* € R". Under the worst
k=1
conditions it is possible to complete the planned production of products i€/,
in period 7,<¢<H at production rate not less than v,. To assure that the entire
planned production is completed before time H with probability one, the ine-
qualities

i ~ 3
Nz N —(H-1,) min (my;, m—o,) =x,,, Vr (44)
(el i€l

must hold, where m,, = 3 max (g;;) — maximum number of facilities simulta-
(€1,
neously available for all products except 7€ /,.
The right-hand side of inequalities (44) can be interpreted as the minimal cumu-

lative demand of products i ¢ I, for the subhorizon ,.

i
N xI—(H—1) min (m,;, m—v,)— ¥ x¥1
E ulf<t¢1r — ‘ i¢l, S ek
{¢l, Wik
=i

the inequalities (44) give the equivalent constraints on the value of duration /:

k—1
el
m,;(fr— > llj)—(x,r—z % )

b b — min =l = ki“' (45)
[ Wy — O,
: Z “lz§<“’"’kgk"1 i¢1,
i €1,

It follows from the above comments that probabilistic aspect of the optimi-
zation problem will be completely determined if probability distribution of supply
times for each raw material and purchased part is given.

5. Solution Algorithm
In this section we state the composite algorithm produced by combination of

heuristic and dynamic programming strategies. The algorithm will form the basis
for computation.
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Using (17), (18) we may write the optimal return function suppressing time and
conditioning arguments, as

Vi (x; 2)= min {EWViy: (x+hu, z— Ghu+w¥)|x*~1 =
{(u,h):ueU;;,her}

=x, 2" Y @)=z, v =u, l=h]+ fi. (x, W)}, k=1, .., N (46)
Vi1 (x, 2)=E[Fy(x)|z" " (w)=2].

The heuristic procedure is based upon the optimal control algorithm derived
for deterministic flow-shop problem [15], and is used to determine the sets Uy, H,
of facilities allocation in period k, and its duration, respectively.

Formally, the heuristic procedure in period k is as follows:

Step 1. Determine the facilities pseudo-allocation (not integer) vector @#* e
conv (U,) of maximum [, norm, generating rectilinear, minimal-time trajectory
from the given state x*~! to state x*/, where:

f L el e '
L XL Tp={lan T 2l Pt ULt
=

' -l T

[ £

(47)

Notice that (x*/—x*~1) is feasible direction (i.e. direction satisfying the raw ma-
terials, purchased parts and inprocess inventory constraints for period k), the
“closest” to direction (x —x*~1) of the trajectory terminating in the desired state x*.

Step 2. In the set U, find subset U? of admissible allocaticns u* “closest”
(according to /; norm) to &, (u°* is often unique).

Step 3. Determine the set H, of period k admissible durations, taking into con-
sideration the beginning for period i raw materials, purchased parts and in-process
inventory level, the neariest supply time 7,, and the constraint (45) implied by ter-
minal conditions (22). '

Sets Uy and H, are defined as follows:

Ul={uweU,ccR": |u—i= min |[u—a"} (48)
T
where:
[ xf—x1 . !
e ‘_\J(Xf—x'i‘_l)m“'k’le‘[k’ (49)
¥ ieJdg
0, ied;
m
My, = Z max (4;;),
g g

T S ans V=102 e i L P e
Hk:ihzo:h:{/ ‘ g , (50)

'le max 1f hk maxg'é
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k=1
By max =Min [/qu, By i, min ('L’,.— Z h,.>0)] ] (51)
r j=1 /
h — minimal duration of production period (e.g. 1 shift duration).

The above heuristic procedure is applied to eliminate successively regions of
the set U,. If, as it often happens, «° is unique, dynamic programming is used only
to determine durations /i, of production periods in such a way as to avoid the
excessive lost of production time when some facilities are kept idle awaiting the
needed material arrival. In that case the shorter is minimal duration 4 of production
period, the closer to optimal is the schedule obtained by the above algorithm.

In general case, like most dynamic programming algorithms the above proce-
dure is useful only for problems of limited size due to the fact that storage and
computation requirements grow very rapidly as the difference (n—m) and the number
N of production periods increase.

6. Example

Time-optimal schedule was computed for the following simple example: n=m=
S=2,0 H=100, h=5 =50, ©;,=25.

The cumulative demands for the planning horizon H:
x7 =80 [machine-hours of production of product 1],
x4 =100 [machine-hours of production of product 2].

Raw materials requirement matrix (3):

oo |-

where:
g, =2 [units of raw material 1/machine hour of production of product 1],
g>=>5 [units of raw material 2/machine-hour of production of product 2].
The beginning inventory of raw materials:

2 =80, z5=100.

The product-facility incidence matrix (6):

Qz[i (l)] > m11=1, m12:2.

The raw materials supply probability:

L [ 1.
prob (2 w;>0)=pf:min (T—k, 1),;':1,2
g=i / i
Ik
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The schedule feasibility test (41), (42):

¥ =%,=40, i=40,

T T
X (m)=x%=%, min (_ti r 1)=40, %5 (1) =x% =%, min (72 : 1) =25
x) —x5? .
Uy = H—rz—z L<min (m; , m)=2,

xf—xit 4

vy =——_T1 =?\mm (my m—v,)=1,
xf —xfa
=40<H—1,=50,
my,
x§ —xk
e =375<H-1,=75.
my,

The minimal cumulative demands of products 1, 2 for the subhorizons, respecti-
vely 7,, 7, (44):

X522 X, =x] —(H—1,) min (m; , m—v,) =S5,
x5z x, =xj—(H—1y) min (my , m—v,)=40.
Time-optimal schedule for this example is:
k=10 =t=1, hi=25
k=2 w0 = =1, h=15
k=3, a) if supply of raw material 2 occurred for 0<7<40:
w;=uz=1, hy3=40,
b) if supply of raw material 2 didn’t occur for 0<¢<40:
e =10 =) B =h=3,
k=4, a) if supply of raw material 2 occurred for 0<7<40:
uf=0,ut=2, h,=10. The end of production.
b) if supply of raw material 2 didn’t occur for 0<r<45:
=1, 10=0, Jy—h=3,
c¢) if supply of raw material 2 occurred for 40<r<45:
wy—ti=1, By=35
k=35, b) if supply of raw material 2 didn’t occur for 0<7<45:
J

u;=u=1, hs=30
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k=

c) if supply of raw material 2 occurred for 40<7<45:
uj=0,u3=2, hs=12.5. The end of production.
6, b) if supply of raw material 2 didn’t occur for 0<¢<45:

uS=0,u8=2, h=15. The end of production.

7. Conclusions

A multi-facility, multi-product production scheduling probabilistic problem,

formulated as an optimal control problem has been considered. To analyze it under
several realistic assumptions, a composite heuristic— dynamic programming al-
gorithm was given, and in a simple case used to obtain the optimal solution. An
important step in attacking the problem was to determine the schedule feasibility
test, and to show how the terminal conditions implied constraints on intermediate
values of control variables. The generalization of the presented model to allow
for the inclusion of other realistic random factors appears to be an interesting area
for future research.
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Stochastyczne sterowanie optymalne harmonogramem predukcji
o wielu stanowiskach i wielu wyrebach z przypadkowymi czasami -
dostaw

Rozpatruje sie zagadnienie harmonogramu produkeji o wielu stanowiskach i wielu wyrobach
z przypadkowymi czasami dostaw surowcow i zakupionych czesci przy skoniczonym horyzoncie
planowania. Dostawy maja miejsce w przypadkowych chwilach czasu, ale dla kazdego surowca
i zakupionej czgéci dostawa uzupelniajaca ich poczatkowy niedobér ma miejsce nie podzniej niz
w danej chwili czasu. Horyzont skiada si¢ z dyskretnych okresoéw produkcji, podczas kazdego
z ktoérych co najwyzej jeden wyrdb moze byé przydzielony do kazdego stanowiska. Skumulowane
zapotrzebowania na wyroby dla calego horyzontu planowania sa znane z gory. Wszystkie zapotrze-
bowania musza by¢ zrealizowane, niedopuszczalne jest odrzucanie zamoéwien. Zagadnienie polega
na okredleniu przydziatu w czasie wyrobow do stanowisk, a w szczeg6dlnosci minimalizuje oczeki-
wany czas zakonczenia. Zagadnienie jest sformutowane jako problem sterowania stochastycznego.
Podano efektywny algorytm, i jego rozwiazania, otrzymany przez polaczenie strategii programo-
wania heurystycznego i dynamicznego.

Croxacruyeckoe ONTHMAILHOE yHpasJieHue rpa(bmcaM npon3-
BOICTBAa, CO MHOIrMMMH paﬁoann MeCTaMM H MHOIMMH H3-
JeIufiMH, CO cnyqaimeM BpeMeHEM MOCTABOK

PaccmarpuBaercs mpobnema Tpadwka TPOM3BOACIBA CO MHOTHMH DabOYMMEH MECTAMHU H
MHBOTMMHE M3OEIHAMY, CO CIydaifHbIM BPEMEHEM IIOCTaBOK CBHIPBSl W 3aKyHaeMbIX YacTeil IpH Ko-
HEYHOM TODHM30HTE IUTAHHPOBaHHs. IIOCTAHOBKM MMEIOT MECTO B CIIy4allHbIE MOMEHTHI BPEMEHH,
OIHAKO I KaXK[IOTO CHIPhS ¥ 3aKynaeMOi 4aCTH IIOCTaBKa, INONOJHAIONIAS WX HAYabHYO He-
JII0CTauy, Pealu3yeTcs He MO3Ke, YeM B JaHHBI MOMEHT BpeMeHHU. ['OpU30HT COCTOMT U3 JUCKPET-
HBIX IIEPHO/IOB POM3BOICTBA, B TEYSHHE KAXKIOTO U3 KOTOPHIX HE 00Jiee, YeM OTHO H3[ENHe MOXKET
GBITH OTBEIEHO KaxaoMy paboueHy mecty. Obuee norpebreHue Ha M3NEUs sl IOJIHOTO TOPH-
30HTa IDIAHEPOBAHYS 3aBEIOMO U3BECTHO. BCe 3asBKU HOJDKHEI OBITH peasiu30BaHbI W HEIOMyCKa-
FOTCS OTKa3bl Ha 3asBKA. 3a/a4a COCTOMT B ONPEIENICHWY PACIPENENICHHUs BO BPEMCHW W3/EIIHiA
no paboywM MecTaM, a B YaCTHOCTH MHUHHMH3ALMH OXMAOAEMOTO BPEMCHH OKOHYAHMSA. 3ajada
dopmyiupyercsi B Buzie NpobIeMBI CTOXaCTHYEeCKOro ynpapienus. [dad sddexTuBHbI anroputm
¥ €ro pElIeHHus, [TONYYaeMbIil IyTeM OOBeIWHEHMSI CTPATETHH 3BPUCTHYECKOTO H JUHAMIYECKOTO
TIPOTPAMMHAPOBAHUS.







