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An ‘optimal control problem for a system described by linear parabolic equation is investigated.
Cost functional is convex and control functions are subject to constraints of local type. The Lagrange
formalism is used to such a problem. It is shown that the Lagrange multipliers corresponding to
constraints of control are some regular functions. Some regularity results for optimal controls
and trajectories are derived.

1. Introduction

To estimate the rate of convergence of finite dimensional approximations to
continuous optimal control problems the Lagrange formalism is used [5, 9, 10, 14].
It turns out [5] that to obtain an effective estimation of such a rate of convergence
the optimal variables of an appropriate Lagrangian, both primal and dual, must
be regular enough.

Very few has been done in the field of investigating the regularity of optimal
solutions and in particular the regularity of optimal Lagrange multipliers. We have
to mention here the pioneering papers by Hager [5, 6, 7].

In particular Hager used stability results for finite dimensional quadratic pro-
gramming problems to investigate the regularity of optimal solutions for systems
described by ordinary differential equations subject to control and state constraints.

As far as systems with distributed parameters are concerned, the regularity of
optimal control for elliptic equations was discussed in [3].

The authors do not know any results concerning the regularity of Lagrange
multipliers (other than adjoint equations) for such systems.

In this paper an optimal control problem for a system described by linear para-
bolic equation with control in the domain is considered. It is assumed that the cost
functional is strictly convex and that control functions are subject to constraints
of the local type.
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Regularity of solution to such a problem is investigated.

In Section 3 a Lagrangian is introduced. It is shown that under some additional
assumptions, Lagrange multipliers corresponding to constraints of controls are
some regular functions and that the Lagrangian assumes its saddle point at the so-
Iution of optimal control problem.

In Section 4 the results of regularity for solutions of the state and adjoint equa-
tions are discussed. It is shown that this regularity depends on regularity of optimal
controls. For particular case of constraints of amplitude type the needed regularity
of the optimal control is proved.

The obtained results of the regularity will be used in the forthcomming paper
of the authors [10] to investigate a finite dimensional approximation to optimal
control problems.

Note that the problem of the regularity of optimal controls for parabolic systems
in the case of state space constraints is an open one and seems to be hard.

Some used notations

Rs=s-dimensional Euclidean space
{v, wy, |lv]|=the inner product and the norm in R*
L? (Q)=HP°(Q)=the space of vector-valued functions, square integrable on @
(u, v)= f {u(x), v (x)> dx, |ullo =(u, u)* =the inner product and the norm in H°(Q)
2

H"(Q) — Sobolev space of vector-valued functions, square integrable together
with their (weak) derivatives up to the order r with the inner product

(u, v), = 2 (D', u, D' v)
and the norm =

(e, = (us. )}
where
'l u

T T O S W >
OXSE OX2L oy OXT

Di(w)= li| =i +is+.ctiy,.

By HT(Q) we denote the appropriate Sobolev space of scalar-valued functions
L? (0, T; Z) — the space of functions with range in a Banach space Z, square in-
tegrable on [0, T'],

. T
(0, 2)=[ (@), z())z dt; ||ll2zy=((», »))* — the inner product and the norm
(0]
in L2 0,15 Z), ‘
C (0, T; Z) — the space of functions continuous from [0, 7] into Z with the norm

lle zy= max [[y(®llz,
1€[0,T]

P (Y,Z) — the space of linear bounded operators from a Banach space Y into
a Banach space Z.
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0,J (u, y) — strong (Frechet) derivative of functional J (u, y) with respect to u,
0., J (u, y) — second strong derivative of functional J (u, y) with respect to u and y,
0% J (u, y) — Hessian of functional J (u, y).

2, Statement of optimal control problem

Let Q be a bounded domain (open set) in R"” with. properly regular boundary
Q. For the sake of simplicity we shall assume that dQ is of class C®. Moreover we
assume that locally Q is situated on one side of dQ.

Let 7 be a fixed time.

We consider the system described in the cylinder Q% (0, 7) by the following
parabolic equation (state equation)

9y (x, 1)
y; —— Ay (x, t)=f(x, t) 2.1)

where f is a function of an appropriate regularity defined on Q x (0, 7).
Elliptic self-adjoint operator A4 is given by
2 dy (x))
Ay (x>=”2_1 5)(—(a @G )—wr@® @2

Xi

where the functions a;;(-)=a;;(+) and a,(+) are properly regular (for the sake of
simplicity of class C®) and there exists such a constant p,>0 that

Day@&gzp D& Vxe, (2.32)
i,j=1 i=1 VfiERl
and
a, (X)=p, VxeQ. (2.3b)

For (2.1) the following homogeneous boundary conditions of Neumann type
are satisfied

9y (o, 1) = dy(e, 1) ,
3m—_igl " (c)—é‘?cos(n, 6)=0 VoedQ, Vie[0,T] (2.4
where v is the unit outward normal to JQ.

Moreover the initial condition
y(x,0)=y?(x) for almost all xe Q (2.5)

is satisfied, where y” is properly regular function defined on Q.

The problem of regularity of solutions to (2.1) will be discuss in details in Appen-
dix A. Here we quote only a result known from literature (cf. [2, 11]) which we shall
use in the sequel: )
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Lemma 2.1. If

y e H'(Q), fe L*(0, T; H®(Q)) (2.6)
then the solution y of (2.1) satisfies the following conditions of regularity
yeC(0,T; H (@), (2.72)
dy
EGLZ (0, T; H°(2)), (2.7b)
and the mappings
H'(Q)xL*(0,T; H°(2) 3 (»°, f)»ye C (0, T; H* (Q)), (2.8a)
dy
H' (Q)xL*(0,T; H° () 3 (", /) = € L*(0,T; H°(Q)) (2.8b)
are continuous.
Let us define
() (x, DL A(x) y(x, 1) (2.9

and introduce the space

w1, T)=
= {y eL?(0,T; H' (Q)) 1oy e L2(0, T; HO(Q)), L—‘g eL*(0,T; H® (Q))} - . (2.10)

By Lemma 2.1 for any fe L?(0, T; H°(Q)) the solution of (2.1) belongs to
Wi, T).
In order to state the problem of optimal control we introduce the space U of
control functions u:
U=L2(0, T; V) 2.11)
where
V=H%(Q)" (2.11a)

is the space of functions with the range in R
On the space R? there is defined a r-dimensional vector function ¢ (w). It is
assumed that ¢ is convex, differentiable and its derivative satisfies the condition

16, b @)=, b @)lI<clu,—ull  Vuy,u, € R.? (2.12)
Moreover the set
Wea={we R%: ¢ (w)<0} (2.13)
is not empty:
Woa=9. (2.13a)

1 Assumﬁtion (2.1a) was introduced only for the sake of simplicity of the notations. The
obtained results are still valid if we put ¥=L? (S), where S<R™ is some open and bounded set
different from Q. In particular if m=0, then control functions depend only on time.

2) y (w) <0 denotes w; (w)<0 Vi=1, 2, ..., r. Here and in the sequel ¢ will denote a generic
constant not necessarily the same in any two places.
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In the space U we define the set U,,; of admissible control putting

Uy={uecL?*©,T; V) u(x, t)e W,; for almost all

xeQ,tel0, T]}. (2.14)
In (2.1) we put f(¢)=Bu(¢), where
Be ¥ (H(Q); HY(Q)NZ (H' (Q); H (Q)). 2.15)

Moreover we introduce the.cost functional

13
J @)= [ [ o, 0, »6, ) dxdr (2.16)
0 Q )
where ¢ (u, y) is a convex, twice differentiable function and the following conditions
are satisfied
0z 4 @ @ )l 102, @ (s Vs 195, 0 (w, PISC, Yue R, Vye R', (2.16a)
v o, o y) vz, «>0, Va,ve R, Vye R (2.16b)

From (2.16b) it follows in particular that the Hessian 6*J of J satisfies the
following condition of coercitivity:

(82T, ); 9, 2; v, 2) 20 [[0]]}2 o), Vi, v L2 (0, T; H°(Q))
Vy,ze L*(0, T; H°(Q)) (2.17)

Now we are in position to formulate our optimization problem (P-1).

(P-1) find u° € U,y such that

J(@, y° ) <J(u, y(@W)) Yue U, (2.18)

where y (u) is the solution of the state equation

9y (x, 1)
g~ A®y @ =Bulx, 1) (2.19)
along with the boundary and initial conditions
9y (e, 1)

= =1 2.19a
T (2.19a)
y©)=y". (2.19b)

Due to the assumption (2.16b) the functional 7(u)=J (u, y () is strictly convex
and continuous, hence it is weakly lower semicontinuous and radially unbounded
[15]. On the other hand the set U,; is weakly closed in L? (0, T; V). Hence (P-1)
has [1, 15] the unique solution u°.

This paper is devoted to investigation of regularity of the optimal control #°,
the optimal trajectory y°=y (#°) and optimal Lagrange multipliers corresponding
to equality (state equation) and inequality constraints (constraints on control).
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3. Lagrange formalism

Problem (P-1) of optimal control can be treated as a problem of minimization
of the cost functional J (#, y) in an appropriate Hilbert space subject to constraints
of equality and inequality types. Introducing a Lagrangian this problem of optimi-
zation can be reduced to the problem of seeking the saddle point of the Lagrangian,
hence to a problem of unconstrained minimization.

In this Section an appropriate Lagrangian will be introduced. There will be given
sufficient conditions under which Lagrange multipliers corresponding to constraints
on control functions are regular.

Let us introduce a Lagrange functional

L:L2(0,T; HY (@) x W' (0, T)xL?* (0, T; H° (Q))—R*
given by

d
L, (u,y,p)% LT (u, y)+ ((p, ~dy?— Ay — %u)) (3.1)

where
(%Bu) (x, 1) %f Bu (x,0). (3-:2)

By Lemma 2.1. the operator
: iy
C (u, y).‘ﬁE— Ly — Bu

maps the set L2 (0, 75 H® (2))x {y e W' (0, T): y (0)=y"} onto L? (0, T; H® (2)).
Hence [8] there exists a Lagrange multiplier p° e L? (0, T; H® (2)) such that the
Lagrangian (3.1) assumes the degenerate saddle point at («°, y°, p°) i.e.
LI (u07 ¥, P) =L1 (ua’ Y, pﬂ)<L1 (us Y, po) (33)

for every
- ue Uy ye WH(0,T),y (0)=y"; pe L? (0, T; H® (Q))
(u°, v°) — denotes here the solution of (P-1).

Using the fact that 4 (x) is self-adjoint it is easy to show [12] that the element
p° satisfying (3.3) can be characterized as the solution of the following adjoint
equation

ap° (x,1) .
3 TA@p (% 0)=6,J@,)) (x, 1) in 2x(0, T) (3.4)
i
Fl . in I'x(0,T) (3.42)
M4
p°(x, T)=0 in Q (3.4b)

Taking into consideration (2.16) we conclude from Lemma 2.1. that the solu-
tion p° of the adjoint equation (3.4) satisfies the following regularity conditions

p’eC(0,T; H (), (3.52)

dap°
dt

eL? (0, T; H (Q)). (3.5b)
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In order to characterize the optimal control u° we shall use the right-hand side
inequality in (3.3).
Taking into considerations definitions (2.13) and (2.16) as well as (3.1) we get

)=

et {J(u 7°)—((#* p°, ll))}-}—((p, c:):_dyonz

u€Ugy

L, (w°, y°,p°)=min L, (u,)°, p°) =

u€Ugq

min {J @, y)—(@* p*, u>)+((P’ i

- {f [ T (o057 e, 0) <% p7 o, 0, 1, )] e+

{u: w(u(x t))<0}

(( ,ii—ﬂy )) ff{ min [o (u(x,0),y° (x, 1))+

o WG, @(x,1))<0}

; v
+<~%* pa (xg t)a u(x, T)>]} dx dt+ ((P, ;f = 'Wyu)) g (36)

We use here the fact that the constraints on control are of local type.

It follows from (3.6) that the optimal control #° for almost all x € 2 and 7 € [0, T7]
is the solution of the following local problem of optimization
(P-1) find w’ (x,t) satisfying condition  (u° (x,1))<O0 and such that

' (w (x, 1), y° (x, 1), B* p° (x, 1))<I" (u, y° (x, 1), B* p° (x, 1)) 3.7)
for every u e R? such that ¢ (#)<0, where
I* (u, y, B* p) 2L ¢ (w, y)+<{B* p, w) . (3.72)

(P-1) is a typical problem of finite dimensional convex programming. Since
the function ¢ is convex and ¢ is strictly convex there exists the unique element
u® (x, 1) € R statisfying (3.7) [4]. Moreover a sufficient condition of optimality
of u° (x, t) is that there exists a Lagrange multiplier A° (x, ) € R", A° (x, )=0 such
that the Lagrangian

1(, A,y (x, 2), B* p° (x, 1)) <L g (1w, 3° (x, ) +<B* p° (x, 1), wy +CA, b (@) (3.8)
assumes the saddle point at (#° (x, 1), A° (x, t)), i.e. that
1(w (x, 1), A, y° (x, 1), B* p° (x, n)<! (w° (x, 1), (x, 1), y° (x,1), B* p° (x, 1)<
<I(u,A° (x, 1), y° (x, 1), B* p° (x, 1)) Vue R,
VAeR, A>0. 3.9

It is well known [4] that since Problem (P-1) has the unique solution then to
prove that A° (x, ¢) saisfying (3.9) exists it is enough to show that the following
Slater’s condition is satisfied

Jue Ry, (w (x,0)+6,v] (#° (x, ) u<0, i=1,2,..,r. (3.10)
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Let ¢ (u°(x, 1)) denote j-dimensional (j<r) subvector o ¢ containing all these
components, which are active for #° (x, 7), i.e.

$ (° (x,1))=0. (3.11)

It is easy to see that if there is satisfied the follgwing condition of regularity:
I>0: 275, § (4 (x,1)) 5, T (w° (x, 1)) 2= B |l2l]?, Vz € RI (3.12)

then there exists a left inverse of &, {7 (#° (x, t)). Hence we can choose an element
u, € R? such that

Oy QT (v (x, 1)) u, <0.
Taking into consideration that for all components y, of the vector ¢, which
do not belong to ¢ (u° (x, 1)) we have '

wi (#° (x, 1)) <0,
we can easily see that for y>0 small enough the element
. - i‘=yu1
satisfies Slater’s condition (3.10).

Hence [4] there exists a Lagrange multiplier A°(x,7)e R, A°(x,1)=0 such
that the following Kuhn—Tucker conditions are satisfied

0,1 (w° (x, 1), A° (x, 1), y° (x, 1), B¥ p° (x, 1)) =0, (3.132)
0 (0, & (1 (x, )y =0 A° (x, )>0. (3.13b)

The convexity of J and ¢ together with (3.13) imply (3.9).

Note that from (3.12) and (3.13) it follows that the element A° (x, #) is unique.

Now let us define on 2 x (0, T) the function A° which for almost every (x, )
is equal to A°(x, 7). We have the following:

LemmA 3.1. If there exists >0 such that for almost all xe Q, te€ [0, T]

27 5, (@ (x, ) 3, 7 (# (x, ) 2> 2%, Yz e BRI (3.14)
then
Ael?(0,T; H° (Q)).

Proof. First let us prove that A° is measurable. Let K be any subset (including
the empty set) of the set {1, 2, ..., r} of indeces and let us define
Ox={(x1)e2x(0, T):y; (u° (x, 1))=0 for je K and y; («° (x, 1)) <0 for j¢ K}

Since w® and ¢ are measurable the set Qx is measurable.

Let us denote by A?x} and via‘}( subvectors of A° and ¢° respectively corresponding
to the set K of indeces.

Using (3.8) we rewrite (3.13a) in the form
3, ¢ (w0 (x, 1), y° (x, 1)) +B* p° (x, t)+J, YT (@ (x, 1)) A° (x, 1) =0.
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Note that by (3.13b) this formula reduces on Q to

6, 0 (w0 (x,0), 7 (x, 1)) +B* p° (x, )+ 3, W (#° (x, 1) A% (x, 1) =0. ' (3.15)

By (3.14) for every (x,7)e Qg the matrix J, tiaﬂ (#° (x,1)) has a left invers
xx (x, 1). It is easy to see that »y (x, ) can be constructed in such a way that g
is a measurable function on Q.

Hence fron (3.15) we get

Ap (x, )=xg (x, 1) [, 0 (v (x, 1), )° (x, 1)) —B* p° (x, 1)]
which shows that 5\‘;, is measurable on Q. Since by (3.13b) all components of
A° (x, t) do not belonging to A% (x, f) are equal to zero for (x, 1) € Q it shows that
A’ is measurable on Q.
Repeating the same argument for all subsets K we get measurability of A° on
Qx(0,7).
Now let us show that A°e L? (0, T; H® (Q)).
Multiplying (3.15) by AY (x,1) 0, gk (v (x, 1)) and using equality
A, 1) 0, e (#° (v, ) = =0, 97 ( (x, 1), 3° (x, 1))~ (B* p° (x, 1))
we get
~3, 9" (w0 (x,1),)° (x,1)) 6, ¢ (& (x, 1), y° (x, 1)) +
—(B*p° (x, )" 6, ¢ (0 (x, 1), y° (x, 1)) =6, 9" (w (x, 1), y° (x, 1)) X
X B* p? (x,1)—(B* p° (x, )T B* p° (%, t)—}-i?f (x,1)0, kl;K (@ (x, 1)) %
x 0, WL (# (x, D) A (x, 1)=0.
Hence taking advantage of (3.14) we obtain
B I (x, 1) 12<[0, 0 (v (x, 1), ° (x, D) +
+2|1B* p° (x, D]|[8, ¢ (#° (x, 1), 3° (x, D)|+11B* p° (x, NP

<2 (16, 9 (# (x, 1), 7° (x, D)+ 1B* p° (x, D|P) for (x, 1) € Ox.
Since for (x, #) € Qg all components of A° (x, f) which do not belong to iK (x, 1)
are equal to zero we have
Bl (x, DIP<2 (B, ¢ (w° (x, 1), y° (x, )P +11B* p° (x, DII?) for (x,1)€ Ok.

Not that the same argument can be repeated for any set Qx. Hence the above
inequality holds on © x (0, 7). Integrating this inequality over Q x (0, 7') and taking
into consideration (2.15) and (2.16) we get

T
BINYE: a2 [ j f [6,0 @ (x, 1), y° (x, 0))|? dx di +
0o Q2
T

+ [ [ 1B*p° (x, )| dx dt | <o0. q.e.d.
Ao
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Now we shall define on
JE72 (0, T HS (.Q)) x W0, Ty L? (0, T3 H°)) % L2 (0, T, H® (H))

a new Lagrangian L (u, y, A, p).
To this end let us add to I* (u, A, y (x, 1), B* p (x, 1)) given by (3.8) the component

dy (x,t
o), y—gl — 4@y ).

Integrating the result over Q x (O, T ) for weL? (0, T; H° (Q)); ye W' (0, T)
and AeL?(0,T: H° (Q)), peL* (0, T; H® (2)) we define

d
Ly, A, p)%J (n, y)+«<(p, %—My— %u))+((7\, "4 (u))) (3.16)

where

¥ () (x, )L (u (x, 1))
We shall prove the following i
Lemma 3.2. If condition of Lemma 3.1. are satisfied then there exist Lagrange

multipliers p°, which satisfies (3.4), and A°eL* (0, T; H® (Q)), A°>0, such that
Lagrangian L (u, y, A, p) assumes the saddle point at (u°, y°, A°, p°), i.e.

L (uo’ J’oa l’ P)<L (uo’ yo‘! ;‘09 pa)gL (ll, Y, 7‘0> Po) . (317)
Vue L? (0, T; H° (Q)), Vy e W' (0, T),y (0)=)",
VpeL? (0, T; H® (2)), VAe L? (0, T; HO (2)), A>0.Y

Proof. The function A° e L2 (0, T; H® (Q)) is constructed like in Lemma 3.1.
By (3.13b) it satisfies condition 2°>0. Therefore it is enough to show that condi-
tions (3.17) are satisfied.

Adding to each component of (3.9) the term

@ (1)
(0, == A @ 1)),

integrating over 2 x (0, 7) and using definition (3.16) we get
L (@ y°, A, p)<L @, y°, A%, p°)<L (&, y°, 2%, p°) (3.18)
Vue L? (0, T; H° (Q)), VA e L? (0, T; H® (Q)), A>0.
Note that it follows from (3.3) as well as from (3.1) and (3.16) that:
L (u°, y°, A°, pO)<L (°, y, A%, p°) Vy e W1 (0, T),y (0)=y". (3.19)
Convexity of L (&, y, A°, p°) with respect to (u, y) together with (3.18) and (3.19) imply
L, 3°, 2% p)<L (&, 3, X, p?). (3.20)

3) A=0 denotes A (x,1)=0 for almost all (x,)e 2x(0, T).
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On the other hand we have
L@, y°, A, p)=L (u°, y°, A, p°) Vp e L* (0, T; H® (Q)). (3.21)
Combining (3.18), (3.20) and (3.21) we arrive at (3.17). g.e.d.

ReMARK 3.1. Saddle point conditions (3.17) are equivalent to the following
Kuhn—Tucker conditions

(6, L @, y°, 2% p°), y—3°)=0 Vye W' (0, T), y (0)=)", (3.22a)
0, L (w, y°, X%, p°) =0, (3.22b
(e, ¥ @))) =0, 2°>0. (3.22¢)

4. Regularity of optimal controls and states

This section is devoted to investigating the regularity of the optimal solution
(w°, y°) as well as the optimal Lagrange multipliers A° and p°.

To this end we shall use the following result concerning regularity of solutions
to parabolic equations i

LemMma 4.1. If in (2.1)

feL*(0,T; H' (Q)), (4.1a)
o -
—-I2 (0, T; H (), (4.1b)
f0)eH' (), 4.1¢c)
y'e H?(Q), (4.1d)
ay*r
=0 (.1¢)
then
yeL*(0,T; H?* (Q)), (4.2a)
dy
€ L* (0, T; H* (), (4.2b)
d?y
o2 €L (0.T; H' (). | (4.2c)

Proof of Lemma 4.1. is given in Appendix A.

THeOREM 4.1. If optimal control u® satisfies the following conditions of regularity

wel?(0,T; H (), (4.32)
du’®
el (0,T; H° (@), (4.3b)

w (0), w (T) e H (Q), (4.3¢)
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then the solution p° of the adjoint equation (3.4) satisfies (4.2). If additionally the
initial condition y’ satisfies (4.1d) and (4.1¢) then also the solution y° of the state
equation (2.19) satisfies (4.2).

Proof. Let us start with the regularity of y»°. We shall use Lemma 4.1. Since
by assumption (4.1d) and (4.le) are satisfied it is enough to check if (4.1a), (4.1b)
and (4.1c) hold, but if follows immediately from (2.15) and (4.3).

Now let us consider the adjoint equation (3.4). Changing the direction of time
by substitution t=7—¢ we note that also in this case Lemma 4.1. can be used.
Condition p (T)=0 assures that (4.1d) and (4.le) are satisfied.

Then it is enough to check if the function f=4,J (w° y°) satisfies (4.1a), and
(4.1b) as well as (4.1c) at T. :

Note that
8, J (w°, y°) (x, )=0, ¢ (° (x, 1), ) (x, 1)), (4.42)
d ,,(x 0,
o 8T W0 (e =60 ) (e, ), PP (e )}
+05, 0 (0 (x, 1), »° (x, 1) 2 a(tf i . (4.4b)

Taking into account (2.7), (2.16) and (4.3) we find that the function f=4, J (u°, y°)
satisfies (4.1a), (4.1b) and (4:1c¢). , q.e.d.
It follows from Theorem 4.1 that in order to show the required regularity of
optimal solutions to state and adjoint equations it is enough to show that optimal
control satisfies (4.3). ‘

Unfortunately we are not able to do that in the general case of constraints of the
form (2.13) and we restrict ourself to the case where u is a scalar function with
bounded amplitude. It means that we put g=1, r=2 and

Wau={we R |w|<l}={we R': Y (W)<0} 4.5)
where
YT w)y=w—1, —w—1) (4.5a)

For such a functioa ¢ condition (3.14) is trivially satisfied.

THEOREM 4.2. If constraints function  is given by (4.5a), then the optimal
control u° satisfies condition of regularity (4.3).

Proof. To construct the optimal control we use (3.13). To this end let us de-
fine an auxiliary function @ (x, t) given by

0, I* (i (x, 1), y° (x, 1), B* p° (x,1))=0. 4.6)
Since by (3.7a) we have

1" (uy y, B* p)=0,, 0 (u, 3),
condition (2.16b) implies

1
[Ou 1" (w, y, B* P)ITVIS— <0 Vi, y, B pe R 4.7
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Hence it follows from the implicite function theorem [13] that there exists a
function 9 (y, B* p) continuous in a neighbourhood of (y° (x, 1), B* p° (x, 1)) [13]
such that

i@ (x, )=3 (" (x, 1), B* p° (x, 1)). (4.8)

It is shown in Appendix B that the function # defined on Q@ x (0, T) by (4.8)
satisfies the following conditions of regularity

uel?(0,T; H' (Q)), (4.92)
dit ‘
"‘{7 e (0, T HP (.Q)) 5 (4.9b)
u(t)ye H' () Vte |0, T]. (4.9¢)

Now let us construct the optimal element u° (x, ¢) which satisfies (3.13). Taking
into account the form (4.5) of constraints we find that u° (x, t) is given by

i(x, 1) if —l<i(x, )<l
12 0)=3 - 1 if i(x, 1)=1 . (4.10)
-1 if i(x,nN<—1

This can be rewritten in the form
u (x, f)=max { —1, min {i (x, 1), 1}}. (4.10a)

It is easy to check that since # satisfies (4.9) the optimal function u° defined on
0Qx(0,7T) by (4.10) also satisfies (4.9). . g.e.d:

We conclude the paper with a result concerning the regularity of Lagrange
multipliers A.

THEOREM 4.3. [If constraints are given by (4.5) then the optimal Lagrange multi-
plier N° satisfies conditions

Ael?(0,T; H' (Q), (4.112)
'dt e L2 (0, T; H° (2)), (4.11b)
A (e H' (Q)Viel0, T]. (4.11c)

Proof. By (3.7a), (3.8), (3.13) and (4.10) we have

—(0u 9 (L, y° (x, £))+B* p° (x, 1)) =
A fx, 1= ==, (1, 3° (&, 0), B* p? (%, 8))  if alx, £)=1
0 if 4, <.

Using the definition of # (x, #) and convexity of /' (-, y° (x, 1), B* p° (x, t)) the
above formula can be rewritten in the form

23 (x, £)=max {0, —(J, ¢ (1, y° (x, 1)) +B* p° (x, 1))} . (4.12a)
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In a similar way we get
2 (x, )=max {0, 6, p (— 1, y° (x, 1))+ B* p° (x, 1)} . (4.12b)
By (2.7) and (2.16) the function J, ¢ (1, y°) satisfies conditions (4.9), while by
(2.15) these conditions are satisfied by B* p°. Hence, in a similar way as in the
proof of Theorem 4.2. (4.12) imply (4.11). g.e.d.

APPENDIX A

Proof of Lemma 4.1. It follows from Theorem 5.2 in [12] (p. 33) that if

pel?(0,T; H' (Q), (A.1a)
dop ;
A el?0,T; H° (Q), (A.1b)
9 (0)=0, (A.1c)
then the boundary value problem
Iy, Qx(©.T
dt = (” on X ( > )
oz (A.2)
=0 on dQ2x(0,T)
M4

z(0)=0 on Q

has the solution z such that

zeL*(0,T; H? (Q)) (A.3a)
d?z :
e eL?(0,T; H° () (A.3b)

and z continuously depends on ¢.

In order to apply this result to the case of equation (2.1) with nonhomogeneous
initial condition (2.5), note that if the function y satisfies (4.1e) and if there exists
a function w satisfying this condition as well as (A.3) and such that

w (0)=y" (A.4)
then we can introduce a new variable
z(O)=y (O)—w() (A.5)
and rewrite (2.1) along with conditions (2.4) and (2.5) in the form

dz dw

E—Az=f— (W —Aw), on 2x(0,7) (A.6a)
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iz
=0 on dQx(0,7T) (A.6b)
M4
z(0)=0 on Q (A.6¢)
If the function -
e .

satisfies (A.1) then the solution z of (A.6) satisfies conditions (A.3) and thus (A.5)
implies that these conditions are also satisfied by y.

Hence taking into consideration (A.la) and (A.1b) we conclude that the function
w should satisfy the following conditions:

weL?(0,T; H? (). (A.82)
dt:) eL?(0,T; H° (Q)), (A.8b)
w (0)=y7, (A.8¢c)
dw
7—Aw eL*(0,T; H' (Q)), (A.84d)
d*w dw ‘ X
— A e L2 (0,T; H° (@), (A.8e)
dw (0)
——;,I———Aw 0)=1(0). (A.8f)

We are going to find conditions on p” under which there exists a function w
satisfying (A.8).
It follows from (A.8b) and (A.8e) that

dw
e eL*(0,T; H* () (A9)

Taking advantage of Proposition 2.3 in [12] (p.14) we conclude that (A.9)
holds if

we Hb2 (2 x (0, T))V. (A.10)

Condition (A.10) assures also that (A.8a) and (A.8d) are satisfied.
From the trace theorems (Theorems 2.1 and 2.3 in [12] pp. 10 and 21) it follows

that a function satisfying (A.10) exists iff the following initial conditions of regularity
hold

w(0)e H? (G), (A.11a)
dw (0) .
— e H (@), (A.11b)

) The definition of the space H™* (2% (0, T)) is given in [12] p. 8.
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and the condition of compatibility:

aw (0)
———=0 on ¢Q (A.12)
on4
is satisfied.
From (A.8c) and (A.lla) we get
y e H* (Q). (A.13)

If (A.13) holds, then by (A.8f) and (4.1c) condition (A.11b) is also satisfied.
Hence conditions (A.12) and (A.13) assures the existence of a function w satis-
fying (A.8).

Summarizing we conclude that if conditions (4.1) hold then the solution y of
(2.1) satisfies (4.2a) and (4.2¢). In turn equation (2.1) together with (4.2a) and (4.1a)
imply (4.2b) q.e.dx

APPENDIX B

Proof of (4.9). According to the implicite function theorem [13] the function

& given by (4.8) is differentiable at (y° (x, 1), B* p° (x, t)) and
d, 8 (y°, B* p°)=—I[o, I @, )", B* p)]~" [0; , ' (@, »°, B*p°)],  (B.la)
58* po ‘9 (y05 B* po) =y [53,; ll (ﬁ: }’O, B* po)]—l [ 33* 4 ll (ﬂa yaa B* PO)] % (Blb)

Note that
53, y ll (Ll, y’ B* p) =(53, b4 @ (u: y) s

55,3*1, I (w0, B p)=1.

Hence using (2.16) and (:+.7) we get from (B.1)
16, 3 (»°, B* p°)|<C< o0 Vy°, B* p° e R!, (B.2a)
|0+ po 3 (3%, B* p°)|<C< o0 Vy° B* p°e R'. (B.2b)

From (4.8) we obtain

di (x, 1) : . 9y° (x, 1)
>, 080 (%0, B*p (x,0) Y R

dB* p° (x, t)
Jt ’

+ 05+, 9 (3 (x, 1), B* p° (%, 1))

a1 (x, t) ' 9y° (x, 1)
o %9 (»° (x, 1), B* p° (x, 1))

(B.32)

ox;
O0B* p° (x, 1)
ax;

+On 0 8 (37 (x, 1), B* p° (x, 1)) ,i=1,2,...n. (B.3b)
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Taking advantage of (B.2) we get

da (x, 1) |2 ay° (x,1) |* | 9B*p° (x,1) |
i T | =6 oz 5 ,
ot ot Jt
1 di (x,t) | ( 8y’ (x, ) | | aB* p° (x, 1) 2) (B.4a)
S .
8xi 5)(,- Xi

Integrating (B.4a) over 2 x [0, T] and taking into consideration (2.15) as well
as the fact that
ay’  dp°

A . o
T eL? (0, T; H° (Q))

we obtain (4.9b). This in turn implies that
ie C(0,T; H° (Q)). (B.5)

Hence for every t e [0, T] i (¢) is well defined as an element of H° (). We shall
show that @ (¢r)e H' (Q). To this end let us integrate (B.4b) over Q for a fixed
value of re [0, T]. Taking advantage of the fact that by (2.7a) we have

¥ (1), p° ()e H' (Q)
we obtain (4.9¢).

At last we get (4.9a) integrating (B.4b) over Q x [0, 7] and taking into account
(B.5).
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O regularnos$ci rozwiazan wypuklych zadan sterowania opty-
malnego dla ukladéw parabolicznych przy ograniczeniach
sterowania

Rozwaza si¢ zadanie sterowania optymalnego dla ukfadu opisywanego liniowym réwnaniem
parabolicznym. Funkcjonat jakosci jest wypukly, a na sterowanie nalozone sa ograniczenia typu
lokalnego. Do takiego zadania stosuje si¢ formalizm Lagrange’a. Pokazuje si¢, ze mnozniki La-
grange’a odpowiadajace ograniczeniom sterowania sg odpowiednio regularnymi funkcjami. Dowodzi
si¢ regularnosci sterowania i trajektorii optymalnej.

O peryJsipHOCTH peilieHHii BBIIYKJBIX 32/1a4 ONTHMAJBHOIO
ynpaBJjenus i Napado/M4ecKHX CHCTeM IPH OrpPaHHYeHHs X
[0 YHpPAaBJICHHIO

PaccmarpuBaercs 3a/a4a ONTHMAIBHOTO YIPaBIEHHS Uil OOBEKTA OMHUCHIBAEMOTO JIMHEHHOMN
napaboimyeckoit cucremoi. PyHKIMOHAT KA4ecTBa sIBJISIETCS BBINYKIIbIM, a Ha yNpaBlieHAEe HAKIIA-
IIBIBAOTCSI OTPAHAYEHHs JIoKaabHOro tuna. K Takoif 3amaye ucnonb3yercs: Gopmanusm Jlarpanxka.
TToka3aHo, 4YTO MHOXHWTE/NM JlarpaHxa, COOTBETCTBYIOUIHME OTPAHUYSHHSIM 110 YIPaBIIEHHIO,
SBJIIFOTCSL  peryJissipHbiMU  QyHKUsiMH. JlOKa3aHa peryjisspHOCTE YIOPaBICHUS M ONTHMAJIbHO
TPaeKTOPHY.



