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An 'optimal control problem for a system described by linear parabolic equation is investigated. 
Cost functional is convex and control functions are subject to constraints of local type. The Lagrange 
formalism is used to such a problem. It is shown that the Lagrange multipliers corresponding to 
constraints of control are some regular functions. Some regularity results for optimal controls 
and trajectories are derived. 

1. Introduction 

To estimate the rate of convergence of finite dimensional approximations to 
continuous optimal control problems the Lagrange formalism is used [5, 9, 10, 14]. 
It turns out [5] that to obtain an effective estimation of such a rate of convergence 
the optimal variables of an appropriate Lagrangian, both primal and dual, must 
be regular enough. 

Very few has been done in the field of investigating the regularity of optimal 
solutions and in particular the regularity of optimal Lagrange multipliers. We have 
to mention here the pioneering papers by Hager [5, 6, 7]. 

In particular Hager used stability results for finite dimensional quadratic pro­
gramming problems to investigate the regularity of optimal solutions for systems. 
described by ordinary differential equations subject to control and state constraints. 

As far as systems with distributed parameters are concerned, the regularity of 
optimal control for elliptic equations was discussed in [3]. 

The authors do not know any results concerning the regularity of Lagrange 
multipliers (other than adjoint equations) for such systems. 

In this paper an optimal control problem for a system described by linear para­
bolic equation with control in the domain is considered. It is assumed that the cost 
functional is strictly convex and that control functions are subject to constraints 
of the local type. 



58 I. LASIECKA, K. MALANOWSKI 

Regularity of solution to such a problem is investigated. 
In Section 3 a Lagrangian is introduced. It is shown that under some additional 

assumptions, Lagrange multipliers corresponding to constraints of controls are 
some regular functions and that the Lagrangian assumes its saddle point at the so­
lution of optimal control problem. 

In Section 4 the results of regularity for solutions of the state an'd adjoint equa­
tions are discussed. It is shown that this regularity depends on regularity of optimal 
controls. For particular case of constraints of amplitude type the needed regularity 
of the optimal control is proved. 

The obtained results of the regularity will be used in the forthcomming paper 
of the authors [10] to investigate a finite dimensional approximation to optimal 
control problems. 

Note that the problem of the regularity of optimal controls for parabolic systems 
~ in the case of state space constraints is an open one and seems to be hard. 

Some used notations 

Rs = s-dimensional Euclidean space 
(v, w), llvll =the inner product and the norm in Rs 

L2 (Q) =H0 (Q) =the space of vector-valued functions, square integrable on Q 

(u, v) = J (u (x), v (x)) dx, llullo = (u, u)t =the inner product and the norm in H 0 (Q) 
fl 

H' (Q)- Sobolev space of vector-valued functions, square integrable together 
with their (weak) derivatives up to the order r with the inner product 

and the norm 

where 

r 

(u, v),=}; (Di, u, Di v) 
lii=O 

I lull, =(u. u);-

By H' (Q) we denote the appropriate Sobolev space of scalar-valued functions 
L 1 (0, T; Z)- the space of functions with range in a Banach space Z, square in­

tegrable on [0, T], 
T 

((y, z)) = J (y(t), z(t))z dt; IIYIIL2(Zl =((y, y)) t - the inner product and the norm 
0 

in U (0, T; Z), 
C (0, T; Z) -the space of functions continuous from [0, T] into Z with the norm 

IIYIIc (Z) = max IIY (t) llz, 
t E [0, T] 

!i' (Y, Z) -the space of linear bounded operators from a . Banach space Y into 
a Banach space Z . 
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<>u J (u, y)- strong (Frechet) derivative of functional J (u, y) with .respect to u, 
· <>;y J (u, y)- second strong derivative of functional J (u, y) with respect to u and y, 
· <5 2 J (u, y) - Hessian of functional J (u, y). 

2. Statement of optimal control problem 

Let Q be a bounded domain (open set) in R" with properly regular boundary 
oQ. For the sake of simplicity we shall assume that (}Q is of class c oo . Moreover we 
assume that locally Q is situated on one side of IJQ. 

Let T be a fixed time. 

We consider the system described in the cylinder Q x (0, T) by the following 
parabolic equation (state equation) 

oy(x, t) 
--a{- - Ay(x, t)=f(x, t) (2.1) 

where f is a function of an appropriate regularity defined on Q x (0, T). 

Elliptic self-adjoint operator A is given by 

n a ( oy (x)) 
Ay(x)=}; ox- au(x)ax~ -a0 y(x) 

i,j= 1 J I. 

(2.2) 

where thefunctions aii(·)=ai;(·) and a0 (·) are properly regular (for the sake of 
simplicity of class C 00

) and there exists such a constant p0 >0 that 

n n 

}; au(x)!;J,i?;;p0 }; c;; VxEQ, (2.3a) 
i,j ~ 1 i~ 1 

and 

(2.3b) 

For (2.1) the following homogeneous boundary conditions of Neumann type 
are satisfied 

oy(a, t) n oy(a, t) 
-

0
--= }; au(a) ox - cos(1J,a1)=0 VaEoQ, VtE [O,T] (2.4) 

YJA i,j~l J 

where YJ is the unit outward normal to IJQ. 

Moreover the initial condition 

y (x, 0) = yv (x ) for almost all x E Q (2.5) 

is satisfied, where yv is properly regular function defined on Q . 

The problem of regularity of solutions to (2.1) will be discuss in details in Appen­
dix A : Here we quote only a result known from literature (cf. [2, 11]) which we shall 
use in the sequel: 
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LEMMA 2.1. If 

yP E H 1 (Q), f E V (0, T; H 0 (Q)) 

then the solution y of (2.1) satisfies the following conditions of regularity 

and the mappings 

yE C(O, T; H 1 (Q)), 

dy 
- EL2 (0 T· H 0 (Q)) 
dt . ' ' ' 

H 1 (Q) xV (0, T; H 0(Q)) 3 (yP,j)--"Y E C (0, T; H 1 (Q)), 

dy 
H 1 (Q) xL2 (0, T; H 0 (Q)) 3 (yP,j)-+ dt E L2 (0, T; H 0 (Q)) 

are continuous. 

Let us define 
(dy) (x, t) def_ A (x) y (x, t) 

and introduce the space 

W 1 (0, T)= 

(2.6) 

(2.7a) 

(2.7b) 

(2.8a) 

(2.8b) 

(2.9) 

f dy ) 
= p E L 2 (0, T; H 1 (Q)): dyE L2 (0, T; H 0 (Q)), dt E L2 (0, T; H 0 (Q)) J. (2.10) 

By Lemma 2.1 for any .fE L2 (0, T; H 0 (Q)) the solution of (2.1) belongs to 
W 1 (0, T). 

In order to state the problem of optimal control we introduce the space U of 
control functions u: 

U=L2 (0, T; V) (2.11) 

where 
(2.11a) 

is the space of functions with the range in Rq. 
On the space Rq there is defined a r-dimensional vector function ~ (w). It is 

assumed that ~ is convex, differentiable and its derivative satisfies the condition 

(2.12) 

Moreover the set 
(2.13) 

is not empty : 
(2.13a) 

1 > Assumption (2.la) was introduced only for the sake of simplicity of the notations. The 
obtained results are still valid if we put V=L2 (S), where ScR"' is some open and bounded set 
different from Q. In particular if m=O, then control functions depend only on time. 

2 > If/ (w) ,;o denotes If/; (w),;O Vi=l, 2, ... , r. Here and in the sequel c will denote a generic 
constant not necessarily the same in any two places. 
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In the space U we define the set Uad of admissible control putting 

Uad = { u EL 2 (0, T; V): u (x, t) E Wad for almost all 

xEQ, lE [0, T]}. 

In (2.1) we put f(t) =Bu (t), where 

BE£' (H 0 (Q); H 0 (Q)) n £' (H 1 (Q); H 1 (Q)) 0 

Moreover we introduce the. cost functional 

T 

J(u,y)=J J rp(u(x,t),y(x,t))dxdt 
on 

61 

(2.14) 

(2.15) 

(2.16) 

where rp (u, y) is a convex, twice differentiable function and the following conditions 
are satisfied 

[[J;,u rp (u, y) [[ , [[o;,Y rp (u, y)[[, [J~.Y rp (u, y)[ < C, VuE Ra, Vy E R1, (2.16a) 

vrb;,urp(u,y)v?=a [[v [[ 2
, a>O, Vu,VERq, VyER 1 (2.16b) 

From (2.16b) it follows in particular that the Hessian 62 J of J satisfies the 
following condition of coercitivity: 

( b2 J(u, y); V, z; V, z)?= IX [[v![z2(H0)' Vu, V E u (0, T; H 0 (Q)) 

Vy, z E L 2 (0, T; H 0 (Q)) (2.17) 

Now we are in position to formulate our optimization problem (P-1). 

(P-1) find u0 E Uad such that 

l(u0
, y 0 (ll 0 ))<l(u, y(u)) VuE Uad 

where y (u) is the solution of the state equation 

oy(x, t) -
ot -A (x) y (x, t) =Bu (x, t) 

along with the boundary and initial conditions 

oy (a, t) 
---= 0 

OYJA ' 

y(O)=yP. 

(2.18) 

(2.19) 

(2.19a) 

(2.19b) 

Due to the assumption (2.16b) the functional I (u) =1 (u, y (u)) is strictly convex 
and continuous, hence it is weakly lower semicontinuous and radially unbounded 
[15]. On the other hand the set Uad is weakly closed in L 2 (0, T; V). Hence (P-1) 
has [1, 15] the unique solution u0

• 

This paper is devoted to investigation of regularity of the optimal control U
0

, 

the optimal trajectory yo =y (u0
) and optimal Lagrange multipliers corresponding 

to equality (state equation) and inequality constraints (constraints on control). 
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3. Lagrange formalism 

Problem (P-1) of optimal. control can be treated as a problem of minimization 
of the cost functional J (u, y) in an appropriate Hilbert space subject to constraints 
of equality and inequality types. Introducing a Lagrangian this problem of optimi­
zation can be reduced to the problem of seeking the saddle point of the Lagrangian, 
hence to a problem of unconstrained minimization. 

In this Section an appropriate Lagrangian will be introduced. There will be given 
sufficient conditions under which Lagrange multipliers corresponding to constraints 
on control functions are regular. 

Let us introduce a Lagrange functional 

L1 : F (0, T; H~ (Q)) x W 1 (0, T) x£2 (0, T; H 0 (Q))->R1 

given by 

L 1 (u,y,p)defl(u,y)+ ((p, ~ -dy-B#u)) (3.1) 

where 
(B#u) (x, t) def Bu (x, t). (3.2) 

By Lemma 2.1. the operator 

dy 
(£ (u, y) def dt- dy- B#u 

maps the set F (0, T; H 0 (Q)) x {yE W1 (0, T): y (0) = yv} onto L 2 (0, T ; H 0 (Q) ). 
Hence [8] there exists a La grange multiplier p 0 E F (0, T; H 0 (Q)) such that the 
Lagrangian (3.1) assumes the degenerate saddle point at (u•, y•, p•) 1.e. 

L 1 (u•, y•, p) =L1 (u•, y•, p•),;;L1 (u, y, p•) 

for every 
u E u.d; yE W' (0, T), y (0) =yP; p E F (0, T; H 0 (Q)) 

(u•, y•)- denotes here the solution of (P-·1). 

(3.3) 

Using the fact that A (x) is self-adjoint it is easy to show [12] that the element 
p• satisfying (3.3) can be characterized as the solution of the following adjoint 
equation 

Op0 (x, t) 
ot +A (x) p 0 (x, t) =by J (u•, y•) (x, t) in Q X (0, T) (3.4) 

Op0 (x, t) 
---=0 

017A 

p• (x, T)=O 

in rx (0, T) (3.4a) 

in Q (3.4b) 

Taking into consideration (2.16) we conclude from Lemma 2.1. that the solu­
tion p• of the adjoint equation (3.4) satisfies the following regularity conditions 

p 0 E c (0, T; H 1 (Q))' 

dp• 
-d E£2 (0, T; H 0 (Q)). 

t . 

(3.5a) 

(3.5b) 
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In order to characterize the optimal control u0 we shall use the right-hand side 
inequality in (3.3). 

Taking into considerations definitions (2.13) and (2.16) as well as (3.1) we get 

u E Uad 

{
. ( ' dy

0 '))l min J (u, y0)-((88* p0
, u))+ (p,- - .9/y0 J = 

uEUad · dt 

. (( dy
0 

) .) =min{J(u,y0)-((.?4 '~ p0,u))}+ p, - -.9/y0 = 
u E'Uaa 1 dt 

= min {f j[tp(u(x,t),y0 (x,t))+ <.?4*p0 (x,t),u(x,t) ) ]dxdt+ 
{u: t/t (u (x, r)) .; 0} o g · 

( 
dyo )) T 

+ (p, d- d y 0 = J J { min [lP (u (x, t), y 0 (x, t))+ 
f 0 g {u (x, t): t/t (u (x, r)) .; 0} 

+ <.?4* p 0 (x, t), u (x, t)) ]} dx dt+ ((p, d:: = dy0
)). (3.6) 

We use here the fact that the constraints on control are of local type. 
It follows from (3.6) that the optimal control U0 for almost all x E Q and t E [0, T] 

is the solution of the following local problem of optimization 
(P-1) find U 0 (x, t) satisfying condition ~ (uo (x, t))~O and such that 

f1 (u0 (x, t), yo (x, t), B * p 0 (x, t))~fl (u, yo (x, t), B~' p 0 (x, t)) (3.7) 

for every u E Rq such that ~ (u)~O, where 

f1 (u, y, B'~ p) def tp (u, y) +<B* p , u) . (3.7a) 

(P-1) is a typical problem of finite dimensional convex programming. Since 
the function ~ is convex and tp is strictly convex there exists the unique element 
11° (x, t) E Rq statisfying (3.7) [4]. Moreover a sufficient condition of optimality 
of U0 (x, t) is that there exists a Lagrange multiplier A0 (x, t) ER', A0 (x, t)~O such 
that the Lagrangian 

assumes the saddle point at (u0 (x, t), A0 (x, t)), i.e. that 

l ( 11° (x, t), A, Y0 (x, t) , B * p 0 (x, t))~ l ( u0 (x, t), A0 (x, t), yo (x, t), B *p 0 (x, t))~ 

~ I (u, A0 (x, t), yo (x, t), B* p 0 (x, t)) VuE Rq, 

V A ER', A~O. (3.9) 

It is well known [4] that since Problem (P- 1) has the unique solution then to 
prove that A0 (x, t) saisfying (3.9) exists it is enough to show that the following 
Slater's condition is satisfied 

:Ju E Rq: lfli (u0 (x, t))+ou lfli (u0 (x, t)) u<O, i=l, 2, ... , r. (3.10) 
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Let ~ ( u0,(x, t)) denote }-dimensional (j~r) subvector o ~ containing all these 
components, which are active for u0 (x, t), i.e. 

~ (u0 (x, t)) =0. (3.11) 

It is easy to see that if there is satisfied the foll~wing condition of regularity: 

3/3>0: zT t\ ~ (u0 (x, t)) 6, ~T (uo (x, t)) z~f3 1 1z l l 2 , Vz E Ri (3.12) 

then there exists a left inverse of 6" ~T (u0 (x, t)). Hence we can choose an element 
u1 E Rq such that 

6u ~T (u0 (x, t)) u1 <0. 

Taking into consideration that for all components !flk of the vector ~. which 

do not belong to ~ (u0 (x, t)) we have 

lf/k (u0 (x, t))<O, 

we can easily see that for y > 0 small enough the element 

satisfies Slater's condition (3.10). 
Hence [4] there exists a Lagrange multiplier A0 (x, t) ER', A0 (x, t)~O such 

that the following Kuhn-Tucker conditions are satisfied 

6u l ( 11° (x, t), A0 (x, t), y 0 (x, t) , B* p 0 (x, t)) =0, 

<"A0 (x, t), ~ (u0 (x, t))) =0 A0 (x, t)~O. 

The convexity of J and ~ together with (3.13) imply (3 .9). 

(3.13a) 

(3.13b) 

Note that from (3.12) and (3.13) it follows that the element A0 (x, t) is unique. 
Now let us define on Q x (0, T) the function A0 which for almost every (x, t) 

is equal to A0 (x, t). We have the following: 

LEMMA 3.1. If there exists f3 > 0 such that for almost all x E Q, t E [0, T] 

zT 6, ~ (uo (x, t)) 6" ~T (uo (x, t)) z~f3 11 z ll 2 , Vz E Ri (3.14) 
then 

A0 E U (0, T; H 0 (Q)). 

Proof. First let us prove that A0 is measurable. Let K be any subset (including 
the empty set) of the set {1, 2, ... , r} of indeces and let us define 

QK={(x, t)EQx(O, T): lfli (uo (x , t))=O for jEK and lfli (u0 (x , t) )< O for j~ K} 
Since 11° and ~ are measurable the set QK is measurable. 

A A 

Let us denote by )..~ and ~~ subvectors of A0 and ~o respectively corresponding 
to the set K of indeces. 

Using (3.8) we rewrite (3.13a) in the form 

6,. rp ( 11° (x, t) , y 0 (x, t)) + B* p 0 (x, t) +6u ~T (u 0 (x, t)) A0 (x, t) =0. 
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Note that by (3.13b) this formula reduces on QK to 

b" ({J (uo (x, t), Y0 (x, t))+B':' p 0 (x, t)+ou ~i (uo (x, t)) ).~ (x, t)=O. (3.15) 

By (3.14) for every (x, t) E QK the matrix 6
11 
~~ (uo (x, t)) has a left invers 

xK (x, t). It is easy to see that xK (x, t) can be constructed in such a way that xK 
is a measurable function on QK. 

Hence fron (3.15) we get 

A~ (x, t) =l<K (x, t) [- !Ju (/J (uo (x, t), Y0 (x, t))-B* p0 (x, t)] 

which shows that A~ is measurable on QK. Since by (3.13b) all components of 

A0 (x, t) do not belonging to ).~ (x, t) are equal to zero for (x, t) E QK it shows that 
A0 is measurable on QK. 

Repeating the same argument for all subsets K we get measurability of A0 on 
Q X (0, T). 

Now let us show that A0 E U (0, T; H 0 (Q)). 

Multiplying (3.15) by ).~r(x,t)bu~K(u0 (x,t)) and using equality 

).~r (x, t) <>u ~K (u0 (x, t)) = -0
11 

rpT (u0 (x, t), )'0 (x, t)) - ( B':' p0 (x, t)Y 

we get 

-<5" rpT (u0 (x, t), y 0 (x, t)) <5" rp (u0 (x, t), y 0 (x, t))+ 

- (B* p0 (x, t)y <5" rp (u0 (x, t), yo (x, t))- tJ11 rp T (u0 (x, t), y0 (x, t)) X 

xB* p0 (x, t)-(B* p0 (x, t)y B* p0 (x, t)+i~T (x, t) bu ~K (uo (x, t)) X 

x b" ~I (uo (x, t)) i~ (x, t) =0. 

Hence taking advantage of (3.14) we obtain 

fJ I I A~ (x, t) 1!2 ~ ~~611 rp (u0 (x, t), yo (x, t))ll2 + 
+ 2 IlB* P0 (x, t) llil<>,. rp (uo (x, t), )'0 (x, t) )11 + IlB* P0 (x, t) ll 2 ~ 

~ 2 (1\<>u rp ( U 0 (x, t ), Y0 (x, t) )11 2 + IlB':' P0 (x, t) !l2
) for (x, t) E QK . 

Since for (x, t) E QK all components of A0 (x, t) which do not belong to AK (x, t) 

are equal to zero we have 

fJ IIA0 (x, t)ll 2 ~ 2 ~ ~bu rp (u0 (x, t), )'0 (x, t) )W+ IlB* P0 (x, t) ll2
) for (x, t) E QK. 

Not that the same argument can be repeated for any set QK. Hence the above 
inequality holds on Q x (0, T). Integrating this inequality over Q x (0, T) and taking 
into consideration (2.15) and (2.16) we get 

fJ IIA0 IIz, (HO)~ 2 [ J r I\ burp (11° (x, t), Y0 (~, t) )1\2 dx dt + 
0 Sl 

, +I J IlB* P0 (x, t)ll 2 
dx d!l < oo . 

0 Sl 

q.e.d. 

5 
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Now we shall define on 

£2 (0, T; H 0 (Q)) x W1 (0, T) x £2 (0, T; H 0
)) x U (0, T; H 0 (H)) 

a new Lagrangian L (u, y, A., p). 
To this end let us add to / 1 (u, A., y (x, t), B* p (x, t)) given by (3.8) the component 

< dy (x, t) . · ) 
p (x, t), dt -A (x) y (x, t) . 

Integrating the result over Q x (0, T) for u E £2 (0, T; H 0 (Q)); yE W1 (0, T) 
and A. E L 2 (0, T : H 0 (Q)), p E U (0, T; H 0 (Q)) we define 

L(u,y,A.,p)def J(u,y)+((p, ~ ~dy-&Bu))+((A., P(u))) (3.16) 

where 
P (u) (x, t)ctef ~ (u (x, t)) 

We shall prove the following 

LEMMA 3.2. If condition of Lemma 3.1. are satisfied then there exist Lagrange 
multipliers p0

, which satisfies (3.4), and A0 EL2 (0, T; H 0 (Q)), A0 );0, such that 
Lagrangian L (u, y, A., p) assumes the saddle point at (u0

, y 0
, A.0

, p 0
), i.e. 

L (uo, yo, A., p) ,;; L (uo, Yo~ A.o, po),;;L (u, y, Ao, po) (3.17) 

VuE L 2 (0, T; H 0 (Q)), Vy E W1 (0, T), y (O)=yP, 

Vp E U (0, T; H 0 (Q)), VA. E L 2 (0, T; H 0 (Q)), A.);0. 3 l 

Proof. The fu~ction A.0 E £2 (0, T; H 0 (Q)) is constructed like in Lemma 3.1. 
By (3.13b) it satisfies condition A.0 );0. Therefore it is enough to show that condi­
tions (3.17) are satisfied. 

Adding to each component ·of (3.9) the term 

/ dy0 (x,t) ) 
\_ p 0 (x, t), dt A (x) Y0 (x, t) , 

integrating over Q x (0, T) and using definition (3.16) we get 
I 

L (uo, yo, A., po) ,;;L (uo, yo, A.o, po) ,;;L (u, yo, A.o, po) (3.18) 

VuE L 2 (0, T ; H 0 (Q)), VA. E L 2 (0, T; H 0 (Q)), A.);O. 

Note that it follo ws from (3.3) as well as from (3.1) and (3.16) that: 

L (11°, y 0
, A0 ,p0 ),;;L (u0

, y , A.0 ,p0
) Vy E W1 (0, T), y (O)=yv. (3.19) 

Convexity of L(u,y, A.0
, p 0

) with respect to (u, y) together with (3.18) and (3.19) imply 

L (uo, yo, Ao, po),;;L (u, y, A.o, po). (3.20) 

3) :t.. ;?oO denotes :t.. (x , t);?oO for almost all (x, t) E Q x (0, T) . 

-- - ----- - ----- -------------------
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On the other hand we have 

L (u0
, y 0

, A, p) =L (u0
, y 0

, A, p 0
) '1::/p E L 2 (0, T; H 0 (.Q)). (3.21) 

Combining (3.18), (3.20) and (3.21) we arrive at (3.17). q.e.d. 

REMARK 3.1. Saddle point conditions (3.17) are equivalent to the following 
Kuhn-Tucker conditions 

((JyL(uo,yo,Ao,po),y-yo))=O \:lyE Wl (O,T), y(O)=yv, 

Ju L (uo, yo, Ao, po) =0' 

((Ao, tp (uo))) =0, :;..o~O. 

4. Regularity of optimal controls and states 

(3.22a) 

. (3.22b 

(3.22c) 

This section is devoted to investigating the regularity of the optimal solution 
(u0

, y 0
) as well as the optimal Lagrange multipliers A0 and p 0

• 

To this end we shall use the following result concerning regularity of solutions 
to parabolic equations 

LEMMA 4.1. If in (2.1) 
fE £2 (0, T; H 1 (.Q)), (4.1a) 

" 

df 
- E L 2 (0 T· H 0 (.Q)) (4.1 b) 
dt ' ' ' 

f(O) E H 1 (.Q)' (4.1c) 

yP E H3 (.Q)' (4.ld) 

oyP 
-=0 ( 4.1e) 
01JA ' 

then 

yE £2 (0, T; H 3 (.Q)), (4.2a) 

: E L 2 (0, T; H 2 (.Q)), (4.2b) 

d2 y 
dfZ E L 2 (0, T; H 1 (.Q)). (4.2c) 

Proof of Lemma 4.1. is given in Appendix A. 

THEOREM 4.1. If optimal control ·u0 satisfies the following conditions of regularity 

(4.3a) 

(4.3b) 

(4.3c) 
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then the solution p0 of the adjoint equation (3.4) satisfies ( 4.2). If additionally the 
initial condition yv satisfies (4.ld) and (4.le) then also the solution yo of the state 
equation (2.19) satisfies (4.2). 

Proof. Let us start with the regularity of y 0
• We shall use Lemma 4.1. Since 

by assumption (4.ld) and (4.le) are satisfied it is enough to check if (4.la), (4.1b) 
and (4.lc) hold, but if follows immediately from (2.15) and (4.3). 

Now let u,s consider the adjoint equation (3.4). Changing the direction of time 
by substitution r = T- t we note that also in this case Lemma 4.1. can be used. 
Conditionp(T)=O assures that (4.1d) and (4.1e) are satisfied. 

Then it is enough to check if the function f =by J (u0
, yo) satisfies ( 4.la), and 

(4.lb) as well as (4.1c) at T. 
Note that 

bJ,J(u0
, Y0

) (x, t)=by rp (u0 (x, t), yo (x, t)), ( 4.4a) 

d OU0 (x, t) 
dt by J (u 0

, Y0
) (x, t) =b,;., rp (u0 (x, t), Y0 (x, t)) ot + 

2 ayo (~. t) 
0 

+b)'Yrp(u0 (x,t),y"(x,t))-
0
-t-. (4.4b) 

Taking into account (2. 7), (2.16) and ( 4.3) we find that the function f =by J (u0
, y 0

) 

satisfies (4.1a), (4.Ib) and (4:1c). q.e.d. 

0 

It follows from Theorem 4.1 that in order to show the required regularity of 
optimal solutions to state and adjoint equations it is enough to show that optimal 
control satisfies ( 4.3). 

Unfortunately we are not able to do that in the general case of constraints of the 
form (2.13) and we restrict ourself to the case where u is a scalar function with 
bounded amplitude. · It means that we put q = 1, r = 2 and 

(4.5) 
where 

l.jJT (w)=(w-1, -w-1) (4.5a) 

For such a funcfoa l.jJ condition (3.14) is trivially satisfied. 

THEOREM 4.2. If constraints function l.jJ is given by (405a), then the optimal 
control U0 satis_fies condition of regularity ( 4.3). 

Proof. To construct the optimal control we use (3.13). To this end let us de­
fine an auxiliary function u (x, t) given by 

bu f1 (u (x, t), } 0 (x, t), B~' p 0 (x, t))=O. (4.6) 

Since by (3.7a) we have 

b~u 11 (u, y, B* p) =b~u rp (u, y), 

condition (2.16b) implies 

(4.7) 
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· Hence it follows from the implicite function theorem [13] that there exists a 
function [). (y , B* p) continuous in a neighbourhood of (y0 (x, t), B* p 0 (x, t)) [13] 
such that 

ii .(x, t) =9 (Y0 (x, t), B':' p 0 (x, t)) . (4.8) 

It is shown in Appendix B that the function ii defined on Q x (0, T) by (4.8) 
satisfies the following conditions of regularity 

ii E u (0, T ; H 1 (Q)), (4.9a) 

dii . 
dt EU (0, T; H 0 (Q)), (4.9b) 

ii (t) E H 1 (Q) \ft E [0, T]. (4.9c) 

Now let us construct the optimal element U 0 (x, t) which satisfies (3.13) . Taking 
into acc.ount the form (4.5) of constraints we find that u0 (x, t) is given by 

l ii(x,t) if -l < ii(x, t)<l 
U 0 (x, t)= _ 1 if i1 (x, t)~l . 

-1 if ii (x, t)~ - 1 
(4.10) 

This can be rewritten in the form 

uo (x, t) =max { -1, min {il (x, t) , 1}}. (4.10a) 

It is easy to check that since i1 satisfies ( 4.9) the optimal function u0 defined on 
Q x (0, T) by (4.10) also satisfies (4.9). q.e.d. 

We conclude the paper with a result concerning the regularity of Lagrange 
multipliers :A. 

THEOREM 4.3 . if constraints are given by (4.5) then the optimal Lagrange multi­
plier A0 satisfies conditions 

d:A_o 

- EL2 (0 T · H 0 (Q)) 
dt ' ' ' 

A0 (t) E H 1 (Q) \:it E [0, T] . 

Proof. By (3.7a), (3.8), (3.13) and (4.10) we have 

l-(c5u tp (1, Y0 (x, t)) + B* p 0 (x, t)) = 
A~ (x, t)= 

0 
= -c511 f1 (1, yo (x, t), B* p 0 (x, t)) if ii (x, t)~ 1 

if ii (x, t) < 1. 

(4.lla) 

(4.llb) 

(4.llc) 

Using the definition of lt (x, t) and convexity of / 1 ( ·, yo (x, t), B* p 0 (x, t)) the 
above formula can be rewritten in the form 

A~ (x, t)=max {0, -(c5u tp (1, Y0 (x, t))+B* p 0 (x, t))} . (4.12a) 



70 I. LASlECKA, K. MALANOWSKl 

In a similar way we get 

A~ (x, t) =max {0, 15u rp ( -1, yo (x, t)) + B* p 0 (x, t)}. (4.12b) 

By (2.7) and (2.16) the function 1511 rp (1, y 0
) satisfies conditions (4.?), while by 

(2.15) these conditions are satisfied by B* p 0
• Hence, in a similar way as in the 

proof of Theorem 4.2. (4.12) imply (4.11). q.e.d. 

APPENDIX A 

Proof of Lemma 4.1. It follows from Theorem 5.2 in [12] (p. 33) that if 

rp E £2 (0, T; H 1 (Q))' 

drp 
- E£2 0 T· H 0 (Q)) 
dt ' ' ' 

then the boundary value problem 

dz 

q;(O)=O, 

dt- Az=q; on Q x (0, T) 

oz 
-=0 
01JA 

on oQx (0, T) 

z (0)=0 on Q 

has the solution z such that 

z E £2 (0, T; H 3 (Q)) 

and z continuously depends on q;. 

(A.la) 

(A.lb) 

(A.1c) 

(A.2) 

(A.3a) 

(A.3b) 

In order to apply this result to the case of equation (2.1) with nonhomogeneous 
initial condition (2.5), note that if the function y satisfies (4.le) and if there exists 
a function w satisfying this condition · as well as (A.3) and such that 

W (0)=y 11 . (A.4) 

then we can introduce a new variable 

z(t)=y(t)-w(t) (A.5) 

and rewrite (2.1) along with conditions (2.4) and (2.5) in the form 

dz ( dw ) -. -Az=f- - -Aw on Qx(O T) 
dt dt ' ' 

(A.6a) 
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If the function 

oz 
-~- =0 on iJQx(O, T) 
U1JA 

·z (0)=0 on Q 

~=/-( :~- Aw) 
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(A.6b) 

(A.6c) 

(A.7) 

satisfies (AJ) then the solution z of (A.6) satisfies conditions (A.3) and thus (A.5) 
implies that these conditions are also satisfied by y. 

Hence taking into consideration (A. la) and (A.lb) we conclude that the function 
w should satisfy the following conditions: 

wE £2 (0, T; H 3 (Q)). (A.8a) 

d 2 w 
df2 E L 2 (0, T; H 0 (Q)), (A.8b) 

W (O)=yv, (A.8c) 

dw 
--AwE L 2 (0 T· H 1 (Q)) 

dt ' . ' ' 
(A.8d) 

d 2 w dw . 
---A- EL2 (0 T" H 0 (Q)) 

dt 2 dt ' ' ' 
(A.8e) 

(A .8f) 

We are going to find conditions on yv under which there exists a function w 

satisfying (A.8). 
lt follows from (A.8b) and (A.8e) that 

dw 
dt E £2 (0, T; H 2 (Q)) (A.9) 

Taking advantage of Proposition 2.3 in [12] (p.14) we conclude that (A.9) 
holds if 

wE H 4• 2 (Q X (0, T))l). (A.lO) 

Condition (A.lO) assures also that (A.8a) and (A.8d) are satisfied. 
From the trace theorems (Theorems 2.1 and 2.3 in [12] pp. 10 and 21) it follows 

that a function satisfying (A.IO) exists iff the following initial conditions of regularity 
hold 

w (0) E H 3 (G), 

dw (0) 
--EH1 (Q) 

dt ' 

1 l The definition of the space H '• ' (Q x (0, T)) is given in [!2] p. 8. 

(A.lla) 

(A.llb) 
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/ 

and the condition of compatibility: 

is satisfied. 

OW (0) 
--=0 on oQ 

01JA 

From (A.8c) and (A.lla) we get 

y" E H 3 (Q) . 

(A.l2) 

(A.13) 

If (A.13) holds, then by (A.8f) and (4.lc) condition (A.llb) is also satisfied. 
Hence conditions (A.l2) and (A.l3) assures the existence of a function w satis­
fying (A.8). 

Summarizing we conclude that if conditions (4.1) hold then the solution y of 
(2.1) satisfies (4.2a) and (4.2c). In turn equation (2.1) together with (4.2a) and (4.1a) 
imply (4.2b) · q.e.d. 

APPENDIX B 

Proof of (4.9). According to the implicite function theorem [13] the function 
3 given by (4.8) is differentiable at (yo (x, t), B* p0 (x, t)) and 

by 3 (y•, B'~ p 0
) =- [b~11 [1 (u, )1°, B':' p 0

)] -
1 [b~.Y /1 (tt, y•, B* p 0

)], (B. la) 

b8 • po 3 (y•, B* p 0
) = - [b~u / 1 (tt, )1°, B* p 0

)]-
1 [b~ B*" / 1 (u, y•, B* p 0

)]. (B.l b) 

Note that 
o,;, y fl (u, y, B* p) =o~. y rp (u, y), 

502 11 
( B* ) -1 uu, B* P U, )', p - . 

Hence using (2.16) and (·U) we get from (B.l) 

From (4.8) we obtain 

ou (x, t) 

ot 
0)1° (x, t) 

Oy 3 (Y0 (x, t), B* p0 (x, t)) ----a;- + 

(B.2a) 

(B.2b) 

oB '~ p• (x, t) 
+o8 .JJ 3 (yo (x, t), B':' p 0 (x, t)) --a;--, (B.3a) 

oii (x, t) 0)1° (x, t) 

0 
. = Oy 3 (J'0 (x, t), B':' p 0 (x, t)) -~- + 

X; uX; 

oB':' p 0 (x, t) 
+o8 .po3(y0 (x,t),B*p 0 (x,t)) 

0 
, i=l,2, ... ,n. (B.3b) 

X; 
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Taking advantage of (B.2) we get 

oil (x, t) lz ~ C (I oyo ~;· t) 12 +I oB* p 0 (x, t) n. ot ot 

oil (x, t) r ~ c (I oyoo~· t) \2 +I oB* p 0 (x, t) n. OX; X; 

(B.4a) 

Integrating (B.4a) over Q x [0, T] and taking into consideration (2.15) as well 
as the fact that 

we obtain (4.9b). This 111 turn implies that 

ilE C(O, T; H 0 (Q)). (B.5) 

Hence for every t E [0, T] ii (t) is well defined as an element of H 0 (Q). We shall 
show that il (t) EH' (Q). To this epd let us integrate (B.4b) over Q for a fixed 
value of t E [0, T]. Taking advantage of the fact that by (2.7a) we have 

we obtain ( 4.9c ). 

At last we get (4.9a) integrating (B.4b) over Q x [0, T] and taking into account 
(B.5). 
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0 regularnosci rozwil!zaii wypuklych zadaii sterowania opty­

malnego dla ukladow parabolicznych przy ograniczeniach 

sterowania 

Rozwai:a sic< zadanie sterowania optymalnego dla ukladu opisywanego Jiniowyrn r6wnaniem 
parabolicznym. Funkcjonal jakosci jest wypukly, a na sterowanie naloi:one sq ograniczenia typu 
Jokalnego. Do takiego zadania stosuje sic< formalizm Lagrange'a. Pokazuje sic<, i:e mnoi:niki La­
grange'a odpowiadajqce ograniczeniom sterowania sq odpowiednio regularnymi funkcjami. Dowodzi 
sit< regularnosci sterowania i trajektorii optymalnej. 

0 peryJUipHOCTH pemeuuii BbiDYKJILIX Ja~a'f onTnMaJibHoro 

ynpaBJieHHH ~JIH napa.60JIH'feCKIIX CIICTeM dpll orpaHH'feHIIHX 

no ynpaBJieHnro 

PaCCMaTpHsaeTC51 3a):(a'!a OIITHMaJibHOrO yrrpaBJieHH51 L\JI51 06beKTa OIIHCbiBaeMOfO JIHHeii:HOH 
rrapa60JIH'!eCKOH CHCTeMOH. <f>yHKI.(HOHaJI Ka'!eCTBa 5IBJI5leTC51 BhiiiYKJiblM, a Ha yrrpasJieHHe HaKJia­
):lbiBaiOTC51 orpaHH'!eHH51 IIOKaJihHOfO THIIa. K TaKOH 3a):(a'le HCllOIIh3yeTCH <jJopMaiiH3M JJarpaHJKa. 
IToKa3aHO, '!TO MHOJKHTeiiH JJarpaHJKa, COOTBeTCTBYIOII.(He orpaHH'!eHHHM IIO ynpasJieHHIO, 
HBJIHIOTCH peryJillpHbiMH <jJyHKI.(HMH. )JoKa3aHa peryii»pHOCTb ynpaBIIeffiHI H OllTHMaiibHO 
TpaeKTOpHH. 


