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The paper deals with the synthesis of suboptimal linear systems with constant output feedback.
The approach presented is based on a modified linear-quadratic problem.

Using the mutual observation property of linear systems a suboptimal output regulator is
proposed which guarantees the coincidence of the trajectories of optimal and suboptimal systems
for a certain subspace of initial states.

1. Introduction

The problems of synthesis of linear systems with inaccessible states have been
~ treated by many authors (see references).

At least three basic approaches for linear control law realization are known.

In the first a state observer is utilized for obtaining an estimation of the inacces-
sible states. It must be pointed out that the use of an observer leads to a conside-
rable increase of the performance index for certain initial states [1].

The second approach is based on the realization of the control law by means
of compensators [2, 3, 4]. However the use of compensators and observers compli-
cates the system.

The third approach, in which the control law is formed as an output feedback
seems to be the most rational one [5, 6, 7].

It is well known that the optimal output regulator matrix depends on the initial
state [8].

This is usually overcome supposing that the statistics of the initial state is known
[9, 6] (this approach is also used in the synthesis of observers and compensators
[10, 3]). Unfortunately information about the initial state is not available in general.
That is why it is useful to introduce a modified criterion with independent on the
initial state output regulator matrix [11].

These methods lead to an approximative realization of the optimal control and
are considered as methods for synthesis of suboptimal linear systems under in-
complete state information.
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The paper presented deals with synthesis of suboptimal linear systems with
output regulator. Statement of the problem is given in Sec. 2. In Sec. 3 a modified
linear-quadratic problem (MLQP) is introduced and an unified approach to the
synthesis of suboptimal output regulators is proposed.

The problems of existance and uniquenes of the solution are considered and ap-
propriate methods for obtaining the suboptimal control are presented.

In Sec. 4 we deal with the synthesis of suboptimal control law such that the
trajectories of the optimal and soboptimal systems coincide for a given subspace
of the initial state space.

2. Statement of the problem

Consider the linear system

x(t)y=A x(t)+Bu(t), x(0)=x,,

1
y()=Cx(), .

with the performance index
J= f [x'(t) Q x(t)+u’ (t) R u(t)] dt—min, 2)

where xe€ R", ue R™", ye R" (R"*™ denotes the space of real (nx m)-matrices;
R*™!=R"); 0=0, R>0. It is also assumed that the pair [A4, B) is stabilizable, the
pair (Q'/2, A] is completely observable and rank C=r. It is well known that the
optimal control law is

u’[x]=—K°x, (3)

where K?=R~' B’ P° and P°>0 is the unique positive definite solution of the Ric-
cati equation
A" P°+P°A+Q—P°BR™* B' P°=0.

The optimal closed loop system with control law (3) is
x°(t)=F°x°(t), F’=A—BK® 4)
and the performance index is
Jo= 0 P2 %

If only the output y is available for measurement the control law is to be synthe-
sised as an output feedback:

ulyl=—Ly,Le R™*". ®)

Further we assume that the set Q= R™*" of all matrices L for which the closed
loop system
x()=Fx(t), F2~A—BLC (6)
is stable, is non-empty.
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For L € Q the value of the performance index (2) is
J=x, Py ' @)
where P=P(L)>0 is a solution of the Lyapunov equation
F' P+PF+Q+C'L' RLC=0. (8)

Further we consider the general case when the equation LC=K° may have no
solution with respect to L.

Since the performance index depends on the initial state: J=J (u, x,), the direct
minimization of (7) by means of L yields the relation L=L (x,) [8] which is unde-
sirable. .

There are two approaches to determine the suboptimal control law so that the
output regular matrix to be independent on the initial state.

According to the first (3) the criterion (2) is modified as J (u, xo)—1 (1) where
the functional I doesn’t depend on x,; for instance [l1]

fJ—J° n'l
1 (u)=sup ]7 XoER J X

The second approach utilizes the fact that there exist matrix L and subspace

II<= R" of the initial states x, such that the systems (4) and (6) trajectories coincide.

3. Modified linear-quadratic problems. Suboptimal control 1

Consider the following modification of the linear-quadratic problem (1), (2):

find a new functional /=7 (v) independent on x, and such that the minimization
of 7' (u) in the class of linear state feedback controls yields the optimal control
law (3).

For the linear control law (9) u [x]= — Kx the functional 7 (¢) may be consi-
dered as a function in K: I (u)=7% (K).

The function » defined on the set w of all (m xn)-matrices which stabilize the
system X (¢1)=(A4—BK) x (t), may be chosen on the basis of the following natural
assumptions [12]:

1. The function # is continuous on K € w.

2. n(K)zn (K°, Kew and 5 (K)=n (K°) if and only if K=K°.

Consider the functions

[J—J". l=

=1y (K)=max] Jo Xo € R"J

=ﬂ(P1)=‘U; Pyv,; P =P, (K)=S(K)P°!,
_ max {7 lIxoll =1} E
max (7% [xoll =1}
__:ﬂgpz)_ =7);P2’Uz
p(P) p(P°)

—1; Py =P, (K)=S(K),
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max {J—J°: [|xo]|=1}
max {J°: ||xoli=1} K
=P(P3) X v;P3v3
pLE%) - plP%)
where ||-|| is an Euclidean norm, p (P,) is the spectral radius of the matrix P, and

v, 1s the normed eigen vector (|lv,/!=1) of the matrix P, corresponding to the eigen-
value p (P,). The matrix S=S (K) satisfies the Lyapunov equation

13 =13 (K)=

; Pa=Pa(K)=8(K)-F,

(A—BK)'S+S(A—BK)+Q+K' RK=0.

The functions #, express the relative growth of the performance index (2) with
control law (9). '

Denote by n=# (K) whichever of the functions #,, h=1, 2, 3.

It may be shown that the function # has a unique minimum #=0 for K=K° [12].

The synthesis of output regulator (5) may be transformed into the problem of
conditional minimization of # with respect to the restriction K=LC, Le Q. This
is equivalent to the unconditional minimization of the function

u=p(L)=n(LC), Le Q.

Since
lim p(l)=w
L—+L, €0Q
and
lim u(L)=o0
L]} =00

where 90 is the boundary of Q, then a compact Q<@ exists such that Le @ and
L e Q\Q implies u(L)< u(L). Hence according to Weierstrass theorem the function
u(L) has an absolute minimum in Q: p(L°)<u(L), Le Q.
It must be pointed out that in the general case the matrix L° is not unique.
The control law
uyl=—L°y

may be considered as a suboptimal control law.

It is interesting to note that for every suboptimal control law u°[y]=—L°y
there exist a region X< R" and a control law u [y]= — Ly, L°#L=const., such that
J (u [y]. x0)<J (° [y], xo) for x,€ 2.

If the function w is differentiable in L then the necessary condition for mini-
mizing pu is M (L°)=0,

du(L) ou(L
=" = 1= [—g; . ]; L=L,,
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where for pu=u, h=1,2,3 one obtaines

, OPW(L)
Mij(L)z'vn?% Uy = .
(9] .
tr Si 2 (¢ F
_ ( n A 1Ly) OL;; i—[l’hzl
tr [Py (L) — 1) 4 lp (P9, 8=2,3:

Here V? is the matrix adjoint to Ve R*™": VIV =], det V.

Another way to determine the suboptimal control law is based on the simul-
taneous calculation of L° and p°=p (P,,(L")).

In fact the relations
A (L) ap (Pu(L%))
—=0e—F=0
OLy; OLy;
and ,
A(L, p)=det (P,(L)~pL) =0, p=p(Pi(L))
yield :

oP, (L°)
T,;(L% p)=tr l(” W(L)=pL) 5~ ] =

Hence the calculation of L° is reduced to the minimization of the functiom
x=yx (L, p) of mr+1 variables:

x(L,p)=AZ(L,p)+Zm Z Tj5(L, p)

=17 J=1

where the matrix dP, (L)/dL;; is expressed by means of dP (L)/0L;;:

opP P
i F+C' E;;(RLC—B' P)+(C’' L' R—PB)E,; C=0.

F

Here F=A—BLC and E;;€ R"*" is a single non-zero element matrix with
1 on (i, j)-th position.

The use of the procedures presented is connected with the determination of”
eigenvalues and eigenvectors which complicates the calculations. Moreover, in
general the spectral radius of a matrix is only piecewise differentiable as a function
of its elements. Hence the gradient matrix M (L) may not exist and it is necessary
to derive another methods for calculating the matrix L°.

An auxiliary differentiable function jg=/i(L) can be introduced in order to-
obtain an approximation L of L°. As an example consider the functions

By=p(D)=|IP(L) P~ Y|—=1=]P (D)1,
2= 2 (D) =IPDI/IIP°l|— L =[P (DI/IIP°| -1,
it = s (L) =|IP(L) — P°|/|[P°|| = |P5 (DIl/ 1P}
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In this case the evaluation of the spectral radius is reduced to the evaluation of
the euclidean norm. Furthermore the matrices L (minimizing ji) and L° are usually
close enough.

Example 1. For the system

5Ol _[0o=11[x. 01,1
[scz(r)]‘[l 0] [xz(,)}*[_o]”(’)’
J’(f)le(’)

with a performance index
J= f [6x2 (1) +3x2 (£)+ u? (t)] di—min
0

the optimal control law is
W [x]=—=212x,—x,
and the performance index has minimal value
Jo=2 Y2 x50+ 2% 10 Xzo+4 Y2 %30+
The solution P (L) of equation (8) for the output feedback
uly]=—Lx,, L>0

1S
_LTo+»L 3
PO=3 [ 3 (9+4L2)/L]'

The implementation of the modified criterion

U, (L)—min
yields
L2=1.617; 1(I*)=0.127.

The minimization of the auxiliary function j, (L) gives

L=1.760; p(L)=0.130.

4. Coincidence of the . trajectories of systems with state
regulator and output regulator. Suboptimal control 2

Consider the linear systems

2(0)=Gz.(t), 2:(0)=2, (10)
and

2,()=G, 2,(t), z;(0)=2, (11)
‘where z;,z, € R" and G, #G,.
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We shall set down the problem of finding a subspace 7<= R" such that z, e IT
implies z, (t)=z, (¢) and vice versa.
From the condition

G 2, Gt
(3 )=~ )

k=0 k=0

and from Hamilton—Cayley theorem it follows

(Gr— G zp=0, k=1,.un
or
(G1—G)) G* 2o=(G,—Gy) Gt 2,=0; k=0, ..,n—1.
Hence the necessary and sufficient condition for coincidence of the trajectories
of (10) and (11) is
n—1

zo € () Ker (G¥ - G%) = Ker (G, —G,) Gk =
k=1 k=0

n—1

=) Ker (G, ~G,) G;2-(Gy, G2>=(G,, G;)=R".
k=0

For G, #G, the inequalites dim {(Gy, G,)sn—1 or dim<{Gy, G,)Sn—2 are
valid.

Under certain sufficiently general assumptions for G, and G, the relation
dim (G, G,> =1 holds true.

Consider again the systems (4) and (6):
x°(t)=F°x"(t), F°=A—BK", 12)
x(t)=Fx(t), F=A—BLC. (13)

In accordance with the above statements the trajectories of (12) and (13) coincide
if and only if

n—1

xo € (B(K°—LC), F*> =) Ker B(K°—LC) F*=IT(L)c R".

k=0

This result shows that the uniqueness of the optimal control must be interpreted
in the following way:

1. For each x, € R" the optimal control is unique as a timeprogram
uo (t, xO) = __KD eFOt xo .
2. The control law
wix]=—K°x
is the unique linear control law which generates the optimal program

u’ [x°] (t)=u (¢, xo)
for all x, € R™
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3. For a given x, the optimal programm may be generated also by means of
other control laws, for instance

ulyl=—Ly; xoe I(L).

Consequently an alternative approach to the synthesis of suboptimal control
laws consists in determining an output feedback:

ulyl=—Loy
for which
dim I7(L,)=max {dim I7(L): Le Q}.

It will be shown that a control law
ulyl=—Ly

can be found such that dim /7 (L)zr.

Let the output matrix C be of the form C=[/.|0]. The state vector can be se-
parated as x=[x, | x;)’ where x; € R", x, € R"" and the systems (12) and (13) have

the form
Xy (2 Fool BT Fas @)
['1 )]:[ il iz][ ; ], (14)
X2 (t) FZI F22 x2 (t)
F;=4;;—B; Kj; i,j=1,2
and
[{Clm]:[ﬂl Flz] [XI@]’ (15)
xz(t) F21 F22 _xz([‘) 7
Fil:Ail”‘BiLa‘FizzAm; i=1,2
where

A12 Bl
], B=[ ] K°=[K|K3]. |

A=[A“ e
Azy | Az B,

If the matrix 7°e R™~"*" satisfies the non-symmetric Riccati equation

B, To—T° F) +F,—T°F}, T°=0 (16)
then the mutual observation relation
x5(1)=T°x;(#)+v°(), v°e R*~ "

holds in the system (14) [13].

The system (14) is transformed as
[*‘i(t)]z[FflJrFi’z T
2°(1) 0

Let the matrix L is chosen from

F, X @]
F,—1° Fi’z] [ o2k L

L=L=K’+K:T".
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Then in (15) there exists the relation

X, ()=T°x;(t)+2(t), ve R" T
[xx(f)]=[Ff1+Fszo Fi, ][x1(t)] Y(IS)
'U(t) 0 Fpy—T°Fpy v(t) I’
According to (17) and (18) the systems (14) and (15) have at least » common
poles (the eigenvalues of the matrix Fy, +Fy{, 7).
For x,,=T"° x,, one obtaines ¢° (#)=v (1)=0 and x{ (1)=x,(¢). Hence the out-
put regulator u[y]=—Ly generates the optimal program for

xo € Ker W, W=[-T°|I,_,]€ RC-"xn,

and

From the other hand x, e I7 (L), i.e. Ker W<l (L). The last inclusion can be
derived directly. In fact we have

WE=(F3,~T* F3,) W

and
WEF*=(F3,—T°F,) W, k=2,3, ....
Hence
n—1 ' n=1
I (L)=(") Ker B(K°—LC) F° =" Ker BK; WF° =
k=0 k=0

n—1
=(") Ker BK; (F5,—T° F,) WoKer W.
k=0

Thus we have
dim 7 (L) = dim Ker W=r.

The stability of the system (18) depends on the eigenvalues of the matrix F,, —
—T°F,,. In the general case the Riccati equation (16) has several solutions with
respect to 7° corresponding to different matrices F,,—7° F,,. Hence the system
(18) is asymptotically stable if there exists a solution 7° stabilizing the matrix
F,,—T°F,,. Further the choice of 7° among the stabilizing solutions of (16)
is to be done in accordance with the modified performance index used.

The value of the performance index (2) for the stabilizing control law
uly]=—Ly is

J=5, P %5 +o, Hogy G5=%— T2 %0,

where H>0 is the solution of the Lyapunov equation
(Fas—=T°Fy,) H+H(F,,—T°Fi,)+K: RK2=0.

Example 2. The matrix of the optimal closed loop system in example 1 is

A —2]/5 -2
=
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and the Riccati equation (16) has a unique solution 7 ":—],/7/2. Hence the sub-
optimal control law u [y]=—Ly is u [y]=—371/2/2x,.
For comparison with example 1 note that

11> (D) =0.165.

5. Conclusions

A unified approach to the synthesis of suboptimal control systems with output
regulators is considered. The approach presented is based on a modified linear-
quadratic problem for which the output regulator matrix is independent on the
initial state. The problems of existence of suboptimal linear control as well as gra-
dient calculating procedures are discussed. Approximate methods for sysnthesis
of suboptimal controls are considered also.

Necessary and sufficient conditions for coincidence of the trajectories of two
linear systems are given. On this basis the problems of uniqueness of the optimal
control are discussed.

It is shown that the trajectories of the systems with state regulator and out-
put regulator coincide for a subspace of the initial state space. Using the mutual
observation property of linear systems a suboptimal output regulator is proposed
which garantees the coincidence of the trajectories of optimal and suboptimal
systems for a r-dimensional subspace of initial states where r is the number of
outputs.
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Synteza suboptymalnego ukladu liniowego z regulatorami
wyjSciowymi

Rozpatrzono syntezg suboptymalnego ukladu liniowego z stalym sprzezeniem zwrotnym
wyjsciowym. Podstawa przedstawionego ujecia jest zmodyfikowany problem liniowo-kwadratowy.
Wykorzystujac wlasciwosci obserwacji wzajemnych ukladu liniowego zaproponowano subopty-
malny regulator wyjsciowy, ktéry zapewnia zgodnos$¢ trajektorii uktadu optymalnego i suboptymal-
nego dla pewnej podprzestrzeni stanéw poczatkowych.

Cuire3 Cy0ONTHMAIbHOM JHHeiHOH CHCTEMBI C peryaaropa-
MH Ha BbIXOJe

B pabote paccMaTpuBaeTCs CHHTE3 CyOONTHMATBbHON JTHHEHHOM CHCTEMBI, OXBAYEHHOM IIOCTO™
SHHOM LEnbo 00paTHOU cBs3u. OnMcaH MOAX0d K PEIISHUU 3TOr0 BOIMPOCa, OCHOBAHHBIN HA MOIH-
GHUIUPOBAHHONW THHEHHO-KBAIPATHYCCKOM 3a1a4u.

Wcnoib3yst CBOMCTBA COBMECTHBIX HAOIIONECHMN JMHEWHON CHCTEMSI, NMpPEMIJIOKEeH CyOorTH-
MaJIbHBIA PEryiasaTOp BBIXOMA, KOTOPBIA FapaHTHPYET COIVIACOBAHHOCTDb TPAEKTOPUNA ONTHMAJIBHOU
U CyOONTHMAIBHON CHCTEMBI IIJIT HEKOTOPOro IOAMPOCTPAHCTBA HAYaIIbHBIX COCTOSHMIM.
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