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The paper is a further extension of the authors’ work [2]. In the mentioned article, the method
of minimally interconnected subnetworks, as given in [6], is extended and generalized to arbitrary
weighted graphs. In particutlar, this generalization refers to unigraphs with nonnegative real weights.
Basic notions and properties of minimally interconnected subnetworks, as given in [2], are listed
for convenience. Many new ones are formulated and proved. Main extension consists in a new
algorithm for the determination ¢f minimal groups. It is more efficient, but its main feature lies
at the reducing of computer storage requirement which makes it possible to solve substantially
larger problems.

1. Introduction.

The idea of minimally interconnected subnetworks was introduced by R. Luccio
and M. Sami [6]. They dealt with the problem of some decomposition for electrical
networks. In the setting of graph theory, their method referred to the partitioning
of a multigraph with edge weight equal one.

The idea mentioned above is generalized and extended in the authors’ last
paper [2] to arbitrary graphs. In particular, it refers to unigraphs with nonnegative
real edge weights. It proved to be a relatively efficient technique for solving the
problems of graph partitioning type consisting in the decomposition of a set of
vertices into subsets. The decomposition mentioned is performed such that the
strength of mutual connections between vertices in a subset is greater than the
analogous parameter computed for these vertices and the ones not belonging to this
subset. The applications are shown in three recent papers of authors et al.: in [4]
for the decomposition of the telephone interexchange network structure, in [1] for
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the partitioning of a group of enterprises into subgroups and in [3] for the parti-
tioning of a computer network into subnetworks.

This paper presents a further extension and generalization of the method described
in [2]. For convenience, all notions and properties formulated and proved there
are repeated. The proofs are omitted, though. New properties, on which the extension
and generalization is based, are formulated in the form of appropriate lemmas,
propositions, theorems etc. and proved. . '

The algorithm given in [2] for the determination of minimal groﬁps is modified.
Main feature of this modification consists in the reduction of computer storage
requirement which makes it possible to handle much larger problems.

2. Basic notions and properties of minimal groups

Let us consider a graph G, complete, undirected and without loops. Denote
the set of its vertices by ¥, where V'={1, 2, ..., n). E will be the set of edges of G.
Let us define a function:

-

f:E-RYU{0} €y)

mapping the set of edges E into the set of positive real numbers R* completed by
zero. A particular value of f, f;;, is the weight of the edge connecting the i-th vertex
with the j-th one. All f;;,1,j € V, can be conveniently represented in the form of
a matrix F, dim F=|V|x|V|, where |V| is the cardinality of V. The matrix F is
evidently a symmetric one, i.e. f;;= f,l and — moreover — vy, for all & felr.

Let us denote in the sequel the ordered pair consisting of the graph G and the
function f as in (1) by <G, > or by <G, F).

DeriniTION 1. For a given <G, F), any subset W< V taken with all the edges connect-
ing each pair of its elements is called a group W.

In the sequal, the groups as well as the corresponding sets of vertices are denoted
by capital Latin letters. Thus, all set — theoretic operations performed on groups,
i.e. the inclusion (<), the union (U), the intersection (N), the difference (\) refer,
if not otherwise indicated, to the corresponding sets of vertices. The corresponding
sets of edges are only added to the product of an operation mentioned above. The
same refers to the cardinality (|-|).

REMARK. In order to simplify later notations, let us write:

F&RS=Y15 @

where: S, RV, SNR=0.

In the case, where S is the complement of R to ¥, (R, S)=f(R, V\\R) corres-
ponds to the group R and is denoted by r.
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DEeriNtTION 2. For a given (G, f, a nonempty group S, such that for every nonempty
Rc S, R#S, the inequality: A
« ; ” F>8 o ) X . (3)

holds, is called the minimal group. Moreover, each single vertex of G is the minimal
group by definition. ‘ : '

Now it is expedient to present formally the class of problems considered in [1,
3,4, 6].

The problem, in terms of the graph theory, concerns the partitioning of the set
of vertices V into subsets V7, V5, ..., V4, such that:

Vin V=0 for all i,je [, k], i) | @
k
U Vi=V . (5)
=1

F (R, VAW)>£ (R, V\V,) for all RV, ©
O#R+#V, and for all i e[l, k].

As we will see, the determination of minimal groups will lead to the solution
of the problem defined by (4), (5) and (6).

COROLLARY 1. If S is a minimal groups in <G, f>, then for every nonempty RcS,
R#S: ' !
r>0 @)

This corollary results directly from the Definition 2.
LemmAa 1. For a given <G, f >,' a group S is minimal iff for every nonempty Rc S,
R#S, the following inequality holds:

J R, SNR)>[(SN\R, V\S). ®)

Proof. The proof of the necessity is given in [2]. Let us prove the sufficiency. Adding
F(R, V\.S) to both sides of (8), we obtain:

J R, SNR)+ (R, VNS)>f (SR, VNS)+ [ (R, V\S5). 9)
From (2) there follows:
r=f (R, S\R)+ [ (R, V\S), (10)
s=F(\R, \8)+ (R, V\S), - (11)
which, due to (3), terminates the proof. Q.E.D.

The formula (8) can be interpreted in such a way that the entire dependence
of a nonempty proper subset Q =S\ R of the group S on its complemet R in this
group is greater than the analogous parameter for Q and V\ S, respectively. It is
one of basic properties of minimal groups, because it indicates their usefulness for
applications. -
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LemMA 2. Two minimal groups in <G, /> are either disjoint or one of them is con-
tained in the other.

This lemma is of great importance for the construction of an efficient algorithm
for the determination of minimal groups, because it makes the inclusion relation
order partially the set of all possibie minimal groups for a given <G, f).

3. Further properties of minimal groups

In this section, some new properties of minimal groups are presented in addition
to those given in [2] and repeated here for convenience.

ProposiTION 1. Let Vi, iel={l,2,..,m}, be given pairwise disjoint minimal
groups in <G, /> and R;, i € I — their proper parts. We denote by S a group, such
that SN V520 for every i € I. Then, if there exists an index j € I, for which R;#,
the group: ‘
Sul_J R (12)
iel
is not minimal.
Proposition 1 is an extension and consequence of Lemma 2. It states that a group
containing a nonempty proper part of at least one another minimal group cannot

be minimal.

PRrOPOSITION 2. Let V;, I and R; have the same meaning as in the previous proposi-
tion. We assume that there exists an index j € I such that R;#@. Let us denote:

Stex|_J Ry (13)

: iel
Then, the following inequality holds:
s>max {v;:i e [}. (14)

Proposition 2 is of a similar importance for the construction of an efficient
algorithm for the determination of minimal groups as Proposition 1.

THEOREM 1. Let us denote: I={1, 2, ..., m} and J=I, J#I, [J|=2. If V;, i €1, are
pairwise disjoint minimal groups in (G, > and if for every J the group:

ielJ
is not minimal, then the following inequality holds:
syzmin {v;:iel}. (16)

An immediate consequence of Theorem 1 is the following proposition.
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ProPOSITION 3. Let the notation be the same as in Theorem 1. Then, if for every
J#I, S; is not minimal, the necessary and sufficient condition for S} to be a minimal
groups is that the following inequality holds:

sy<min {v;: i € [}. 17

Proof. The necessity is proved in [2]. Let us now proceed to the proof of sufficiency
which is very simple in fact. Namely, for every J5#1, |J|>2, let S; be not a minimal
group and S; — a minimal one. Then, due to Definition 2, it has to be: s;<<v; for
every i€ l. QE.D.

In fact, if S} would not be a minimal group then, by Theorem 1, the inequality (16)
would have to hold.

Proposition 1 and Proposition 2 refer mainly to the proper parts of minimal
groups. Theorem 1 and Proposition 3 make it possible to extend the properties
of vertices in <G, ) (minimal groups by definition) onto all minimal groups. More
precisely, it follows from them that every minimal group actually found can be
considered as a vertex of a new, modified weighted graph.

The properties of minimal groups mentioned above are sufficient for devising
an algorithm for the generation of all minimal groups in {G, f>. The new algorithm
will be described in section 6. Now we proceed to a brief presentation of further
properties of minimal groups.

PrOPOSITION 4. Let R;, S;,ieI={l, 2, ..., m}, be pairwise disjoint groups. For all
iel, let R;© and V;=R;US,; be a minimal group in (G, f>. Let us denote:

P=|_| ¥,
ter (18)
0= R,.

i€l
If there exists such j eI that S;#@, then the following inequality holds:

P<q (19)

4. On some specific groups

The properties of groups given in previous sections are quite sufficient for the
construction of an efficient algorithm for the determination of minimal groups.
Relations given below can substantially improve, however, the efficency of the algo-
rithm, especially for large scale problems.

ProvosiTION 5. If in (G, ) there exists such Q<V, |Q|>3, that for every i,je
€ Q, fij=fo=const., then every group S<=@, S#0Q, |S|>1, is not minimal.

This proposition makes it possible to eliminate from considerations the subset
of sets of vertices connected by edges with the same weight.
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PRrOPOSITION 6. Let, for a given <G, f, such a Q<= V, |Q|>2, exists that for every
i,j € Q the following relation holds:

fu=fo=max {f;:i,jeV}. (20)
We assume that RcQ, R#Q, P V\Q, P#V\Q. If the inequality:
|O|=|R| +|P| 1)

holds, then the group H=RUP is not minimal.

ProposiTioN 7. Let, for a given (G, ), such a Q= V, |Q|>2, exists that for every
i,j €Q the equality (20) holds. We assume f, f;; for other pairs 7,j e V. Then,
Q is minimal group iff for every x €Q:

(I21-1 fo>F(@\{x}, P\Q). (22)

Propositions 5, 6 and 7 concern some specific groups. In these groups every
pair of vertices is connected by the edge with the same weight. This case is of im-
portance from the practical point of view. Indeed, in many applications there often
occur cases with a great number of approximately equal weights. The weights
mentioned are taken from estimations and, for practical purposes, one may assume
that they are equal one to another. ‘

5. Remarks on the generation of minimal groups

In applications of the method discussed (see e.g. [1, 3, 4]), the problem represented
in terms of partitioning a graph consists in finding a family of minimal groups,
which satisfies the conditions (4), (5). Let us denote this family by B;, where:

Bi={VD:ie[lLk(D]}jed. ‘ (23)

A is the symbol of the set of indices referred to an arbitrary pair (G}, F;» consis-
ting of a graph G; and a matrix F;. The equality holds:

A=A*U {0} @

where 4% is a set of consecutive natural numbers beginning from one. The method
of the comstruction of B}s will be discussed later.
Let us now assume that there are found 7, i>0, minimal groups. Let us denote:

4] if i=0
-] .
A U V{? otherwise. Ll
p=1

Then, the next minimal groups is sought among the elements of the set:

jo) = V(f) N Si(j) - ‘ (26)
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where ) denotes the set of vertices of G;. The procedure is continued until the
condition is satisfied that any subset of Rf,{), m>= 1, with the cardinality greater than 2
does not create a minimal group. Then, the solution is in the form:

B,={VO:ie[l, m]} U {{o;}: v, € RY} 27
where R0 and, otherwise:
B;={VP:ie[l,ml}. (28)
In the first case, the following condition holds:
: k(j)=m+|RY|. (29)
In the second one, we have:
k(j)=m. (30)

The procedure described above refers to a fixed pair (G;, F;>. Due to Theorem 1
and Proposition 3, the properties of vertices are extended to arbitrary minimal
groups. Then, the graph to be partitioned is modified at every stage, i.e. after finding
any B;,je A.

The process starts from {G,, F,>=<{G, F> (e.g. Fig. 1). In the preliminary step
one has:

By={{v;}:0,6V}. (1)

¢)

@D OO D@

D@D @00

Fig. 1. The determination of B;

9)
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B, is constructed in the way described above. Then, to be more general, let us
assume to have a pair {G;, F;>. We obtained B; in the form described by the formula
(27) or (28). The function:

g;: Bi—»VU+D (32)

is now defined. It assigns to each minimal group from B; a single point of a set
VU+1 where |VU+1)|=|B;|. For convenience, one can assume that: :
g (V) =i. (33)

b

It is easy to note that the mapping g; is one-onto-one. The graph G;,, is con-
structed by connecting every two different vertices v, v, € ¥U*1) by an nonoriented
edge. Further, a new matrix F;,,=[fY%"] is defined, dim F;,;=|B,|x|B,|. Its
elements are expressed by:

ffflx if {ri},{p.} €B; and g; ({”1})‘:”, g {rh=pr;

0 if i=p;
G+1) _ : (34)
P 2 fs 1n all other cases.
(st
seg;l(r)
teg; '(p)

J

The symbol g; ' (-) denotes the value (i.e. a set which is an element of B;) of
the inversion of g;. The inverse function of g; exists, because g; is a one-onto-one
mapping [5]. Thus, the procedure yields a new pair <G;,;, F;.>. Then, one can

a)
12} Y2 {3450} 27 {15} 0.70,7
{7’2} & {3,4,5,5} i {7,8,9,70}

Fig. 2. The determination of B,

Q)
Vv Vv

b)
{7,2,3,4,5,5} 01 {78,910 } 61,2,3,4, 5,6,7,8,9, mD

Fig. 3. The determination of B; Fig. 4. The determination of By

b)

b)
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obtain B;, ,, etc. It is clear that the algorithm términates, when |B;|=1. The other
case is, when the matrix F;  , contains all zeros (Corollary 1). An example is shown
in Figures 2, 3 and 4. They present a continuation of the process shown in Fig. 1.
Then, one can write: A*={1,2, ..., [}.

6. On some properties of the mew algorithm for the
determination of minimal groups

The purpose of this section is to discuss some properties of the method for
generating subsequent B;. s. It serves as an algorithm for the determination of mini-
mal groups. Our aim will mainly be to show that the method mentioned really gives
all the minimal goups sought and, in addition, how often some minimal groups
are generated. Other properties proved help to formulate and prove those principal
ones.

THEOREM 2. Let the method of searching of minimal groups be fixed in a certain
way. Then, for a given (G, F), there exists one and only one B.
Proof. Let us assume that we have two B’ s: B and B'’. Let ¢ denote the smallest
index, for which:
V.#V,". (35)
On the other side, we have two T, s: R, and R,’. Because ¢ is the smallest one,
then: ’
Il sl ={V, i<t}
That means: R,=R,". In consequence:
V,=Vv,', (36)
which is impossible. Hence, we have B'=B"". Q.E.D.

The following corollary is a natural consequence of the above theorem:

COROLLARY 2. Let the method of searching of minimal groups be fixed. For a given
{G, Fy and the family of mappings {g;: j € 4*} there exists one and only one family
{B;:jeAd}. ' -

For the proof let us denote that in every case B, = V. The further part of reasoning
proceeds by the mathematical induction due to the Theorem 2.

Then, one can write that the result of the algorithm depends, maybe, only on
the enumeration of vertices and on the method of searching of minimal groups.

Remark. Till the end of this section it will be assumed that the method of searching
of minimal groups is fixed and the same in the whole algorithm.
Let a family of one-onto-one mappings be set up:

Vo: V@B, peAd. 37
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Then, there exist inverse functions [5]:
y; 1B, V®, peAd. (38)
It is evident that: ' '
Yo=yol=1I (39)
where by I we denote the indentity transformation.

One can see that {y,: p € A} depends on the methods of searching of minimal
groups. The value of the transformation y, ' for particular p € 4 is given by the
formula:

k(p)

yr 't B)=U V. (40)
i=1

For convenience, we also assume that:

go=1. 41)
Let us denote by go f the composition of two mappings g and f:
gLfx)]=(gof) x). (42)

Now, we define four families of mappings: {Y,: p € 4}, {¥, *:p € A}, {h,: p € A}
and {g,: p € A}. The last two of those mentioned are given by recurrence relations:

Y, =8p_19Vp_1, PEA¥; 43)

Yy =yt ogty, ped¥; (44)
L ho=d,

2 =Y, @)

3. hy=h, 0¥, ped*;
1. go=1,

° o (46)
L Gy=¥ a0q, 4, pEAT,

It is clear that for a given p € 4%, Y,: V=V PP Y ! is the inverse of Y.
Analogously, h,: V@V and ¢,: V>V®, peA.
Let us now discuss some properties of {h,: p € A}.
LEMMA 3. If C,DcV @, p e A, then:
h, (CYNh, (D)=h, (CND), 47
and .
h, (C)Uh, (D)=h, (CUD). (48)

Proof. The mapping /%, is one-onto-one because it is the composition of one-onto-
-one mappings. Then, the formulae (47) and (48) hold. Q.E.D.
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TraeoreM 3. Let j € A. Then, for each i € [1, k (j)] and each p € [1, k (j)]\{i}:
b (VY (V)=0. (49)

Proof. Let us assume that i<<p. Then, directly from formulae (25) and (26), we
have [5]:

h; (V(’)) Nk (V(J))Ch (V(’)) Nk (V(J)\S(J))._
=h; (V(’)m[V(“\U V) =h; (@)=0. - (50)

The case i>p is accomplished in the same way. Q.E.D.

CoROLLARY 3. Each system {#; (V"): V) e B;}, je A* satisfies the criteria (4),
(5) and (6).

Proof. The criterion (4) is satisfied for each B;,je 4%, due to the Theorem 3.
Now we consider the criterion (5). From Lemma 3 one deduces that:.
k()

k()
) b (V) =h; (U PRy =hy (793, (51)
1= i=1

From the definition of {h;:j € A} the following equality holds
llj (V(j)): V.

Due to the formulae (41) and (42), the criterion (5) holds.
The criterion (6) is satisfied due to the method of the generation of B;. s and
due to Lemma 1. Q.ED.

The above mentioned corollary gives a base for the application of the algorithm
for determining consecutive B; s for solving the problem formulated by the criteria
(4), (5) and (6). Furthermore, the Corollary 2 states that the results of the algorithm
are uniquely determined.

Now, it is sufficient to prove that there exist some families of functions {¥,:p €
€ A} and {q,: p € A} for which all the minimal groups in the weighted graph <G, F)
are determined. One can notice that the families mentioned serve as the method
for searching of minimal groups.

Assumption. Now, it will be assumed that for every RY, je 4, i€[0, k (j)—1], the
method for searching of minimal groups is as follows. All the groups of a given
cardinal number are tested. At the beginning, one starts from the cardinality equals 2,
passes to that of 3, etc. until |[RY]. The testing terminates when a minimal group
is found or, in an extremal case, when all the nonempty subsets of R are checked
out and there is no minimal group with the cardinal number greater than one.
In the second case, the process of the determination of the B; should be finished.
Then, the following equality holds: m=i and in this B; there are exactly IREj)I
minimal groups with the cardinal number being one in the considered weighted
graph (G, F;>. In the first case, one is able to proceed as it was described in the
previous section of the paper.
Now, we denote by Z . ry the family. of all minimal groups in <G, F).
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THEOREM 4. Let us consider the following algorithm. The consecutive B;. s are gene-
rated in the way described in the previous section and the method of searching of
minimal groups are the same as in the assumption. The algorithm under considera-
tion gives the result in the form: {B;:je A}. Then, the following equality holds:

Lo, 5,=h (V) VP eB;, jed}. (52)

Proof. The proof will proceed by the reductio ad absurdum. We assume that
there exists a S €% py, Which is not determined during the algorithm under con-
sideration. In other words, there is no such p, p € 4, and i, i € [1, k (p)], that q,(S)=
=V™. We will consider two cases.

Case 1. There is no such minimal group W<V, that W<S and W#S. So,
if |S|=1, then S e€B,. Further, if |S|>1, then the sequence (R{":iel0,k (i)])
exists, where for every i, € [0, k (i)], one has: R{Y>¢q, (S). Due to the Lemma 2,
any proper part of g, (S) cannot be a part of another minimal groups. Hence,
either the minimal group ¢, (Q) is generated, where ¢, (Q)>¢, (S), g1 (Q)#q, (S)
or the elements of g, (S) are assumed to be minimal groups with the cardinality
equals one. This is in opposition to the assumption.

Case 2. The minimal group WS, W3S, exists. Let S be the smallest minimal
group satisfying the above condition. We denote by % = {V;} the family of disjoint
minimal groups such that:

L ¥=8. (53)

View
It is evident that for every V; mentioned there exists such a pair p,r,pe A4,
1 €[1, k (p)], that the following formula holds: ;
h, V) =V,. (54
Let P denote the set of all such smallest p’s given for every i, V; e #". Let us
define:
p*=max {p: p € P}. (35)
Hence, due to the above construction, we have for every i, V; € #":

Gpor (Vi) =2, € VP, (56)

Furthermore, in the similar way as in the preceeding part of the proof the contradic-
tion is received. Q.E.D.

7. The computational algorithm

The algorithm described is a modification of that given in |2]. The basic improve-
ment consists in the reduced computer storage requirement. The waste of time
caused by the initial considering of multielement vertex combinations is cancelled,
since the rewritting of large tables is avoided.

The new method consists in the determination of subsequent B;. s as described
in previous sections. A simplified flow-diagram of the algorithm is shown in Fig. 5.



On a firther extension of the method of minimally

29

S

@ Lo=V
1

@) i-0

i

|@ Lp is composed of minimal groups

1

@ Introduction of the matrix F
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Fig. 5. A simplified flow-diagram of the new algorithm for the determination of minimal

groups
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Let us now describe consecutive steps of the method. Their numbers correspond

to those in the flow-diagram. The algorithm uses two working lists named L, and L,.

The first one contains the vertices of the considered set RY). The second one stores

intermediate results. ' ‘
1. Start.

The list L, is filled up with the vertices of the graph.

15=0.

In the list L, there are minimal groups (by definition).

s w9

The matrix F is introduced.

. Test, whether F consists of all zero’s. If so, one goes to 17, otherwise to 7.
ir=i+1.

Jr=2

. Test, whether j-tuples of elements of L; ;) moa » ar¢ minimal groups. If so,
this j-tuple is removed from L, 1ymea 2, @ New element is introduced to
L; moa » and mext j-tuples, if exist, are tested.

=SR-SR N

10. Test, wheter -the number of elements of L 1ymoa 2 18 greater than j. If no,
one proceeds to 16, otherwise to 11.

11. Test, whether the list L; ,,oq » 1S empty. If yes one proceeds to 17, otherwise
to 12.

12. Rewritting of elements of L 1ymoa2 t0 Limoa 25 Liit1ymoa 2:=9.

13. The list L; .4 contains the equivalents of minimal groups — elements of the
set YU+,

14. The modification of the matrix F due to (34).

15. Test, whether the list L; ;.4 , contains more than one element. If so, one goes
to 6, otherwise to 17.

16. j:=j+1 and one proceeds to 9.

17. Stop.

The algorithm described above is programmed in ALGOL on the computer
ODRA 1300 (compatible with ICL Series 1900). Now, it is examined in a large-
-scale problem of partitioning the Polish telecommunication network into zones.

8. Concluding remarks

The paper is a further extension of the method of minimally interconnected
subnetworks, given originally in [5] and generalized and extended by the authors
in [2].

Many new properties of minimal groups are formulated and proved. However,
the principal contribution of the paper is the new improved algorithm for the de-
termination of minimal groups. Its main feature is the reduced computer storage
requirement, which is very relevant, making it possible to process much larger
problems. It is of great importance from the viewpoint of possible applications
(see e.g. [1, 3, 4, 6]).
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O dalszym rozszerzaniu metody zespoléw minimalnych

Artykut jest dalszym rozszerzeniem pracy autoréw [2], w ktorej metode zespotdéw minimalnych
podana w [6] rozszerzono i uogdlniono na dowolne grafy wazone. Zwiaszcza to uogdlnienie od-
nosi si¢ do unigraféw z nieujemnymi wagami rzeczywistymi. Dla wygody czytelnika podano pod-
stawowe pojecia i wlas’,ciwos'.ci zespotow minimalnych zamieszczone w [2]. Sformutowano i do-
wiedziono wielu nowych wiasciwosci. Glowna czescia pracy jest nowy algorytm wyznaczania
zespoldw minimalnych Jest on bardziej efektywny, ale jego gtéwna cecha jest zmniejszenie zajetosci
pamigci komputera, co umozliwia rozwiazywanie znacznie wiekszych zadan.

O nanbHelimeM pacHpeHHd METO0/Ia MHHMMAJIBHBIX I'PynN

CraThs SBISETCS DaIbHEUIIAM pa3BUTHEM PabOTHI aBTOPOB [2], B KOTOPO# METO[ MUHUMAITb-
HBIX TPYIIIL, TIPEACTABIEHHBIH B [6], paciuupeH w 06001eH ISl POU3BOJIBHLIX B3BEIIEHHBIX IpadoB.
B vactHOCTH 3TO 06O00IiUEHNEe OTHOCHTCA K yHHrpadaM ¢ HEOTPHUIATEIbHLIME IeHCTBUTEIBHLIMA
Becamu. [IJ1st yIoOCTBA YMTATENSA [AFOTCSI OCHOBHBIE TIOHATUS M CBOMCTBA MHHWMAJBHBIX TPYIIII,
TpenacTaBieHHsle B [2]. DopMyIHpyeTCsS U 10Ka3bIBACTCS MHOTO HOBBIX CBOMCTB. OCHOBHOM 4aCThIO
paboTHI SBISIETCS HOBbII AITOPHTM OIpeesIeHNss MUHEMAaNbHbX Tpymt. On ssisercs 6oee sddex-
TUBHBIM, & €r0 OCHOBHA: YepPTa COCTOMT B CHYDKCHUH 3aHATOCTH NaMATH HU(POBOW MAINHHEI, YTO
IMO3BOJISIET PEINATh 3HAYHTENILhO OOJee CIIOXKHBbIE 3aLiayu.
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