Control and Cybernetics

VOL 7 (1978) No. 2

On linear systems described by right invertible operators acting in a linear space

by

NGUYÉN DINH QUYÊT

(Warszawa)

In a series of papers ([2]-[4]) and in [5] the controllability and observability is considered for systems described by differential equations in Banach spaces. In this paper we shall consider the notion of controllability and other properties of systems described by right invertible operators in linear spaces without any topology (se [1a-c]). This approach permits to unify the language for very different problems and to study some problems never considered before.

1. Linear systems and their solutions

Definition 1.1. We recall (cf. [1]) that operator $D \in L(X)$ where $L(X)$ is the set of all linear operators defined on linear subsets D_{1} of X and with values in X is said to be right invertible if there exists operator $R \in L_{0}(X)=\left\{A \in L(X): \mathscr{D}_{A}=X\right\}$, such that $D R=I$, where I is identity operator.

Now consider a system

$$
\begin{align*}
& D x=A x+B u \tag{1.1}\\
& y=A_{1} x+B_{1} u
\end{align*}
$$

where $A, A_{1} \in L_{0}(X), A_{1} \neq 0$, and $B, B_{1} \in L_{0}(U \rightarrow X) ; X, U$ are linear spaces.
The spaces X and U are called space of trajectories and space of controls, respectively.

We admit for system (1.1) an initial conditions

$$
\begin{equation*}
F_{0} x=x_{0} \tag{1.2}
\end{equation*}
$$

where $x_{0} \in Z_{D}=\operatorname{ker} D=\left\{x \in \mathscr{D}_{D}: D x=0\right\}$ and Z_{D} is called the space of constants for D.

Operator $F_{0} \in L_{0}(X)$ satisfies by definition the following conditions
(i) $F_{0}^{2}=F_{0}$ and $F_{0} X=Z_{D}$
(ii) $F_{0} R=0$ on X.
i.e. F_{0} is an initial operator of D corresponding to R, where R is a right inverse of D (cf. [1]).

Observe that every initial state x_{0} is, by our assumption, a constant.
Suppose that the operator $I-R A$ is invertible. Then the system (1.1), (1.2) has a unique solution of the form

$$
\begin{equation*}
x=(I-R A)^{-1} x_{0}+(I-R A)^{-1} R B u, \tag{1.3}
\end{equation*}
$$

for every $u \in U$ (compare [1]).
If we substitute x given by formula (1.3) into equation (1'.1), we obtain $y=$ $=A_{1}(I-R A)^{-1} x_{0}+\left[A_{1}(I-R A)^{-1} R B+B_{1}\right] u$.

Consider the system

$$
\begin{gather*}
Q(D) x=B u \tag{1.4}\\
y=A_{1} x+B_{1} u \tag{1.5}
\end{gather*}
$$

with initial conditions

$$
\begin{equation*}
F_{0} D^{k} x=x_{k}^{0}, k=0,1, \ldots, N-1, \tag{1.6}
\end{equation*}
$$

where $x_{k}^{0} \in Z_{D}, Q(D)=\sum_{k=0}^{N} Q_{k} D^{k}, Q_{k} \in L(X)$ and such that $\mathscr{D}_{Q_{k}} \subset D^{k} X$ for $k=$ $=0,1, \ldots, N-1$ and $Q_{N}=I$.

If operator $Q_{0}(R)=\sum_{k=0}^{N} Q_{k} R^{N-k}$ is $\underset{N-1}{\operatorname{invertible}}$ then the system (1.4)-(1.6) has a unique solution $x=R^{N=0}\left[Q_{0}(R)\right]^{-1} B u+\sum_{k=0}^{N-1} R^{k} x_{k}^{0}$.

Indeed, equation (1.4) implies $Q_{0}(R) D^{N} x=B u$ thus $D^{N} x=\left[Q_{0}(R)\right]^{-1} B u$ and $x=R^{N}\left[Q_{0}(R)\right]^{-1} B u+\sum_{k=0}^{N-1} R^{k} z_{k}, z_{k} \in Z_{D}$ for $k=0,1, \ldots, N-1$.

Conditions (1.6) imply for $k=0,1, \ldots, N-1$:

$$
\begin{aligned}
& F_{0} D^{k} x=x_{k}^{0}=F_{0} D^{k} R^{N}\left[Q_{0}(R)\right]^{-1} B u+F_{0} D^{k} \sum_{i=0}^{N-1} R^{1} z_{l}= \\
&=F_{0} R^{N-k}\left[Q_{0}(R)\right]^{-1} B u+F_{0} D^{k} \sum_{l=0}^{N-1} R^{1} z_{l}=z_{k}
\end{aligned}
$$

because $F_{0} R=0$.
In our case the output is $y=\left[A_{1} R^{N} Q_{0}(R)^{-1} B+B_{1}\right] u+A_{1} \sum_{k=0}^{N-1} R^{k} x_{k}^{0}$.
Suppose that the operator B is of the form $B=P(D)$, where $P(D)=\sum_{k=0}^{M} P_{k} D^{k}$ with $P_{k} \in L(X)$ and $\mathscr{D}_{P_{k}} \subset D^{k} X$ for $k=0, \ldots, M-1$ and $P_{M}=I$. Then the system (1.4)-(1.6) can be written in the following form

$$
\begin{gather*}
Q(D) x=P(D) u \tag{1.7}\\
y=A_{1} x+B_{1} u \tag{1.8}\\
F_{0} D^{k} x=x_{k}^{0}, \quad k=0,1, \ldots, N-1 . \tag{1.9}
\end{gather*}
$$

Suppose that $Q_{0}(R)$ is an invertible operator, where $Q_{0}(R)=\sum_{k=0}^{N-1} Q_{k} R^{k}$ as before. Write $P_{0}(R)=\sum_{k=0}^{M-1} P_{k} R^{M-k}$ the system (1.7)-(1.9) has a unique solution $x=W(R) D^{M} u+\sum_{k=0} R^{k} x_{\alpha}^{0}$, where $W(R)=R^{N}\left[Q_{0}(R)\right]^{-1}\left[P_{0}(R)\right]$.

Observe that the operator $W(R)$ is a rational function of R.
Moreover, if we consider the system

$$
\begin{gather*}
Q(D) D^{M} x=B u, M \geqslant 0 \tag{1.10}\\
F_{0} D^{k} x=x_{k}^{0}, x_{k}^{0} \in Z_{D}, k=0, \ldots, M+N-1 . \tag{1.11}
\end{gather*}
$$

In this case the solution of (1.10)-(1.11) is of the form $x=R^{M+N}\left[Q_{0}(R)\right]^{-1} B u+$ $+\sum_{k=0}^{M+N-1} R^{k} x_{k}^{0}$ provided that operator $Q_{0}(R)$ is invertible.

Indeed, define $D^{M} x=v$. Then $F_{0} D^{k} v=F_{0} D^{k+M} x=x_{k+M}^{0}, k=0, \ldots, N-1$.
We therefore can rewrite (1.10)-(1.11) as follows:

$$
\begin{gather*}
Q(D) v=B u \tag{1.12}\\
F_{0} D^{k} v=x_{k+M}^{0}, \quad k=0, \ldots, N-1 . \tag{1.13}
\end{gather*}
$$

Since operator $Q_{0}(R)$ is invertible by our assumption we obtain

$$
\begin{equation*}
v=R^{N}\left[Q_{0}(R)\right]^{-1} B u+\sum_{k=0}^{N-1} R^{k} x_{k+M}^{0} . \tag{*}
\end{equation*}
$$

We consider the problem $D^{M} x=v, F_{0} D^{k} x=x_{k}^{0}, k=0, \ldots, M-1$. This problem is well possed and has solution (cf. [1])

$$
\begin{equation*}
x=R^{M} v+\sum_{k=0}^{M-1} R^{k} x_{k}^{0} \tag{**}
\end{equation*}
$$

Substitute v given by formula (*) into (**), we obtain

$$
\begin{aligned}
x=R^{M}\left\{R^{N}\left[Q_{0}(R)\right]^{-1} B u\right. & \left.+\sum_{k=0}^{N-1} R^{k} x_{k+M}^{0}\right\}+\sum_{k=0}^{M-1} R^{k} x_{k}^{0}= \\
= & R^{M+N}\left[Q_{0}(R)\right]^{-1} B u+\sum_{k=0}^{N-1} R^{k+M} x_{k+M}^{0}+\sum_{k=0}^{M-1} R^{k} x_{k}^{0}
\end{aligned}
$$

and hence we have

$$
x=R^{M+N}\left[Q_{0}(R)\right]^{-1} B u+\sum_{k=0}^{M+N-1} R^{k} x_{k}^{0}
$$

the output $y=A_{1} x+B_{1} u$ is of the form

$$
y=\left\{A_{1} R^{M+N}\left[Q_{0}(R)\right]^{-1} B+B_{1}\right\} u++A_{1} \sum_{k=0}^{M+N-1} R^{k} x_{k}^{0} .
$$

If the coefficients Q_{0}, \ldots, Q_{N-1} are commutative with D and $Q_{0}(R)$ is invertible then the system

$$
\begin{gather*}
D^{M} Q(D) x=B u, M \geqslant 0 \tag{1.14}\\
F_{0} D^{k} x=x_{k}^{0}, x_{k}^{0} \in Z_{D}, k=0, \ldots, M+M-1 \tag{1.15}
\end{gather*}
$$

has the solution as before:

$$
x=R^{M+N}\left[Q_{0}(R)\right]^{-1} B u+\sum_{n=0}^{M+N-1} R^{k} x_{k}^{0}
$$

since $D^{M} Q(D)=Q(D) D^{M}$.
Equation with superposition of right invertible operators. Suppose that $D_{1}, D_{2}, \ldots, D_{m} \in$ $\in R(X)$ and R_{1}, \ldots, R_{m} are right inverses of D_{1}, \ldots, D_{m} respectively.

Consider the superposition $D=D_{1}, D_{2}, \ldots, D_{m-1}, D_{m}$. It is easy to check that operator $R=R_{m} \cdot R_{m-1} \cdot \ldots \cdot R_{1}$ is a right inverse of D, i.e. $D \cdot R=I$ (cf. [1b, 1g]) and an initial operator for D corresponding to R is of the form $F=F_{m}+R_{m} F_{m-1} D_{m}+$ $+\ldots+R_{m} R_{m-1} \ldots R_{2} F_{1} D_{2} \ldots D_{m}$, where $F_{j}, j=1, \ldots, m$, are initial operators for D_{j} corresponding to R_{j}.

Instead of (1.1), ($1^{\prime} .1$) and (1.2) we consider the system

$$
\begin{gather*}
\tilde{D} x=A x+B u \tag{1.16}\\
y=A_{1} x+B_{1} u \tag{1.17}
\end{gather*}
$$

with initial condition

$$
\begin{equation*}
\tilde{F x}=x_{0}, \quad x_{0} \in Z_{D} . \tag{1.18}
\end{equation*}
$$

Assume that operatore $I-\widetilde{R} A$ is invertible. Then the problem (1.16)-(1.17) is well posed and its solution is as for system (1.1), (1'.1), (1.2) with R replaced by \tilde{R}.

REMARK 1.1. If $D_{1}=D_{2}=\ldots=D_{m}=D$ then $\tilde{D}=D^{m}$ and $\tilde{R}=R^{m}, F_{1}=\ldots=F_{m}=F$. The operator $\widetilde{F}=F+R F D+\ldots+R^{m-1} F D^{m-1}$.

The Taylor formula (see [1]) implies $F^{(m)}=\widetilde{F}=I-R^{m} D^{m}$, we obtain the system

$$
\begin{gather*}
D^{m} x=A x+B u \tag{1.16'}\\
F^{(m)} x=x_{0}, x_{0} \in Z_{D m} . \tag{1.17'}
\end{gather*}
$$

But $Z_{D m}=\left\{x \in \mathscr{D}_{D m}: x=\sum_{k=0}^{m-1} R^{k} x_{k}, x_{k} \in Z_{D}, k=0, \ldots, m-1\right\}$, hence $x_{0}=\sum_{k=0}^{m-1} R^{k} x_{k}^{0}$,
$\in Z_{D}$. Moreover

$$
\begin{equation*}
x_{k}^{0}=F D^{k} x_{0}, k=0, \ldots, m-1 \tag{1.19}
\end{equation*}
$$

Indeed, since $x_{0}=x_{0}^{0}+R x_{1}^{0}+\ldots+R^{m-1} x_{m-1}^{0}$, we have $F D^{k} x_{0}=F D^{k}\left(x_{0}^{0}+R x_{1}^{0}+\right.$ $+\ldots+R^{m-1} x_{m-1}^{0}$), i.e. $F D^{k} x_{0}=F D^{k} \cdot R^{k} x_{k}^{0}=x_{k}^{0}, \mathrm{p}=0,1, \ldots, m-1$.

Conversely, it is easy to prove that the problem (1.16)-(1.19) is equivalent to the problem (1.16')-(1.17').

For the superposition D_{1}, \ldots, D_{m} of the right invertible operator we have the following:

Theorem 1.1. Suppose that D_{1}, \ldots, D_{m} are right invertible operators and R_{1}, \ldots, R_{m} are right inverse of D_{1}, \ldots, D_{m} respectively. Then

$$
\begin{align*}
& Z_{D_{1}, \ldots, D_{m}} \xrightarrow{\text { df }}\left\{z \in X: D_{1}, \ldots, D_{m} z=0\right\}= \\
= & \left\{z \in X: z=z_{m}+\sum_{k=1}^{m-1} R_{m}, \ldots, R_{m-k+1} z_{m-k}, z_{m-k} \in Z_{D_{m-k}}, k=0, \ldots, m-1\right\} . \tag{1.20}
\end{align*}
$$

Proof. Let $z=z_{m}+\sum_{k=1}^{m-1} R_{m}, \ldots, R_{m-k+1} z_{m-k}, \quad z_{m-k} \in Z_{D_{m-k}}, k=1, \ldots, m-1$, and $z_{m} \in Z_{D_{m}}$. Then $D_{1}, \ldots, D_{m} z=D_{1}, \ldots, D_{m}\left\{z_{m}+R_{m} z_{m-1}+\ldots+R_{m}, \ldots, R_{2} z_{1}\right\}=0$.

Conversely if $z \in Z_{D_{1}}, \ldots, D_{m}$. We shall prove that z can be written in the form $z=z_{m}+R_{m} z_{m-1}+\ldots+R_{m}, \ldots, R_{2} z_{1}$, where $z_{k} \in Z_{D_{k}}, k=1, \ldots, m$.

We prove this by method of induction.
Clearly, if $m=1$ the formula (1.20) is true.
Suppose that (1.20) is true for a number m, i.e. if $z \in Z_{D_{1}, \ldots . . D_{m}}$ then z can be written in the form $z=z_{m}+R_{m} z_{m-1}+\ldots+R_{m}, \ldots, R_{2} z_{1}$, and suppose that $z \in$ $\in Z_{D_{1}, \ldots, D_{m+1}}$. We have $D_{1}, \ldots, D_{m}\left(D_{m+1} z\right)=0$.

Write $D_{m+1} z=w$, by assumption of induction we obtain $w=z_{m}+R_{m} z_{m-1}+$ $+\ldots+R_{m}, \ldots, R_{2} z_{1}$, where $z_{k} \in Z_{D_{k}}, k=1, \ldots, m$, or $D_{m+1} z=z_{m}+R_{m} z_{m-1}+\ldots+$ $R_{m}, \ldots, R_{2} z_{1}$. Hence $z=z_{m+1}+R_{m+1} z_{m}+R_{m+1} R_{m} z_{m-1}+\ldots+R_{m+1}, \ldots, R_{2} z_{1}$, where $z_{k} \in Z_{D_{k}}, k=1, \ldots, m+1$. Thus (1.20) is true for arbitrary m.

Corollary 1.1. Suppose that operator $I-R_{m}, \ldots, R_{1} A$ is invertible. Then the equation

$$
\begin{equation*}
D_{1}, \ldots, D_{m} x=A x+B u, A \in L_{0}(x), B \in L(U \rightarrow X) \tag{1.21}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
F x=x_{0}, \quad x_{0} \in Z_{D_{1}, \ldots, D_{m}} \tag{1.22}
\end{equation*}
$$

where $F=F_{m} \cdot+R_{m} F_{m-1} D_{m}+\ldots+R_{m} R_{2} F_{1} D_{2}, \ldots, D_{m}$ is an initial operator for D_{1}, \ldots, D_{m} corresponding to R_{m}, \ldots, R_{1} (see [1b], [1g]) and F_{j} are initial operators D_{j} corresponding to R_{j} for $j=1, \ldots, m$, has a solution $x=\left(I-R_{m}, \ldots, R_{1} A\right)^{-1} \times$ $\times\left(R_{m}, \ldots, R_{1} B u+z_{m}^{0}+\sum_{k=1}^{m-1} R_{m}, \ldots, R_{m-k+1} z_{m-\kappa}^{0}\right)$, where $z_{m}^{0}=F_{m} x_{0}$ and $z_{m-k}^{0}=$ $=F_{m-k} D_{m-k+1}, \ldots, D_{m} x_{0}, k=1, \ldots, m-1$.

Proof. Applying the Theorem 1.1, we can write the solution of (1.21)-(1.22) in the form $x=\left(I-R_{m}, \ldots, R_{1} A\right)^{-1}\left(R_{m}, \ldots, R_{1} B u+x_{0}\right) x_{0} \in Z_{D_{1}}, \ldots, D_{m}$, i.e.

$$
x_{0}=z_{m}^{0}+R_{m} z_{m-1}^{0}+\ldots+R_{m}, \ldots, R_{2} z_{1}^{0} .
$$

By acting operators $F_{m}, F_{m-1}, D_{m}, \ldots, F_{1}, D_{2}, \ldots, D_{m}$ on the both sides of (1.20) we obtain

$$
F_{m} x_{0}=z_{m}^{0}, F_{m-1} D_{m} x_{0}=z_{m-1}^{0}, \ldots, F_{1} D_{2}, \ldots, D_{m} x_{0}=z_{1}^{0}
$$

because of

$$
\begin{gathered}
F_{j} R_{j}=0, D_{j} R_{j}=I, j=1, \ldots, m \\
F_{j} z_{j}=z_{j} \text { on } Z_{D_{j}}, j=1, \ldots, m
\end{gathered}
$$

Remark 1.2. If $D_{1}=D_{2}=\ldots=D_{m}(=D)$, then the problem (1.21)-(1.22) is the problem (1.16')-(1.17').

2. Controllability of systems described by a right invertible operator

Suppose that we are given a system

$$
\begin{gather*}
D x=A x+B u \tag{2.1}\\
F_{0} x=x_{0}, \quad x_{0} \in Z_{D} \tag{2.2}
\end{gather*}
$$

where as before $D \in L(X)$ is right invertible and F_{0} is an initial operator for D corresponding to a right inverse R, such that the operator $I-R A$ is invertible and $B U \supset(D-A) \mathscr{D}_{D}$.

For each initial state $x_{0} \in Z_{D}$ and each control $u \in U$ the system (2.1)-(2.2) has a unique solution

$$
\begin{equation*}
x=\Phi\left(x_{0}, u\right)=\Phi_{0} x_{0}+\Phi_{1} u \tag{2.3}
\end{equation*}
$$

where we write $\Phi_{0} x_{0}=(I-R A)^{-1} x_{0}, \Phi_{1} u=(I-R A)^{-1} R B u$, provided that the operator $I-R A$ is invertible.

1. Denote by \mathscr{F}_{D} the set of all initial operators for D. We have:

Definition 2.1. The system (2.1)-(2.2) is said to be F_{1}-controllable if for every $x_{0} \in Z_{D}$ we have

$$
\begin{equation*}
\left\{F_{1} \Phi\left(x_{0}, u\right): u \in U\right\}=Z_{D} \tag{2.4}
\end{equation*}
$$

Theorem 2.1. A necessary and sufficient condition for the systems (2.1)-(2.2) to be F_{1}-controllable is

$$
\begin{equation*}
\operatorname{ker} B^{*} R^{*}(I-R A)^{*-1} \widetilde{F}_{1}^{*}=\{0\} \tag{2.5}
\end{equation*}
$$

where $*$ denotes algebraic adjoint, and \widetilde{F}_{1} is restriction of F_{2} on $\operatorname{Rang} v\left\{(I-R A)^{-1} \times\right.$ $\times R B\} \subset X$.
Proof. By definition, the system (2.1)-(2.2) is F_{1}-controllable if

$$
\begin{equation*}
\left\{F_{1}(I-R A)^{-1} x_{0}+F_{1}(I-R A)^{-1} R B u: u \in U\right\}=Z_{D} \tag{2.6}
\end{equation*}
$$

But the equality (2.6) is satisfied if and only if for every $z \in Z_{D}$ the equation

$$
\begin{equation*}
F_{1}(I-R A)^{-1} x_{0}+F_{1}(I-R A)^{-1} R B u=z, \tag{2.7}
\end{equation*}
$$

has solution u or the equation

$$
F_{1}(I-R A)^{-1} R B u=\bar{z},
$$

where $\bar{z}=z-F_{1}(I-R A)^{-1} x_{0} \in Z_{D}$, has a solution u for every $\bar{z} \in Z_{D}$.
By the definition of $\tilde{F}_{1},\left(2.7^{\prime}\right)$ can be rewriten $\tilde{F}_{1}(I-R A)^{-1} R B u=\bar{z}$. Thus we obtain $\operatorname{ker}\left\{\tilde{F}_{1}(I-R A)^{-1} R B\right\}^{*}=\{0\}$, i.e. $\operatorname{ker} B^{*} R^{*}(I-R A)^{*-1} \tilde{F}_{1}^{*}=\{0\}$.

Corollary 2.1. If the system (2.1)-(2.2) is stationary then the condition (2.5) is of the following form:

$$
\operatorname{ker} B^{*}(I-R A)^{*-1} \tilde{F}_{1}^{*}=\{0\}
$$

2. Consider the stationary system $D x=A x+B u$ (eq. (2.1)) and $F_{0} x=0$ (eg. (2.2')).

Theorem 2.2. Suppose that the stationary system (2.1)-(2.2) with $x_{0}=0$ is F_{1}-controllable and $B U \supset(I-R A) X$. Then the system (2.1)-(2.2) is F_{2}-controllable for every $F_{2} \in F_{D}$, where $\widetilde{F}_{D}=\left\{F \in \mathscr{F}_{D}: \forall z \in Z_{D}, \exists y \in X: F R y=z\right\}$.
Proof. To begin with observe that for the stationary system (2.1)-(2.2) we havé $(r-R A) R=R(I-R A), \quad(I-R A)^{-1} R=R(I-R A)^{-1}$, because that $(I-R A)$ is invertible.

The solution of the system (2.1)-(2.2) is of the form $x=(I-R A)^{-1} R B u$. For every $z \in Z_{D}$, there exists $u \in U$ such that $F_{1}(I-R A)^{-1} R B u=z$.

We have $\left(F_{1}-F_{2}\right)(I-R A)^{-1} \quad R B u=\left(R_{2}-R_{1}\right) D R(I-R A)^{-1} \quad B u=F_{1} R_{2}(I+$ $-R A)^{-1} B u$, or $F_{2}(I-R A)^{-1} R B u=z-z_{2}$, where $z_{2}=F_{1} R_{2}(I-R A)^{-1} B u$.

Since $F_{2} \in \widetilde{\mathscr{Y}}_{B}$ then there exists $y \in X$ such that $F_{2} R y=z_{2}$, and there exists $w \in U$ such that $B w=(I-R A) y \in X$, or there exists $w \in U$ such that $(I-R A)^{-1} B w=$ $=y$ since $I-R A$ is invertible. Thus there exists a control $w \in U$ such that $F_{2} R(I-R A)^{-1} B w=z_{2}$ or $F_{2}(I-R A)^{-1} R B w=z_{2}$.

Now if we choose $u_{1}=u+w$ then $F_{2}(I-R A)^{-1} R B u_{1}=F_{2}(I-R A)^{-1} R B(u+w)=$ $=F_{2}(I-R A)^{-1} R B u+F_{2}(I-R A)^{-1} R B w$.

But $F_{2}(I-R A)^{-1} R B u==^{\prime}-z_{2}$ and $F_{2}(I-R A)^{-1} R B w=z_{2}$. Thus $F_{2}(I-R A)^{-1} \times$ $\times R B u_{1}=z$, i.e. the system (2.1)-(2.2) is F_{2}-controllable for $F_{2} \in \mathscr{F}_{D}$ if the system (2.1)-(2.2) is F_{1}-controllable.

3. Examples

Consider the process described by the linear system differential equation

$$
(\mathscr{L})\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
x(0)=0
\end{array}\right.
$$

where A and B are matrices and x, u are vectors. We assume that
(i) $A-n \times n$ constant matrix and $B-n \times m$ constant matrix,
(ii) the control $u(t)$ is m-vector function measurable and integrable on $[0,1]$ (cf. [7] and [8]).

If we define the operator $(D x)(t)=\left(\frac{d}{d t} x_{1}, \ldots, \frac{d}{d t} x_{n}\right)$, where $x(t)=\left(x_{1}(t), \ldots\right.$, $\left.\ldots, x_{n}(t)\right)$ then a right inverse of D is defined as follows: $(R x)(t)=\left(\int_{0}^{t} x_{1}(s) d s, \ldots\right.$, $\left.\ldots, \int_{0}^{t} x_{n}(s) d s\right)$ and $(F x)(t)=x(0)\left(F_{1} x\right)(t)=x\left(T_{1}\right)=x_{1}$.

The system \mathscr{L} can be written in terms of the symbol of operator

$$
(\mathscr{S})\left\{\begin{array}{l}
D x=A x+B u \\
F x=0
\end{array}\right.
$$

By assuming (i) the system (\mathscr{P}) is stationary, i.e. $R A=A R, R B=B R, D A=A D$, $D B=B D$.

Moreover by the theorem Bielecki [4] it follows that the operator $I-R A$ is invertible. Hence the solution of (\mathscr{S}) i.e. ($\mathscr{L})$ is of the form $x_{u}=(I-R A)^{-1} R B u$. In this case we have

$$
\begin{aligned}
B U & =\{\text { measurable and integrable functions on }[0,1]\} \\
X & =\{\text { absolutely continuous functions on }[0,1]\}
\end{aligned}
$$

and the conditions of Theorem 2.2 hold.
Therefore if the system (\mathscr{S}) if F_{1}-controllable for some $F_{1} \in \mathscr{F}_{D}$ then (\mathscr{P}) is F_{2}-controllable for all F_{2} belonging to $\widetilde{\mathscr{F}}_{D}$, where $\left(F_{2} x\right)(t)=x\left(T_{2}\right), 0<T_{2} \leqslant 1$. But the system (\mathscr{S}) is F_{1}-controllable if and only if

$$
\begin{equation*}
\left\{x_{u}\left(T_{1}\right): u \in U\right\}=\left\{F_{1}(I-R A)^{-1} R B u: u \in U\right\}=Z_{D}=R^{n} \tag{*}
\end{equation*}
$$

In our case relation (*) holds for all operators $F_{\alpha} \in \mathscr{F}_{D}, F_{\alpha} \neq F$.
One can consider also some partial differential operators, functional-differentional operators and difference operators, as it was indicated in the papers [1b-e].

4. Some generalization

1. Consider the system

$$
\begin{gather*}
Q(D) x=B u \tag{4.1}\\
F_{0} D^{k} x=x_{k}^{0}, \quad x_{k}^{0} \in Z_{D}, \quad k=0, \ldots, N-1 \tag{4.2}
\end{gather*}
$$

where $Q(D)=\sum_{\kappa=0}^{N} Q_{k} D^{k}$ is a polynomial in D degree N with coefficients $Q_{k} \in L(X)$, $k=0, \ldots, N-1$ and $Q_{N}=I$.

Suppose that operator $Q_{0}(R)=\sum_{k=0}^{N} Q_{k} R^{N-k}$ is invertible. Then the system (4.1)--(4.2) has a unique solution for every $u \in U$ and for every initial values $x_{k}^{0}, k=$ $=0, \ldots, N-1, x=R^{N}\left[Q_{0}(R)\right]^{-1} B u+\sum_{k=0}^{N-1} R^{k} x_{k}^{0}$ (see $[1 \mathrm{e}]$).

From Definition 2.1 it follows that the system (4.1)-(4.2) is said to be F_{1}-controllable if for every $z_{k}^{1} \in Z_{D}, k=0, \ldots, N-1$, there exists a control $\bar{u} \in U$ such that $F_{1} D^{k} \times$ $\times\left[R^{N} Q_{0}(R)^{-1} B \bar{u}+\sum_{k=0}^{N-1} R^{k} x_{k}^{0}\right]=x_{k}^{1}$ for all $k=0, \ldots, N-1$.

Theorem 4.1. The system (4.1)-(4.2) is F_{1}-controllable if and only if

$$
\begin{equation*}
\operatorname{ker} B^{*}\left[Q_{0}(R)\right]^{*-1} R^{* N-k} F_{1}^{*}=\{0\} \tag{4.3}
\end{equation*}
$$

for all $k=0,1, \ldots, N-1$, where F_{1} is a restriction of \tilde{F}_{1} on $\operatorname{Rang}_{U} R^{N-k}\left[Q_{0}(R)\right]^{-1} B$.
The proof of Theorem 4.1 is going on the some lines as the proof of the Theorem 2.1.
2. If $B=P(D)=\sum_{k=0}^{M} P_{k} D^{k}, P$ is a polynomial in D degree M with the coefficients $P_{k} \in L(X), k=0, \ldots, M-1$, and $P_{M}=I$ we have the system

$$
\begin{gather*}
Q(D) x=P(D) u \tag{4.4}\\
F_{0} D^{k} x=x_{k}^{0}, \quad x_{n}^{0} \in Z_{D}, \quad k=0, \ldots, N-1 . \tag{4.5}
\end{gather*}
$$

Write $P_{0}(R)=\sum_{k=0}^{M-1} P_{k} R^{M-k}$ and suppose that $Q_{0}(R)$ is invertible. The solution of (4.4), (4.5) for every initial state $x_{k}^{0}, k=0, \ldots, N-1$, and $u \in U$ is of the form $x=W(R) D^{M} u+\sum_{k=0}^{N-1} R^{k} x_{k}^{0}$, where $W(R)=R^{N}\left[Q_{0}(R)\right]^{-1} P_{0}(R)$ is a rational function of R.

The condition of the F_{1}-controllability of the system (4.4)-(4.5) can be written as follows: $\operatorname{ker} D^{* M}\left[P_{0}(R)\right]^{*}\left[Q_{0}(R)^{-1}\right]^{*} R^{* N-k} \widetilde{F}_{1}=\{0\}, k=0,1, \ldots, N-1$, where F_{1} is a restriction of \widetilde{F}_{1} on $\operatorname{Rang}_{U}\left\{R^{N-k}\left[Q_{0}(R)\right]^{-1}\left[P_{0}(R)\right] D^{M}\right\}$.
3. An initial operator \hat{F} for the polynomial $Q(D) \sum_{k=0}^{N} q_{k} D^{k}$. Let a polynomial of the right inverse operator D be given $Q(D)=\sum_{k=0} q_{k} D^{k}$, where q_{k} - constant, $k=0, \ldots, N$.

If we denote $Q^{*}(R)=\sum_{k=0}^{N} q_{k} R^{N-k}$, where as before R is an right inverse of the operator D, then $\hat{R}=\left[Q^{*}(R)\right]^{-1} R^{N}=R^{N}\left[Q^{*}(R)\right]^{-1}$ is a right inverse of $\hat{D}=\sum_{k=0}^{N} q_{k} D^{k}$ (see [1a]). Thus an initial operator \hat{F} for the operator \hat{D} corresponding to \hat{R} is of the form $\hat{F}=I-\hat{R} \hat{D}$, and then it can be written as follows:

$$
\begin{aligned}
& \hat{F}=I-\left[Q^{*}(R)\right]^{-1} R^{N} Q(D)=\left[Q^{*}(R)\right]^{-1}\left\{\left[Q^{*}(R)\right]-R^{N} Q(D)\right\}= \\
& =\left[Q^{*}(R)\right]^{-1}\left\{q_{0} R^{N}+q_{1} R^{N-1}+\ldots+q_{N}-R^{N}\left(q_{0}+q_{1} D+\ldots+q_{N} D^{N}\right)=\right. \\
& =\left[Q^{*}(R)\right]^{-1}\left\{q_{1}\left(R^{N-1}-R^{N} D\right)+\ldots+q_{N}\left(I-R^{N} D^{N}\right)\right\}= \\
& =\left[Q^{*}(R)\right]^{-1}\left\{q_{1} R^{N-1}(I-R D)+\ldots+q_{N}\left(I-R^{N} D^{N}\right)\right\} .
\end{aligned}
$$

By the Taylor formula [1a] we have $R^{k} D^{k}=I-\sum_{i=0}^{k-1} R^{i} F D^{i}$ for $k=1,2, \ldots, N$, and then $\hat{F}=\left[Q^{*}(R)\right]^{-1}\left\{q_{1} R^{N-1} F+q_{2} R^{N-2}(F+R F D)+\ldots+q_{N}\left(F+\sum_{k=1} R^{k} F D^{k}\right)\right\}=$
$=\left[Q^{*}(R)\right]^{-1}\left\{\left(q_{1} R^{N-1}+q_{2} R^{N-2}+\ldots+q_{N}\right) F+\left(q_{2} R^{N-2}+\ldots+q_{N}\right) R F D+\ldots+q_{N} \times\right.$ $\left.\times R^{N-1} F D^{N-1}\right\}$, or $\hat{F}=\left[Q^{*}(R)\right]^{-1}\left\{\left(\sum_{k=1}^{N} q_{k} R^{N-k}\right) F+\left(\sum_{k=1}^{N} q_{k} R^{N-k}\right) R F D+\ldots+\right.$
$\left.+q_{N} R^{N-1} F D^{N-1}\right\}$.

Proposition. If for $\forall z_{i} \in Z_{D}, \exists \bar{y}_{i}$ such that $\left(\sum_{k=i}^{N} q_{k} R_{2}^{N-k}\right) R_{2}^{i-1} F_{2} R^{N-i+1} \bar{y}_{i-1}=$ $=R_{2}^{i-1} z_{i-1}, i=1, \ldots, N$, where R_{2} is a right inverse of D (i.e. $D R_{2}=I$) and F_{2} is an initial operator for D corresponding to R_{2}, then there exist $y_{i}(i=1, \ldots, N)$ such that $\left\langle\hat{F}_{2}, \hat{R}, y\right\rangle=z$ for every $u \in Z_{Q(D)}$, where $y=\left(y_{1}, \ldots, y_{n}\right)$ and

$$
\begin{align*}
\left\langle\hat{F}_{2}, \hat{R}, y\right\rangle \stackrel{\text { df }}{=}\left[Q^{*}\left(R_{2}\right)\right]^{-1}(& \left.\sum_{k=1}^{N} q_{k} R_{2}^{N-k}\right) F_{2} R^{N}\left[Q^{*}(R)\right]^{-1} y_{1}+\ldots+ \\
+ & {\left[Q^{*}\left(R_{2}\right)\right]^{-1} q_{N} R_{2}^{N-1} F_{2} R\left[Q^{*}(R)\right]^{-1} y_{N} . } \tag{*}
\end{align*}
$$

Proof. For every $z \in Z_{Q(D)}$ we have (see [1a]): $z=\left[Q^{*}\left(R_{2}\right)\right]^{-1} \sum_{k=0}^{N-1} R_{2}^{N} z_{k}, z_{k} \in Z_{D}$, $k=0, \ldots, N-1$. Moreover we have

$$
\begin{array}{r}
\tilde{F}_{2} \hat{R}=\left[Q^{*}\left(R_{2}\right)\right]^{-1}\left(\sum_{k=1}^{N} q_{k} R_{2}^{N-1}\right) F_{2} R^{N}+\left(\sum_{2}^{N} q_{k} R_{2}^{N-k}\right)\left(R_{2} F_{2} D\right) R^{N}+ \\
\ldots+q_{N} R^{N-1} F_{2} D^{N-1} R^{N}\left[Q^{*}(R)\right]^{-1}=\left[Q^{*}\left(R_{2}\right)\right]^{-1}\left\{\left(\sum_{k=1}^{N} q_{k} R_{2}^{N-k}\right) F_{2} R^{N}+\right. \\
\left.+\left(\sum_{2}^{N} q_{k} R_{2}^{N-k}\right) R_{2} F_{2} R^{N-1}+\ldots+q_{N} R_{2}^{N-1} F_{2} R\left[Q^{*}(R)\right]^{-1}\right\} .
\end{array}
$$

The relation (*) holds if there exist $y_{i}, i=1, \ldots, N$, such that

$$
\begin{aligned}
{\left[Q^{*}\left(R_{2}\right)\right]^{-1}\left(\sum_{k=i}^{N} q_{k} R_{2}^{N-k}\right) R_{2}^{i-1} F_{2} R^{N-i+1}\left[Q^{*}\right.} & (R)]^{-1} y_{i=1}= \\
& =\left[Q^{*}\left(R_{2}\right)\right]^{-1} R_{2}^{i-1} z_{i-1}
\end{aligned}
$$

or

$$
\left(\sum_{k=i}^{N} q_{k} R_{2}^{N-k}\right) R_{2}^{i-1} F_{2} R^{N-i+1}\left[Q^{*}(R)\right]^{-1} y_{i=1}=R_{2}^{i-1} z_{i-1}, i=1, \ldots, N .
$$

By assumption there exist $\bar{y}_{i}, i=1, \ldots, N$, such that

$$
\left(\sum_{k=i}^{N} q_{k} R_{2}^{N-k}\right) R_{2}^{i-1} F_{2} R^{N-i+1} \bar{y}_{i-1}=R_{2}^{i-1} z_{i-1}
$$

Then $y_{i-1}, i=1, \ldots, N$, can be found by relation $y_{i-1}=\left[Q^{*}(R)\right] \bar{y}_{i-1}$.

5. Observability

1. In the notion of the Section 2, we now consider the system

$$
\begin{gather*}
D x=A x+B u \tag{5.1}\\
F x=x_{0}, \quad y=H x \tag{5.2}
\end{gather*}
$$

where $D \in R(X), A \in L_{0}(X), B \in L_{0}(U \rightarrow X)$ and $H \in L_{0}(X \rightarrow Y)$. $H \neq 0$.
The solution of the system (5.1) is of the form $x=(I-R A)^{-1} x_{0}+(I-R A)^{-1} \times$ $\times R B u$, and then the output (5.2) $y=H(I-R A)^{-1} x_{0}+H(I-R A)^{-1} R B u$.

Definition 5.1. The system (5.1)-(5.2) is said to be observable if for every given output y and input u, there exist a unique initial state x_{0} such that $y=H(I-R A)^{-1} \times$ $\times x_{0}+H(I-R A)^{-1} R B u$. We have the following theorem:

Theorem 5.1. The system (5.1)-(5.2) is observable if and only if ker $H(I-R A)^{-1}=$ $=\{0\}$.
Proof. The output y corresponding to x_{0} and u is of the form $y=H(I-R A)^{-1} x_{0}+$ $+H(I-R A)^{-1} R B u$, and hence in order to equation $H(I-R A)^{-1} x_{0}=y-H(I+$ $-R A)^{-1} R B u$ has unique solution x_{0} for every u and y, the necessary and sufficient condition is $\operatorname{ker} H(I-R A)^{-1}=\{0\}$.
2. Suppose that X, Y are Hilbert spaces. In the space X we consider the linear system described by a right invertible operator D :

$$
\left\{\begin{array}{l}
D x=A x \\
F x=x_{0}, \quad x_{0} \in Z_{D}
\end{array}\right.
$$

and the output $y \in Y$ defined by the formula $y=H x$, where H is a linear operator from X into Y.

Suppose that $f \in\left(Z_{D}\right)^{*}$ be given. We have the definition:

Definition 5.2. (see [7]).

a. The functional $f \in\left(Z_{D}\right)^{*}$ is said to be $S R$-observable if there exists en element $\varphi \in Y^{*}$ such that $f=E_{A}^{*} H^{*} \varphi$, where $E_{A}=(I-R A)^{-1}$ is an operator from Z_{D} into X, generated by the system (5.1'), i.e. for each $x_{0} \in Z_{D}, x=(I-R A)^{-1} x_{0}$ is a unique solution of the system (5.1').
b. The system $\left(5.1^{\prime}\right)$ is said to be observable if all $f \in Z_{D}^{*}$ are observable.

Theorem 5.1'. The functional f is $S R$-observable if and only if ker $H E_{A}=\{0\}$.
Proof. For each $f \in Z_{D}^{*}$, the equation $f=E_{A}^{*} H^{*} \varphi$ has solution φ if and only if $\operatorname{ker}\left(E_{A}^{*} H^{*}\right)=\{0\}$ (see [6]), or if and only if $\operatorname{ker}\left(H^{* *} E_{A}^{* *}\right)=\{0\}$.

If we denote $\kappa_{Z_{D}}: Z_{D} \rightarrow Z_{D}^{* *}, \kappa_{X}: X \rightarrow X^{* *}, \kappa_{Y}: Y \rightarrow Y^{* *}$ as canonical imbeddings from Z_{D} into $Z_{D}^{* *}, X$ into $X^{* *}$ and Y into $Y^{* *}$ respectively, then we have (see [6])
$E_{A}^{* *}=\kappa_{X} E_{A} \kappa_{Z_{D}}^{-1}, H^{* *}=\kappa_{Y} H \kappa_{X}^{-1}$. Hence $H^{* *} E_{A}^{* *}=\kappa_{Y} H \kappa_{X}^{-1} \kappa_{X} E_{A} \kappa_{Z_{D}}^{-1}=\kappa_{Y} H E_{A} \kappa_{Z_{D}}^{-1}$. Therefore the condition $\operatorname{ker} H^{* *} E_{A}^{* *}=\{0\}$ holds if and only if $\operatorname{ker} H E_{A}=\{0\}$.

By the Theorem it follows that the system (5.1') is $S R$-observable if and only if this system is observable in the sense of the Definition 5.1.
3. The relationship between observability and controllability. Now we shall assume that all spaces X, Y, U are self-adjoint i.e. $X^{*}=X, Y^{*}=Y, U^{*}=U$. In such spaces the operator $A \in L_{0}(X), H \in L_{0}(X \rightarrow Y)$, have the following properties (see [6] p. 77): $A^{* *}=\left(A^{*}\right)^{*}=A, H^{* *}=\left(H^{*}\right)^{*}=H$. Now we consider stationary system

$$
\begin{align*}
D x & =A x+B u, \quad F x=x_{0} \tag{5.1}\\
y & =H x \tag{5.2}
\end{align*}
$$

under assumption concerning A, B, D, F, H as before.
The system

$$
\begin{align*}
& D x=A^{*} x+H^{*} u \\
& F x=x_{0} \tag{5.3}
\end{align*}
$$

is called a dual system for the system (5.1)-(5.2).
Theorem 5.2. Suppose that the operator D is self-adjoint, $D=D^{*}$ the spaces X, Y, U are self-adjoint and moreover, $U=Y$.

The stationary system (5.1)-(5.2) is observable if and only for dual system (5.3) the following relation holds: $\operatorname{ker}\left(H^{*}\right)^{*}\left(I-R A^{*}\right)^{*-1}=\{0\}$.
Proof. Since $D=D^{*}$ we have $R=R^{*}$. Indeed, since $D R=I$, we have $R^{*} D^{*}=R^{*} D=$ $=I$. Hence D has right inverse R and left inverse R^{*}. Therefore $R=R^{*}$. For the system (5.3) the relation $\operatorname{ker}\left(H^{*}\right)^{*}\left(I-R A^{*}\right)^{*-1}=\{0\}$ holds means that $\{0\}=$ $=\operatorname{ker} H^{*}\left(I-A^{*} R^{*}\right)^{*-1}=\operatorname{ker} H(I-R A)^{-1}$ since $H^{* *}=H, A^{* *}=A, R^{*}=R$, and $A R=R A$, i.e. ker $H(I-R A)^{-1}=\{0\}$.

Acknowledgment. Author wishes to express his gratitude to Professor Danuta Prze-worska-Rolewicz for her help in setting of this problem and for the valuable remarks on the content of the paper.

References

1a. D. Przeworska-Rolewicz: Algebraic theory of right invertible operators. Stud. Math. 48 (1973) 129-144.
1b. Przeworska-Rolewicz D.: Analysis and differential equations (in Polish). Warszawa 1972.
1c. Przeworska-Rolewicz D.: Algebraic theory of partial differential equations with variable coefficients. Gesellschaft für Mathematik u. Datenverarbeitung (Bonn) 77 (1973) 109-127.
1d. Przeworska-Rolewicz D.: On linear differential equations with transformed arguments solvable by means of right invertible operators. Ann. Pol. Mathem. 29 (1974) 141-148.
1e. Przeworska-Rolewicz D.: Concerning boundary value problems for equation with right invertible operators. Demonstratio Math. 7 (1974) 365-380.

1f. Przeworska-Rolewicz D.: Extension of operational calculus. Control. a. Cyber. (Warszawa) 2 (1973) 5-14.
1g. Przeworska-Rolewicz D.: Admissible initial operators for superpositions of right invertible operators. An. Pol. Mathem. 33 (1976) 113-120.
2. Fattorini H. O.: Some remarks on complete controllability. SIAM J. Contr. 4, 4 (1966).
3. Jurdjevic V.: Abstracts control system. Controllability and observability. SIAM J. Contr. 8 (1970).
4. Bielecki A.: Une remarque sur la méthode de Banach-Caccipoli-Tichonov dans la théorie des équations differentielles ordinaires. Bull. Acad. Pol. Sci. Ser. sci, math. 4 (1956).
5. Balakrishnan A. V.: Introduction to optimization theory in a Hilbert Space. Berlin 1971.
6. Alexiewicz A.: Analiza funkcjonalna. Warszawa 1969.
7. Rolewicz S.: Analiza funkcjonalna i teoria sterowania. Warszawa 1974.
8. Lee E. B., Markus L.: Foundation of optimal control theory (in Russian). Moskwa 1972.

Received, September 1977

Uklady liniowe opisane za pomocą prawostronnie odwracalnych operatorów w przestrzeni liniowej

W wielu pracach [2,3,4,5] rozpatruje się sterowalność i obserwowalność dla układów opisanych równaniami różniczkowymi w przestrzeniach Banacha. W niniejszym artykule rozpatrzono pojęcie sterowalności oraz inne wlaściwości układów opisywanych prawostronnie odwracalnymi operatorami w przestrzeniach liniowych bez topologii (patrz prace [1a-c]). Ujęcie to umożliwia ujednolicenie języka dla bardzo trudnych zagadnień oraz zbadanie nicktórych problemów dotychczas nie rozpatrywanych.

Линейные системы описываемые с помощью обратимых справа операторов в линейном пространстве

В ряде работ ([2], [3], [4]) и в [5] рассматривается вопрос управляемости и наблюдаемости систем описываемых с помощъю дифференциальных уравнений в банаховых пространствах. В данной статъе рассматривается понятие управляемости и ряд других свойств, систем описываемых посредством обратимых справа операторов в линейных пространствах вне топологии (см. [1a], [1b], [1c]). Этот подход позволяет унифицировать язык для весьма разных задач, а также дает возможность исследовать некоторые вопросы, которые еще не рассматривались до настоящего времени.

