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We introduce a class of multifunctions for which the above approximation results 
yield especially important outcomes. 

Let X and Y be normed spac~s. We say that a multifunction r: Y-+ 2x is nearly 
convex that at (x0 , y 0 ), if firstly there is a ball B=B (x0 , e) x B (y0 , 1J) apd a family 
of convex, closed multifunction {A(x, y)}, (x, y) EB n G (r), Acx,y) : Y-+ 2x. (x, y) E 
E G(A(x,y)) such that there is p0 > 0 with A(x

0
,z)x:;t=0 .for XEB(x0 , p 0 ) and 

such that p < p 0 for each ( > 0 there is a neighbourhood W of (x0 , y0 ) so that 
for (x, y) E W 

(4.1) 

and secondly for each .9> 0 there are numbers r0 > 0, a > .9, e1 > 0, 1} 1 > 0, such that 
for all. (x, y) E G (r) n B 1 ( =B (x0 , e1) x B (y0 , r11)) and all r< r0 

B (r- 1 B (x, r), .9r )=>A(:.\l B (x, r) n B (y, ar) . (4.2) 

r is called almost convex, if the second condition is replaced by the weaker one: 
there are numbers r0 > 0, a.9> 0 such that for all (x, y) E G (F) n Bp (4.2) holds. 

In · both the above cases we shall call A(x, •l a derivative of r. 

4.1. REMARK. Rolewicz [29] introduces a notion of the image continuity. Let {Ct}teT- · 
_be a family of continuous linear operators, Ct: X-+ Y (X; Y are Banach spaces, 
Tis a metric space). We say that {Ct}teT is image continuous at t0 if there is a closed 
ball U such that for each (>0 there is a neighbourhood W of t0 such that fortE W 

(4.3) 

It is then natural to talk about the image lower (Hausdorff) semicontinuity if 
the first relation holds. 

2 
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, 
We observe that formula (4.1) generalizes this definition to arbitrary multi­

functions (Ct in (4.3) defines the multifunction At y={x: Ct x=y}). 
Certainly, if {Ct} is continuous in the operator norm topology, then (4.3) is 

verified. 
In fact, on assuming the operator norm continuity 

dist(CtB(O, 1), ctoB(O, 1))~ sup II Ctx- Ctoxii = II Ct - Cto ll (4.4) 
11 xll <:; 1 

and setting U=B (0, 1) we obtain (4.3). 

4.2. Example. A closed convex multifunction is nearly convex at each (x0 , y0 ) E 
E G (!'). The family {I'}cx, z) EG(T) is its derivative. 

4.3. Example. Nearly convex multifunctions generalize a notion of continuously 
Frechet defferentiable mappings F: X~ Y, X, Y Banach spaces. To show this define 
Ty=F- 1 (y) and set Acx, F(x))Y={v: F(x) + F ' (x0 ) (v - x)=y}. Since the graph 
G(Acx,F(x))) is equal to (O, - F(x) + F'(x0 )x)+G(F'(x0 )) the continuity of·p 
around x 0 (4.1) around (x0 , F(x0 )) . 

Take an arbitrary .9> 0. Since the derivative F' ( ·) is continuous in a neigh­
bourhood of x 0 (in the operator norm topology) there is e1 > 0 and r0 >0 such that 
for x E B (x0 , e1) and for v E B (x, r0 ) we have- in virtue of the mean value theorem 
(see Ioffe-Tikhomirov [17] p. 38) 

IIF(v)-F(x)-F' (xo) (v-x) li ~.9 ilv-x l l (4.5) 

or in terms of the Hausdorff distance 

(4.6) 
which implies (4.2). 

4.4. Example. A nearly convex multifunction may admit several derivatives. Consider 
again a continuously Frechet differentiable mapping F and its associated multi­
function I'y=F- 1 (y). Now letA(x,F(x))Y={v:F(x)+F'(x)(v-x)=y}. From the 
assumptions that F' ( ·) is continuous in the operator norm topology it follows that 
(Kato [45] p. 258) it is continuous in the sense of the following metric J (defined 
on the set of subspaces of Xx Y). Let M, N be subspaces of X x Y. Put d (M, N)= 
= sup dist (u, SN), where SM and SN are unit spheres in M and N respectively. 

UESM 

Set J (M, N)=max ( d (M, N), d (N, M)). This is equivalent to Hau~dorff metric 
restricted to the unit ball provided that the sets involved are subspaces. Thus (4.1) 
holds. 

The mean value theorem gives now a formula similar to (4.5): for each .9>0 
there are e1 >0 and r0 > 0 so that for x EB (x0 , e1 ) and wEB (x, r0 ) 

IIF(w)-F(x)-F' (x) (w-x)! J~,9. llw-xll 

which implies (4.6) and (4.2). 

(4.7) 
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4.5. Example. Let F be continuously Frechet differentiable at x 0 and let GcX 
and Kc Y be closed convex sets. The multifunction r, Fy={x E G: F (x) E y+K} 
is nearly convex at (xo. Yo) for Yo E r- 1 Xo=F(xo)-K. 

For any y EF(x) - K define A(x,y) z= {v E G: F(x)+ F' (x0) (v-x) E z+ K}. (4.1) 
follows as in Example 4.3. 

The checking of (4.2) goes very much the same as in Evample 4.3 starting by 
formula (4.5). For vEB(x,r0)nG, A(~.\)v=F(x)+F'(x0)(v-x)+K and Fv= 
= F(v)+K, hence (4.6)- and consequently (4.2) are valid. 

5. Semicontinuity of nearly convex multifunctions 

Let us begin by an auxiliary result 

5.1. LEMMA. Let X and Y be normed spaces and let T be a topological space. We 
are given a family {A (t)},Er of closed convex multifunctions: A (t): Y~2x, such 
that there is p0 so that for 0< p < p0 for each ( > 0 we can find a neighbourhood W 
of t0 so that B(A(t)- 1 B(x0 ,p),()::::JA(t0 )-

1 B(x0 ,p). Suppose that there are 
t 0 ET, x 0 EX, y0 E Y and numbers r0 >0, s0 > 0 such that 

(5.1) 

Then for any s1 < s0 , r1 > r0 there are numbers s> O, 11>0 and a neighbourhood W 
of t0 , such that for t E < and for r< r1 

( 
rs1 ) A(t)- 1 B(x,r)::::JB y,G (5.2) 

for xEB(x0 ,s) and yEA(t)- 1 xnB(y0 ,17). 
Proof. Choose positive numbers s,17,( such that s1 +17+(<s0 and r0 +s<r1 • 

Let x EB (x0 , s), yE A (t)- 1 x nB (60 , 17). Then 

A(t)- 1 B(x, r0 +s)::::JA (t)- 1 B(x0 , r0 ). 

On the other hand, B(A(t)- 1 B(x0 ,r0 ), ()::::JA(t0)- 1 B(x0 ,r0 ), if r0 <p0 and 
for t E W, where W corresponds to (. Therefore, on using (5.1) we obtain 

A (t)- 1 B (x, r0 +s)+B (0, 0::::JY0 +B (0, s0 )::::J y+B (0, So -q). 

By the Radstrom cancellation theorem [53] 

A(t)- 1 B(x, r 0 +s)::::JB(y, s0 -q-() . 

Now let 0 ::;;A.::;; I. Because G (A (t)) is convex we have- (see Robinson [26]) 

A (t)- 1 B (x, A. (r0 +s)) =A (t)- 1 (.A. (B (x, r0 +s)+(l- A.) x)) ::::J 

::::JAA (t)- 1 B (x, r 0 +s)+(1-.A.) Y::::J 

::::JAB(y, so-q-0+(1-.A.).y=B (y, A. (so-q-0) (5.3) 

that is, for r<rt> A (t)- 1 B(x, r)::::JB(y, r so-q-( ) . 
r0 +s 
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We say that a multifunction r: Y --+2x is (locally) controllable at y0 , whenever y0 

is an interior point of r- 1 X. 

5.2. THEOREM. Let Y be Banach space, let r: Y -+2x be nearly convex at (x0 , y0 ) 

and let A(x, Y) be one of its derivatives. 

If A<xo,Yo) is locally controllable at y 0 , then ris J-u.H.s.c. linearly and unformly 
at (Xo, Yo). 

5.3. THEOREM. Let Y be Banach space and let r be a closed convex multifunction. 

If r is locally controllable at y0 , then it is locally u.H.s.c. at (x0 , y0 ) for each 
x 0 E Fy0 (linearly, uniformly with arbitrarily small balls taken for Q). 

5.4. REMARK. The former theorem shows how a relatively weak property of an 
approximating family A(x, Y) induces a much stronger property of the approximated 
multifunction. In the latter, the weak property of a multifunction implies another 
stronger property of that very same multifunction. Although the conclusion of the 
latter theorem is stronger than that of the former, Theorem 5.3. should be viewed 
as that special case, when a multifunction constitutes its own approximation. 

Proof of Theorems 5.2 and 5.3. If a convex multifunction A is locally controllable 
at y 0 : A- 1 X::;,B(y0 , t), then in view of the Baire theorem (see for instance [41]) 
for each x 0 EAy0 there are numbers r 1 >0, s1 > 0 and B(y1 , s1)cB(y0 , t) such that 

A- 1 B (x0 , r 1 )::;,B (y1 , s1). B (2y0 -y1 , s1) is a subset of A- 1 X and the Baire theorem 

gives A- 1 B (x0 , r 2 )::;,B (y2 , s2) for some B (y 2 , s2 )cB (2y0 -y1 , s1). Using now the 

~onvexity of A we obtain that A - 1 B (x0 , r 0 )::;,B (y0 , s0 ) for some r 0 >0, s0 > 0. 

Therefore according to Lemma 5.1 the local controllability at y0 implies 

(5.4) 

where oc1 >0 is a universal constant for all _x E B (x0 , e1) and yE r- 1 x n B (y0 , 1]1) 

for some 0<s1 ~B and 0<771 ~11· 

Take a number 8 < oc1 . Since r is nearly convex there are r0 , e1 , 171 and oc > 8 
so that ( 4.2) is fulfilled and thus 

(5.5) 

for ~ny 8<81 <ocvoc1 • 

The assumptions of Theorem 3.2 are now satisfied witl:l. q (r)=(oc v oc1) r and 
[). 

w(r)=--
1
-r, so r is c5-u.H.s.c. uniformly at (x0 ,y0 ) at p(r)~(ocvoc1 - 81)r ocvoc1 • 

· and the proof of Theorem 5.2 is complete. · 

· Since Fy0 of Theorem 5.3 is convex, r is locally u.H.s.c. uniformly at (x0 , y 0 ) 

according to Theorem 2.13 and a rate p (r) may be taken less or equal to r • (oc v 
v oc1 - 8 1)/2. 
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5.5. THEOREM. -Let Y and X be Banach space. If the multifunction r is almost 
convex at (x0 , y 0 ) and if one of its derivatives Acx,z) verifies (5.4) so that 9<ct.1 

(8 occurs in formula (4.2)), then r is c5-u.H.s.c. at (x0 , y0 ) at linear rate. 

Proof is identical as the previous proof started from (5.4). 

5.6. Example. Theorem 5.3 generalizes Theorem 1 of Robinson [26]. The assumption 
that y 0 be a internal point of r- 1 X (i.e. such that for each hE Y there is 1\.0 >0 so 
that y 0 + },h E r- 1 X for 0~1\.~1\.0) easily implies that y 0 is an interior point, for 
r- 1 X is convex and Y is a Banach space. The conclusion of that theorem follows 
from Theorem 5.3 in view of Corollary 3.3. 

Theorem 2 of [26] is a special case of Corollary 3.3. formulated for convex 
closed multifunctions. 

The Robinson formula (used also in his other works) 

dist (x, Fy)~k dist (y, r- 1 x) (5.6) 

has the following meaning: B(Fy, kr)-:::>FB (y, r) for each r. Indeed dist (y, r- 1 x)<r 

is equivalent to B(y, r)nr- 1 x~0 or to xEFB(y, r) and dist (x, Ty)<kr means 
that x E B (Fy, kr ). Adding the condition of Theorem 2 of [26] that yE B (y0 , tJ) 
we get the c5-upper Hausdorff semicontinuity. We obtain the stronger local upper 
Hausdorff semicontinuity. A corollary of the Robinson theorems is the Bimach 
open mapping theorem. 

5.7. COROLLARY (Banach open mapping theorem) 

Let be F a linear continuous map of a Banach space X onto a Banach space Y. 

Then the multifunction f- 1
: Y ~2x is Hausdorff continuous. 

5.8. COROLLARY (Robinson [27]) 

Ler F be a continuously Frechet differentiable (at Xo) mapping from a Banach 
space· X to a Banach space Y, let C be closed and convex subset of X and let K be 
a closed convex cone of Y. If 

0 E Int {F(x 0 ) F' (x0).(C- x0)+ K} 

then is c5-u.H.s.c. at y 0 (E Fx0 + K). 

(5.7) 

Proof. See Example 4.5 and note that the condition (5.7) means that A is locally 
controllable at (x0 , Yo). 

5.9. CoROLLARY (Lusternik theorem [49], [17]) 

Let X, Y be Banach spaces, V a neighbourhood of x 0 and let F be a continuously 
Frechet differentiable at x 0 and F' (x0 ) X=Y. Then there are a neighbourhood 
vl c V, a number k and a mapping of ul to X: ~~x@ such that for all ~. E ul 

F (~+x (~))=F (x0), 

llx (~)ll~k IIF@-F(xo)ll. 
(5;8) 
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(Consequent'y the tangent space to {x: F(x)=F(x0 )} is equal to the kernel of 
F' (x0 )). 

Proof. The thesis may be reformulated: for any xE U1 , 

dist (x, F- 1 (F(x0)))"(k IIF(x)-F(x0)11 

which means the a-upper Hausdorff semicontinuity of rat (x0 , F(x0 )) (Example 
2.14). In view of Example 4.3 the multifunction F- 1 is nearly convex at (x0 , F(x0 )). 

The condition F' (x0 ) X= Y means that {F' (x0))- 1 is controllable, hence locally 
controllable and we are in the assumptions of Theorem 5.2. 

5.10. CoROLLARY. (Ioffe-Tikhomirov extension of the Lusternik theorem [17] p. 45) 
Let X and Y be Banach spaces, L a linear continuous operator: X-+ Y, F a map­

ping of a neighbourhood U of x 0 to Y. 

Suppose that LX= Y and denote C (L)= Ill - 1 11, where I is the quotient mapping 
of L. Assume that there is a number <5>0 such that !5C(L)<1/2 and 

IIF(x)-F(v)-L (x-v) ll "(b llx-vll (5.9) 

for all x, v from U. Then there is a neighbourhood U1 and k > O and a mapping of 
U1 to X: ~-+x (~) such that (5.8) holds. 

Proof. We set Fy=F- 1 (y) and Acx,F (x)) y={v: F(x)+L (v-x)=y}. By the assump-
tions 

A(x!. F (xo)) B (x0 , r) =>B ( F (xo), C ~L)) 
and (5.9) yields (4.2) with 9=<5. If <5C(L)<1 then by Theorem 5.5 r is <5-u.H.s.c. 
at (x0 , y 0 ) and a linear rate may be chosen. This gives (5.8) in view of Example 2.14. 

5.11. THEOREM. Let X and Y be Banach spaces. Consider a (Frechet) differentiable 
mapping F of X to Y such that the derivative F' ( ·) is locally Lipschitz continuous 
at x 0 (in the operator norm) and assume that F' (x0 ) X= Y. Then the multifunction 
F- 1 is locally u.H.s.c. at (x0 , F(x0 )) (uniformly, linearly and for arbitrarily small 
balls taken for Q). 

Proof. It is enough to show that M df F- 1 (F(x0 )) fulfils (2.4) of Theorem 2.12, 
because Theorem 5.2 may be used to obtain the !5-upper Hausdorff semicontinuity. 

Let c be the Lipschitz constant ofF' ( ·) and let k be the constant of q (r)=kr 
(in Theorem 5.2). 

1 
Take O<s< 

16
kc , such that F' ( ·) is Lipschitz continuous in B (x0 , 2e) and 

such that F- 1 is <5-u.H.s.c. at a rate kr at ( x, F (x) ). x E B (x0 , 2s ). 
1 

Suppose that x 1 E B (x0 , e) and also x 1 E B (M, r), where r"( 
8
kc+ 

1 
. Let 

Xz EM dt M nB (x0, e) satisfy llx1 -x2 ll "(dist (x1, M)+r2 and such that there is 
--

O<("(r such that B(x2 , ()cB(x0 , e). 
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The ten gent space x 2 + ker F' (x 2 ) to M at x 0 is denoted by L and by definition 

L = L n B (x2 , () . 

Let x 3 EL be such that l / x 1 -x&~dist (x1 , L)+ r2
• Let x4 EM fulfil / /x1 -x4 / / ~r. 

By the assumptions there is x 5 EL such that 

// x4-xs/ / ~k //F' (xz) X4 - F ' (x2 ) x 5 // = k //F' (xz) (x4-x2)// = 

=k // F(x4)- F(x2 )- F ' (xz) (x4-Xz) l l~ 

~k sup /IF' (x2 )-F' (z) l! llx4-Xz // ~ 

We have used the mean value theorem and the assumption of Lipschitz continuity 
ofF'(·). 

Let x 6 deno!e the point of intersection of [x1, x3] with {x: llx- x2 ll-(} and 
let x7 EL fulfil 

// X1 -Xs /1 

ll x1 -x311 

llx6-x7 11 

llx6-x311 · 
(5 .11) 

Observe that l/ x6 -x3 // ~dist (x6 , L)+r 2
• Therefore, in view of Theorem 2.13 --

applied to the convex setL and to the ballB(x2 , (),the ratio (5.11) is greater or 
equal to 2. 

In virtue of the Lusternik theorem 

dist (x3 , M)~k //F(x3 )- F(x2 )//=k // F(x 3 )-F(x2 )- F' (x2 ) (x3 - x 2 ) / / ~ 

~kc ·//x3 - x 2 W. (5.12) 

If each x 8 EM realizing these estimates lies outside B (x2 , (), we apply estimates 
of the type (5.12) to the point x 3 + kc // x 3 - x 2 // (x2 -x3 ) to be sure that there is 
x 8 E M such that 

(5.13) 

For brevity we introduce the notation s= //x 1 - x 2 //. In accordance to (5.10)­
(5.13) we have 

s~ / /x1 -x3 //+ /lx3 -xs ll+ r 2 ~21 /x1 -Xs/1+(8kc+ 1) r 2 ~ 

~2 (1Jxl-x411 +11x4 -x5 11)+ (8kc+ I) r 2 ~ 

~2 (r + kc l/x4 - x2 JI2) + (8kc+ I) r 2
• (5.14) 

But llx4 -x2ll~ /lx4 -x1 // +l/x2 -x1 // ~r+s. Hence (5.14) becomes 

s~2r+2kc (r+ s)2 +(8kc+1) r 2 ~2r+4kcs2+(8kc+ 1) r 2 ~3r+1/2 s , (5.15) 

·o ~~6r. 

'Qh to express my appreciation to Professor S. Rolewicz for 
t helped to considerably improve the paper. 
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