Control and Cybernetics

Method of functions basis embeding in optimization problem

by
STANISEAW M. GRZEGÓRSKI
Numerical Analysis Department
Institute of Mathematics
Marie Curie-Skłodowska University, Lublin

In the paper an iterative method of minimizing a functional without constraints is presented. The method consists in replacing the problem of minimization of a functional defined on an infinitely dimensional space by an equivalent sequence of minimizations of functions defined on a m-dimensional space, m being fixed. The convergence of the method is discussed.

1. Introduction

Let X be a Banach space and let a linearly independent set of elements $\left\{e_{1}, e_{2}, \ldots\right\}$ of X be given, such that the linear spanned by $\left\{e_{1}, e_{2}, \ldots\right\}$ is dense in X. In addition, let an integer $m \geqslant 1$, a set $\Omega \subset R^{m}$ and a function $\varphi: \Omega \rightarrow X$ be given, such that

$$
\begin{equation*}
e_{i} \in \varphi(\Omega) \quad \text { for all } \quad i=1,2, \ldots \tag{1}
\end{equation*}
$$

Usually Ω is either R^{m} or a convex cone in R^{m}.
In this paper we will present a method of unconstrained minimization of a functional f defined on X.

In Sec. 2 we will define this method iteratively

$$
\begin{equation*}
x_{i+1}=x_{i}-\alpha_{i} \varphi\left(s_{i}\right), i=0,1,2, \ldots \tag{2}
\end{equation*}
$$

where $\alpha_{i} \in R, s_{i} \in \Omega$ are calculated by the minimization of functions

$$
\begin{equation*}
h_{i}(\alpha, s) \xlongequal{\text { df }} f\left(x_{i}-\alpha \varphi(s)\right), \alpha \in R, s \in \Omega . \tag{3}
\end{equation*}
$$

In the Ritz's method one has to increase the dimension of auxiliary problem, whereas in the method presented here the minimization still proceeds on the set $R \times \Omega \subset R^{m+1}, m$ being fixed.

In Sec. 3 we will give a theorem on the weak convergence of the sequence $f^{\prime}\left(x_{i}\right)$ as $i \rightarrow \infty$, where $f^{\prime}(x)$ denotes the Fréchet-differential at x. In Sec. 4 we will present
an example of sufficient conditions for the convergence of the sequence x_{i}. Some examples of a natural embeding of the set $\left\{e_{1}, e_{2}, \ldots\right\}$ in a finite-dimensional manifold will be given in Sec. 5. The material presented is taken from the doctoral dissertation ([1] Pt. II) written under the supervision of Dr. S. Ząbek.

2. Algorithm

Let X be a Banach space and let a linearly independent set of elements $\left\{e_{1}, e_{2}, \ldots\right\}$ of X be given, such that the lineal spanned by $\left\{e_{1}, e_{2}, \ldots\right\}$ is dense in X.

Let there be given a point $x_{0} \in X$ and a functional $f: X \rightarrow R$ and let

$$
\begin{equation*}
\inf _{x \in X} f(x)=d>-\infty \tag{4}
\end{equation*}
$$

Let us consider the following:

Problem A. Find a point $\tilde{x} \in X$ such that

$$
\begin{equation*}
f(\tilde{x}) \leqslant d(1+\varepsilon) \tag{5}
\end{equation*}
$$

where ε is a fixed non-negative number.
As a particularly case we may consider the problem:

$$
\text { find such } \bar{x} \in X \text { if it exists, that } f(\bar{x})=d \text {. }
$$

In addition, let there be given, an integer $m \geqslant 1$, a set $\Omega \subset R^{m}$ and a function $\varphi: \Omega \rightarrow X$, satisfying (1).

Now we can defined the following sets:

$$
\begin{equation*}
W_{0}=\left[x \in X: f(x) \leqslant f\left(x_{0}\right)\right] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=[x \in X: x= \pm \varphi(s) /\|\varphi(s)\|, s \in \Omega, \varphi(s) \neq 0] \tag{7}
\end{equation*}
$$

We assume that

$$
\begin{align*}
& W_{0} \text { is bounded, } \tag{8}\\
& \text { the functional } f \text { is Fréchet-differentiable on } X, \tag{9}\\
& f^{\prime}(x) \text { satisfies the Lipschitz's condition on conv }\left(W_{0}\right) \text {. } \tag{10}
\end{align*}
$$

First, for a given f and $x_{0} \in X$ we formulate a method which generates a sequence $x_{k} \in X, k=1,2, \ldots$, such that

$$
f^{\prime}\left(x_{k}\right) \xrightarrow[k \rightarrow \infty]{ } 0 \text { (weakly*). }
$$

We fix $0<\varepsilon<1$.

Algorithm. For a given $x_{k}, k=0,1,2, \ldots$ we choose $y_{k} \in Q$ satisfying the inequality

$$
\begin{equation*}
f^{\prime}\left(x_{k}\right) y_{k} \geqslant(1-\varepsilon) \sup _{y \in Q} f^{\prime}\left(x_{k}\right) y \tag{11}
\end{equation*}
$$

and define $r_{k} \in R$, such that

$$
\begin{equation*}
r_{k}=\min \left\{r>0: f^{\prime}\left(x_{k}-r y_{k}\right) y_{k}=0\right\} . \tag{12}
\end{equation*}
$$

Then we select $t_{k} \in R$ and $z_{k} \in Q$ satisfying the relation

$$
\begin{equation*}
f\left(x_{k}-t_{k} z_{k}\right) \leqslant f\left(x_{k}-r_{k} y_{k}\right) \tag{13}
\end{equation*}
$$

for example, $t_{k}=r_{k}, z_{k}=y_{k}$, and we take

$$
\begin{equation*}
x_{k+1}=x_{k}-t_{k} z_{k} . \tag{14}
\end{equation*}
$$

The introduction of ε into (11) assures the existence of y_{k} in each iteration and also quarantees the convergence of the numerical realization of the method if ε denotes a relative error generated in the calculation of $f^{\prime}\left(x_{k}\right) y_{k}$.

If $f^{\prime}\left(x_{k}\right) \neq 0$, then it follows from (8) and (10) that there exists r_{k} defined by (10). On the other hand, if $f^{\prime}\left(x_{k}\right)=0$, then the necessary condition for extremum is satisfied.

It is easy to verify that the method defined by (2), (3) is a particular case of the algorithm defined by (11)-(14).

3. Weak convergence of the algorithm

In this section we will give a theorem on the weak* convergence of the sequence $f^{\prime}\left(x_{k}\right)$.

Theorem 1. Let the functional f satisfy the conditions (4), (8)-(10), and the sequence x_{k} be defined by (11)-(14), then

$$
f^{\prime}\left(x_{k}\right) \rightarrow 0 \text { (weakly*) as } k \rightarrow \infty .
$$

Proof. First we shall demonstrate that

$$
f^{\prime}\left(x_{k}\right) y_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

The contradiction of this result will be proved here. We shall assume that there exist $\left\{k_{i}\right\}$, such that

$$
f^{\prime}\left(x_{k_{i}}\right) y_{k_{i}} \geqslant \delta>0 \quad \text { (eqs. (8), (9)). }
$$

From (8) and (10) it follows that there exists a sequence $q_{i} \in\left(0, r_{k_{i}}\right), \mathrm{i}=0,1,2, \ldots$, such that

$$
f^{\prime}\left(x_{k_{i}}-q_{i} y_{k_{i}}\right) y_{k_{l}}=\delta / 2 .
$$

Observe that

$$
\begin{aligned}
& f\left(x_{0}\right)-d \geqslant \sum_{i=0}^{i} {\left.\left[f x_{k_{i}}\right)-f\left(x_{k_{i}+1}\right)\right] \geqslant \sum_{i=0}^{l}\left[f\left(x_{k_{i}}\right)-f\left(x_{k_{i}}-q_{i} y_{k_{i}}\right)\right]=} \\
&=\sum_{i=0}^{i} f^{\prime}\left(x_{\alpha_{i}}-\Theta_{i} q_{i} y_{k_{i}}\right) q_{i} y_{k_{i}} \geqslant \frac{\delta}{2} \sum_{i=0}^{i} q_{i}, \quad \Theta_{i} \in(0,1) .
\end{aligned}
$$

Hence $q_{i} \rightarrow 0$ for $i \rightarrow \infty$ and also

$$
f^{\prime}\left(x_{k_{i}}\right) y_{k_{i}}-f^{\prime}\left(x_{k_{i}}-q_{i} y_{k_{i}}\right) y_{k_{i}} \geqslant \delta-\frac{\delta}{2}=\frac{\delta}{2}>0 .
$$

By virtue of (8) we get

$$
f^{\prime}\left(x_{k_{l}}\right) y_{k_{i}}-f^{\prime}\left(x_{k_{i}}-q_{i} y_{k_{i}}\right) y_{k_{i}} \xrightarrow{i \rightarrow \infty} 0 .
$$

The contradiction of this statement demonstrates that

$$
f^{\prime}\left(x_{k}\right) y_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

Due to inequality (9) we have

$$
f^{\prime}\left(x_{k}\right) y_{k} \geqslant\left|f^{\prime}\left(x_{k}\right) \frac{e_{j}}{\left\|e_{j}\right\|}\right|(1-\varepsilon) \quad \text { for } \quad j=1,2, \ldots, k=0,1,2, \ldots
$$

which implies

$$
f^{\prime}\left(x_{k}\right) e_{j} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \quad \text { for } \quad j=1,2, \ldots .
$$

Consequently

$$
\begin{equation*}
\sum_{j=1}^{m} b_{k}^{j} f^{\prime}\left(x_{k}\right) e_{j} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \quad \text { for } \quad m \in N \tag{13}
\end{equation*}
$$

if $b_{k}^{j,}$ are uniformly bounded.
Assumption (8) implies the boundness of $f^{\prime}(x)$ on W_{0}. Applying (13) we can say that

$$
f^{\prime}\left(x_{k}\right) v \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \quad \text { for } \quad v \in X
$$

which means

$$
f^{\prime}\left(x_{k}\right) \rightarrow 0(\text { weakly*) as } k \rightarrow \infty .
$$

4. Convergence of the algorithm

Now we can formulate the sufficient conditions for the strong convergence of the sequence $x_{k} \in X$, such that

$$
\begin{gather*}
f\left(x_{k}\right) \geqslant f\left(x_{k+1}\right) \quad \text { for } \quad k=0,1,2, \ldots \tag{14}\\
f^{\prime}\left(x_{k}\right) \rightarrow 0(\text { weakly*) as } k \rightarrow \infty \tag{15}
\end{gather*}
$$

to the point $\bar{x} \in X$, such that $f(\bar{x})<f(x)$ for $x \in X, x \neq \bar{x}$.
Theorem 2. Let X denote a reflexive Banach space, let f be continuously Fréchet--differentiable on X and let there exists, a constant $c>0$, such that

$$
\begin{equation*}
f(x)-f(y) \geqslant\left(f^{\prime}(y), x-y\right)+c\|x-y\|^{2} \quad \text { for } \quad x, y \in X \tag{16}
\end{equation*}
$$

Moreover we assume that the sequence $x_{k} \in X$ satisfies the conditions (14), (15).

Then there exists a limit

$$
\lim _{k \rightarrow \infty} x_{k}=\bar{x} \in X
$$

and

$$
f^{\prime}(\bar{x})=0, f(\bar{x})<f(x) \quad \text { for } \quad x \in X, x \neq \bar{x}
$$

Proof. Since f is weakly lower-semicontinuous on X and

$$
f\left(x_{i}\right) \rightarrow \infty \quad \text { if } \quad\left\|x_{i}\right\| \rightarrow \infty
$$

then due to the Generalized Theorem of Weierstrass there exists $\bar{x} \in X$ such that $f(\bar{x}) \leqslant f(x)$ for $x \in X$.

By the definition of Fréchet-differential we have $f^{\prime}(\bar{x})=0$. If $f\left(x_{1}\right) \leqslant f(x)$ for $x \in X$, and $f\left(x_{2}\right) \leqslant f(x)$ for $x \in X$, then

$$
0=f\left(x_{1}\right)-f\left(x_{2}\right) \geqslant\left(f^{\prime}\left(x_{2}\right), x_{1}-x_{2}\right)+c\left\|x_{1}-x_{2}\right\|^{2} \geqslant 0 .
$$

Hence $x_{1}=x_{2}=\bar{x}$.
Let X_{n} denote a linear subspace spanned by $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. By virtue of (15) we have

$$
\lim _{k \rightarrow \infty}\left(f^{\prime}\left(x_{k}\right), v_{k}^{n}\right)=0, \quad \text { for } \quad n=1,2,3, \ldots
$$

if the sequences $v_{k}^{n} \in X_{n}$ are bounded.
Applying (16) we get

$$
\begin{gathered}
f\left(x_{k}+v_{k}^{n}\right)-x\left(x_{k}\right) \geqslant\left(f^{\prime}\left(x_{k}\right) v_{k}^{n}\right)+c\left\|v_{k}^{n}\right\|^{2}, k=0,1,2, \ldots \\
n \text { - fixed. }
\end{gathered}
$$

Hence

$$
\lim _{k \rightarrow \infty} f\left(x_{k}+v_{k}^{n}\right) \geqslant \lim _{k \rightarrow \infty} f\left(x_{k}\right)=f^{*} \geqslant f(\bar{x}) .
$$

We choos? sequences $\bar{v}_{k}^{n} \in X_{z}$ for $n=1,2, \ldots$, such that

$$
\lim _{n \rightarrow \infty} \bar{v}_{k}^{n}=\bar{x}-x_{k} \quad \text { for } \quad k=0,1,2, \ldots
$$

(such sequences exist because a linear subspace spanned by $\left(e_{1}, e_{2}, \ldots\right)$ is dense in $\left.X\right)$. Then

$$
f(\bar{x}) \leqslant f^{*} \leqslant \lim _{k \rightarrow \infty} \inf _{v^{n} \in X_{n}} f\left(x_{k}+v^{n}\right) \leqslant \lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} f\left(x_{k}+\bar{v}_{k}^{n}\right)=f(\bar{x}),
$$

which means

$$
\lim _{k \rightarrow \infty} f\left(x_{k}\right)=f(\bar{x})
$$

Using (16) we obtain

$$
f\left(x_{k}\right)-f(\bar{x}) \geqslant\left(f^{\prime}(\bar{x}), x_{k}-\bar{x}\right)+c\left\|\bar{x}-x_{k}\right\|^{2}, k=0,1,2, \ldots
$$

and now it follows that

$$
\lim _{k \rightarrow \infty} x_{k}=\bar{x} \in X
$$

and $f(\bar{x})<f(x)$ for $x \in X, x \neq \bar{x}$.
Q.E.D.

Observe that the assumption (16) in Theorem 2 can also be replaced by some other conditions used by Loridan [2], [3], for example, instead of the condition (16) we may assume that f is uniformly convex.

Theorem 2 can be applied to the problem:
let H_{1}, H_{2} be Hilbert spaces, $A \in L\left(H_{1}, H_{2}\right)$.
Then

$$
f(x)=\left\|A x-y_{0}\right\|^{2}
$$

satisfies the assumptions of Theorem 2 and the minimization of functional f yields a solution of the equation $A x=y_{0}$.

5. Examples

We give here some examples of sets $\Omega \subset R^{m}$ and functions $\varphi: \Omega \rightarrow X$, such that $e_{i} \in \varphi(\Omega)$ for $i=1,2, \ldots$.

Example 1. Let $X=L^{2}[a, b], a>0$ with $e_{i}=t^{i}, i=0,1,2, \ldots, t \in[a, b]$, then we assume

$$
m=1, \Omega=R, \varphi(s)=t^{s}, s \in \Omega, \quad t \in[a, b]
$$

and obviously

$$
\varphi(i)=e_{i} \quad \text { for } \quad i=0,1,2 \ldots .
$$

Example 2. Let $X=L^{2}[0, \pi]$ with linearly independent functions $1, \cos t, \sin t$, $\cos 2 t, \sin 2 t, \ldots$, then we assume

$$
\begin{gathered}
m=3, \Omega=R^{3} \quad \text { and } \quad \varphi(s)=\cos \left(s_{1} t\right)+s_{2} \sin \left(s_{3} t\right) \\
t \in[0, \pi], s=\left(s_{1}, s_{2}, s_{3}\right), s_{i} \in R, i=1,2,3 .
\end{gathered}
$$

Example 3. Let $X=\left[x(t) \in H_{1}[0,1]: x(0)=0\right], e_{k}=t \exp (k t)$ for $k=0,1,2, \ldots$, $t \in[0,1]$, where $H_{1}[0,1]$ - a Sobolev space.

Let

$$
\left\{\begin{array}{l}
f(x)=\int_{0}^{1}\left\{\left[x^{\prime}(t)\right]^{2}+[x(t)]^{2}+2 t^{2} x(t)\right\} d t, \\
x(0)=0 .
\end{array}\right.
$$

Problem: minimize $f(x), x \in X$.
The solution of this problem is

$$
\begin{aligned}
& \bar{x}(t)=(2-c) \exp t+c \exp (-t)-t^{2}-2 \\
& f(\bar{x})=-0.051100855 \ldots,
\end{aligned}
$$

where $c=1.11353988$... .

We take $\Omega=(-\infty, \infty)$ and $\varphi(s)=t \exp (s t)$. In this case the new method consists in the minimization of the function

$$
\begin{aligned}
& h_{k}(\alpha, s)=f\left(x_{k}(t)+\alpha t \exp (s t)\right) \\
& t \in[0,1], \quad \text { for } \quad k=0,1,2, \ldots
\end{aligned}
$$

and

$$
x_{k}(t)=x_{k-1}(t)-\alpha_{k} t \exp \left(s_{k} t\right) \quad \text { for } \quad k=1,2, \ldots,
$$

where

$$
\begin{gathered}
x_{0}(t) \equiv 0 \quad \text { for } \quad t \in[0,1] \\
h_{k}\left(\alpha_{k}, s_{k}\right) \leqslant h_{k}(\alpha, s) \quad \text { for } \quad \alpha, s \in(-\infty, \infty) .
\end{gathered}
$$

We have performed the computations and have obtained

i	α_{i}	s_{i}	$f\left(x_{k}\right)$
1	-0.278314	-0.42	-0.04984
2	$0.312676-7$	12.62	-0.05046
3	$0.809892-1$	-4.68	-0.05083
4	$-0.113865-1$	-0.30	-0.05093

Similar examples can be constructed in the spaces of functions of several variables.
Acknowledgments. I would like to thank Prof. K. Goebel and Prof. A. P. Wierzbicki for helpful comments on this paper.

References

1. S. Grzegórski, Numerical methods of minimizing a functional defined on a Banach space and their applications to the problems of calculus of variations and optimal control. (Numeryczne metody minimalizacji funkcjonału określonego na przestrzeni Banacha i ich zastosowanie do zadań rachunku wariacyjnego i sterowania optymalnego). Doctoral dissertation. Univ. MSC in Lublin, Now. 1975.
2. P. Loridan, Sur un procède d'optimisation utilisant simultanement les méthodes de pénalisation et des variations localles. SIAM J. Control 11. (1973).
3. P. Loridan, Sur la minimisation de fonctionnelles convexes par pénalisation. R.I.R.O. 5, R-1 (1971).

Received, July 1977.

Metoda zanurzania bazy funkcyjnej w zagadnieniach optymalizacji

Przedstawiono metodę iteracyjną minimalizacji funkcjonalu bez ograniczeń. Metoda ta polega na zastapieniu zadania minimalizacji funkcjonału określonego na przestrzeni nieskończenie wielowymiarowej równoważnym ciągiem zadań minimalizacji funkcji określonych na przestrzeniach m-wymiarowych, przy czym m jest liczbą ustaloną. Omówiono też zbieżność metody.

Метод погружения функционального базиса в оптимизационных задачах

В работе представлен итерационный метод минимизации функционала без ограничений. Метод состоит в замене задачи минимизации функционала, определенного на бесконечном многомерном пространстве, эквивалентной последовательностью задач минимизации функций определенных на m-мерных пространствах, причем m является определенным числом. Рассматривается сходимость метода.

